[analyzer] CastValueChecker: Store the dynamic types and casts

Summary:
This patch introduces `DynamicCastInfo` similar to `DynamicTypeInfo` which
is stored in `CastSets` which are storing the dynamic cast informations of
objects based on memory regions. It could be used to store and check the
casts and prevent infeasible paths.

Reviewed By: NoQ

Differential Revision: https://reviews.llvm.org/D66325

llvm-svn: 369605
This commit is contained in:
Csaba Dabis 2019-08-22 00:20:36 +00:00
parent b73a5711f6
commit 0202c3596c
19 changed files with 915 additions and 538 deletions

View File

@ -972,6 +972,9 @@ public:
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
friend bool operator<(const QualType &LHS, const QualType &RHS) {
return LHS.Value < RHS.Value;
}
static std::string getAsString(SplitQualType split,
const PrintingPolicy &Policy) {

View File

@ -234,7 +234,7 @@ public:
}
/// A shorthand version of getNoteTag that doesn't require you to accept
/// the BugReporterContext arguments when you don't need it.
/// the 'BugReporterContext' argument when you don't need it.
///
/// @param Cb Callback only with 'BugReport &' parameter.
/// @param IsPrunable Whether the note is prunable. It allows BugReporter
@ -247,6 +247,19 @@ public:
IsPrunable);
}
/// A shorthand version of getNoteTag that doesn't require you to accept
/// the arguments when you don't need it.
///
/// @param Cb Callback without parameters.
/// @param IsPrunable Whether the note is prunable. It allows BugReporter
/// to omit the note from the report if it would make the displayed
/// bug path significantly shorter.
const NoteTag *getNoteTag(std::function<std::string()> &&Cb,
bool IsPrunable = false) {
return getNoteTag([Cb](BugReporterContext &, BugReport &) { return Cb(); },
IsPrunable);
}
/// A shorthand version of getNoteTag that accepts a plain note.
///
/// @param Note The note.

View File

@ -0,0 +1,55 @@
//===- DynamicCastInfo.h - Runtime cast information -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICCASTINFO_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICCASTINFO_H
#include "clang/AST/Type.h"
namespace clang {
namespace ento {
class DynamicCastInfo {
public:
enum CastResult { Success, Failure };
DynamicCastInfo(QualType from, QualType to, CastResult resultKind)
: From(from), To(to), ResultKind(resultKind) {}
QualType from() const { return From; }
QualType to() const { return To; }
bool equals(QualType from, QualType to) const {
return From == from && To == to;
}
bool succeeds() const { return ResultKind == CastResult::Success; }
bool fails() const { return ResultKind == CastResult::Failure; }
bool operator==(const DynamicCastInfo &RHS) const {
return From == RHS.From && To == RHS.To;
}
bool operator<(const DynamicCastInfo &RHS) const {
return From < RHS.From && To < RHS.To;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(From);
ID.Add(To);
ID.AddInteger(ResultKind);
}
private:
QualType From, To;
CastResult ResultKind;
};
} // namespace ento
} // namespace clang
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICCASTINFO_H

View File

@ -0,0 +1,73 @@
//===- DynamicType.h - Dynamic type related APIs ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines APIs that track and query dynamic type information. This
// information can be used to devirtualize calls during the symbolic execution
// or do type checking.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPE_H
#include "clang/AST/Type.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicCastInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/Optional.h"
#include <utility>
namespace clang {
namespace ento {
/// Get dynamic type information for the region \p MR.
DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR);
/// Get raw dynamic type information for the region \p MR.
const DynamicTypeInfo *getRawDynamicTypeInfo(ProgramStateRef State,
const MemRegion *MR);
/// Get dynamic cast information from \p CastFromTy to \p CastToTy of \p MR.
const DynamicCastInfo *getDynamicCastInfo(ProgramStateRef State,
const MemRegion *MR,
QualType CastFromTy,
QualType CastToTy);
/// Set dynamic type information of the region; return the new state.
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
DynamicTypeInfo NewTy);
/// Set dynamic type information of the region; return the new state.
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
QualType NewTy, bool CanBeSubClassed = true);
/// Set dynamic type and cast information of the region; return the new state.
ProgramStateRef setDynamicTypeAndCastInfo(ProgramStateRef State,
const MemRegion *MR,
QualType CastFromTy,
QualType CastToTy, QualType ResultTy,
bool IsCastSucceeds);
/// Removes the dead type informations from \p State.
ProgramStateRef removeDeadTypes(ProgramStateRef State, SymbolReaper &SR);
/// Removes the dead cast informations from \p State.
ProgramStateRef removeDeadCasts(ProgramStateRef State, SymbolReaper &SR);
void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
const char *NL = "\n", unsigned int Space = 0,
bool IsDot = false);
} // namespace ento
} // namespace clang
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPE_H

View File

@ -1,10 +1,11 @@
//== DynamicTypeInfo.h - Runtime type information ----------------*- C++ -*--=//
//===- DynamicTypeInfo.h - Runtime type information -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEINFO_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEINFO_H
@ -16,36 +17,37 @@ namespace ento {
/// Stores the currently inferred strictest bound on the runtime type
/// of a region in a given state along the analysis path.
class DynamicTypeInfo {
private:
QualType T;
bool CanBeASubClass;
public:
DynamicTypeInfo() : DynTy(QualType()) {}
DynamicTypeInfo() : T(QualType()) {}
DynamicTypeInfo(QualType WithType, bool CanBeSub = true)
: T(WithType), CanBeASubClass(CanBeSub) {}
DynamicTypeInfo(QualType Ty, bool CanBeSub = true)
: DynTy(Ty), CanBeASubClass(CanBeSub) {}
/// Return false if no dynamic type info is available.
bool isValid() const { return !T.isNull(); }
/// Returns the currently inferred upper bound on the runtime type.
QualType getType() const { return T; }
/// Returns false if the type information is precise (the type T is
/// Returns false if the type information is precise (the type 'DynTy' is
/// the only type in the lattice), true otherwise.
bool canBeASubClass() const { return CanBeASubClass; }
/// Returns true if the dynamic type info is available.
bool isValid() const { return !DynTy.isNull(); }
/// Returns the currently inferred upper bound on the runtime type.
QualType getType() const { return DynTy; }
bool operator==(const DynamicTypeInfo &RHS) const {
return DynTy == RHS.DynTy && CanBeASubClass == RHS.CanBeASubClass;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(T);
ID.AddInteger((unsigned)CanBeASubClass);
}
bool operator==(const DynamicTypeInfo &X) const {
return T == X.T && CanBeASubClass == X.CanBeASubClass;
ID.Add(DynTy);
ID.AddBoolean(CanBeASubClass);
}
private:
QualType DynTy;
bool CanBeASubClass;
};
} // end ento
} // end clang
} // namespace ento
} // namespace clang
#endif
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEINFO_H

View File

@ -1,63 +0,0 @@
//===- DynamicTypeMap.h - Dynamic type map ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides APIs for tracking dynamic type information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEMAP_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEMAP_H
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/ADT/ImmutableMap.h"
#include "clang/AST/Type.h"
namespace clang {
namespace ento {
class MemRegion;
/// The GDM component containing the dynamic type info. This is a map from a
/// symbol to its most likely type.
struct DynamicTypeMap {};
using DynamicTypeMapTy = llvm::ImmutableMap<const MemRegion *, DynamicTypeInfo>;
template <>
struct ProgramStateTrait<DynamicTypeMap>
: public ProgramStatePartialTrait<DynamicTypeMapTy> {
static void *GDMIndex();
};
/// Get dynamic type information for a region.
DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State,
const MemRegion *Reg);
/// Set dynamic type information of the region; return the new state.
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *Reg,
DynamicTypeInfo NewTy);
/// Set dynamic type information of the region; return the new state.
inline ProgramStateRef setDynamicTypeInfo(ProgramStateRef State,
const MemRegion *Reg, QualType NewTy,
bool CanBeSubClassed = true) {
return setDynamicTypeInfo(State, Reg,
DynamicTypeInfo(NewTy, CanBeSubClassed));
}
void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
const char *NL = "\n", unsigned int Space = 0,
bool IsDot = false);
} // namespace ento
} // namespace clang
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEMAP_H

View File

@ -6,7 +6,13 @@
//
//===----------------------------------------------------------------------===//
//
// This defines CastValueChecker which models casts of custom RTTIs.
// This defines CastValueChecker which models casts of custom RTTIs.
//
// TODO list:
// - It only allows one succesful cast between two types however in the wild
// the object could be casted to multiple types.
// - It needs to check the most likely type information from the dynamic type
// map to increase precision of dynamic casting.
//
//===----------------------------------------------------------------------===//
@ -15,6 +21,7 @@
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "llvm/ADT/Optional.h"
#include <utility>
@ -23,219 +30,281 @@ using namespace ento;
namespace {
class CastValueChecker : public Checker<eval::Call> {
enum class CastKind { Function, Method };
enum class CallKind { Function, Method };
using CastCheck =
std::function<void(const CastValueChecker *, const CallExpr *,
std::function<void(const CastValueChecker *, const CallEvent &Call,
DefinedOrUnknownSVal, CheckerContext &)>;
using CheckKindPair = std::pair<CastCheck, CastKind>;
public:
// We have five cases to evaluate a cast:
// 1) The parameter is non-null, the return value is non-null
// 2) The parameter is non-null, the return value is null
// 3) The parameter is null, the return value is null
// 1) The parameter is non-null, the return value is non-null.
// 2) The parameter is non-null, the return value is null.
// 3) The parameter is null, the return value is null.
// cast: 1; dyn_cast: 1, 2; cast_or_null: 1, 3; dyn_cast_or_null: 1, 2, 3.
//
// 4) castAs: has no parameter, the return value is non-null.
// 5) getAs: has no parameter, the return value is null or non-null.
// 4) castAs: Has no parameter, the return value is non-null.
// 5) getAs: Has no parameter, the return value is null or non-null.
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
private:
// These are known in the LLVM project. The pairs are in the following form:
// {{{namespace, call}, argument-count}, {callback, kind}}
const CallDescriptionMap<CheckKindPair> CDM = {
const CallDescriptionMap<std::pair<CastCheck, CallKind>> CDM = {
{{{"llvm", "cast"}, 1},
{&CastValueChecker::evalCast, CastKind::Function}},
{&CastValueChecker::evalCast, CallKind::Function}},
{{{"llvm", "dyn_cast"}, 1},
{&CastValueChecker::evalDynCast, CastKind::Function}},
{&CastValueChecker::evalDynCast, CallKind::Function}},
{{{"llvm", "cast_or_null"}, 1},
{&CastValueChecker::evalCastOrNull, CastKind::Function}},
{&CastValueChecker::evalCastOrNull, CallKind::Function}},
{{{"llvm", "dyn_cast_or_null"}, 1},
{&CastValueChecker::evalDynCastOrNull, CastKind::Function}},
{&CastValueChecker::evalDynCastOrNull, CallKind::Function}},
{{{"clang", "castAs"}, 0},
{&CastValueChecker::evalCastAs, CastKind::Method}},
{&CastValueChecker::evalCastAs, CallKind::Method}},
{{{"clang", "getAs"}, 0},
{&CastValueChecker::evalGetAs, CastKind::Method}}};
{&CastValueChecker::evalGetAs, CallKind::Method}}};
void evalCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalCast(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
void evalDynCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalDynCast(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
void evalCastOrNull(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalCastOrNull(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
void evalDynCastOrNull(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalDynCastOrNull(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
void evalCastAs(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalCastAs(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
void evalGetAs(const CallExpr *CE, DefinedOrUnknownSVal DV,
void evalGetAs(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const;
};
} // namespace
static std::string getCastName(const Expr *Cast) {
QualType Ty = Cast->getType();
if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl())
return RD->getNameAsString();
static QualType getRecordType(QualType Ty) {
Ty = Ty.getCanonicalType();
return Ty->getPointeeCXXRecordDecl()->getNameAsString();
if (Ty->isPointerType())
Ty = Ty->getPointeeType();
if (Ty->isReferenceType())
Ty = Ty.getNonReferenceType();
return Ty.getUnqualifiedType();
}
static const NoteTag *getCastTag(bool IsNullReturn, const CallExpr *CE,
CheckerContext &C,
bool IsCheckedCast = false) {
Optional<std::string> CastFromName = (CE->getNumArgs() > 0)
? getCastName(CE->getArg(0))
: Optional<std::string>();
std::string CastToName = getCastName(CE);
static bool isInfeasibleCast(const DynamicCastInfo *CastInfo,
bool CastSucceeds) {
if (!CastInfo)
return false;
return CastSucceeds ? CastInfo->fails() : CastInfo->succeeds();
}
static const NoteTag *getNoteTag(CheckerContext &C,
const DynamicCastInfo *CastInfo,
QualType CastToTy, const Expr *Object,
bool CastSucceeds, bool IsKnownCast) {
std::string CastToName =
CastInfo ? CastInfo->to()->getAsCXXRecordDecl()->getNameAsString()
: CastToTy->getAsCXXRecordDecl()->getNameAsString();
Object = Object->IgnoreParenImpCasts();
return C.getNoteTag(
[CastFromName, CastToName, IsNullReturn,
IsCheckedCast](BugReport &) -> std::string {
[=] {
SmallString<128> Msg;
llvm::raw_svector_ostream Out(Msg);
Out << (!IsCheckedCast ? "Assuming dynamic cast " : "Checked cast ");
if (CastFromName)
Out << "from '" << *CastFromName << "' ";
if (!IsKnownCast)
Out << "Assuming ";
Out << "to '" << CastToName << "' "
<< (!IsNullReturn ? "succeeds" : "fails");
if (const auto *DRE = dyn_cast<DeclRefExpr>(Object)) {
Out << '\'' << DRE->getDecl()->getNameAsString() << '\'';
} else if (const auto *ME = dyn_cast<MemberExpr>(Object)) {
Out << (IsKnownCast ? "Field '" : "field '")
<< ME->getMemberDecl()->getNameAsString() << '\'';
} else {
Out << (IsKnownCast ? "The object" : "the object");
}
Out << ' ' << (CastSucceeds ? "is a" : "is not a") << " '" << CastToName
<< '\'';
return Out.str();
},
/*IsPrunable=*/true);
}
static ProgramStateRef getState(bool IsNullReturn,
DefinedOrUnknownSVal ReturnDV,
const CallExpr *CE, ProgramStateRef State,
CheckerContext &C) {
return State->BindExpr(
CE, C.getLocationContext(),
IsNullReturn ? C.getSValBuilder().makeNull() : ReturnDV, false);
//===----------------------------------------------------------------------===//
// Main logic to evaluate a cast.
//===----------------------------------------------------------------------===//
static void addCastTransition(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C, bool IsNonNullParam,
bool IsNonNullReturn,
bool IsCheckedCast = false) {
ProgramStateRef State = C.getState()->assume(DV, IsNonNullParam);
if (!State)
return;
const Expr *Object;
QualType CastFromTy;
QualType CastToTy = getRecordType(Call.getResultType());
if (Call.getNumArgs() > 0) {
Object = Call.getArgExpr(0);
CastFromTy = getRecordType(Call.parameters()[0]->getType());
} else {
Object = cast<CXXInstanceCall>(&Call)->getCXXThisExpr();
CastFromTy = getRecordType(Object->getType());
}
const MemRegion *MR = DV.getAsRegion();
const DynamicCastInfo *CastInfo =
getDynamicCastInfo(State, MR, CastFromTy, CastToTy);
// We assume that every checked cast succeeds.
bool CastSucceeds = IsCheckedCast || CastFromTy == CastToTy;
if (!CastSucceeds) {
if (CastInfo)
CastSucceeds = IsNonNullReturn && CastInfo->succeeds();
else
CastSucceeds = IsNonNullReturn;
}
// Check for infeasible casts.
if (isInfeasibleCast(CastInfo, CastSucceeds)) {
C.generateSink(State, C.getPredecessor());
return;
}
// Store the type and the cast information.
bool IsKnownCast = CastInfo || IsCheckedCast || CastFromTy == CastToTy;
if (!IsKnownCast || IsCheckedCast)
State = setDynamicTypeAndCastInfo(State, MR, CastFromTy, CastToTy,
Call.getResultType(), CastSucceeds);
SVal V = CastSucceeds ? DV : C.getSValBuilder().makeNull();
C.addTransition(
State->BindExpr(Call.getOriginExpr(), C.getLocationContext(), V, false),
getNoteTag(C, CastInfo, CastToTy, Object, CastSucceeds, IsKnownCast));
}
//===----------------------------------------------------------------------===//
// Evaluating cast, dyn_cast, cast_or_null, dyn_cast_or_null.
//===----------------------------------------------------------------------===//
static void evalNonNullParamNonNullReturn(const CallExpr *CE,
static void evalNonNullParamNonNullReturn(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C,
bool IsCheckedCast = false) {
bool IsNullReturn = false;
if (ProgramStateRef State = C.getState()->assume(DV, true))
C.addTransition(getState(IsNullReturn, DV, CE, State, C),
getCastTag(IsNullReturn, CE, C, IsCheckedCast));
addCastTransition(Call, DV, C, /*IsNonNullParam=*/true,
/*IsNonNullReturn=*/true, IsCheckedCast);
}
static void evalNonNullParamNullReturn(const CallExpr *CE,
static void evalNonNullParamNullReturn(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) {
bool IsNullReturn = true;
if (ProgramStateRef State = C.getState()->assume(DV, true))
C.addTransition(getState(IsNullReturn, DV, CE, State, C),
getCastTag(IsNullReturn, CE, C));
addCastTransition(Call, DV, C, /*IsNonNullParam=*/true,
/*IsNonNullReturn=*/false);
}
static void evalNullParamNullReturn(const CallExpr *CE, DefinedOrUnknownSVal DV,
static void evalNullParamNullReturn(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) {
if (ProgramStateRef State = C.getState()->assume(DV, false))
C.addTransition(getState(/*IsNullReturn=*/true, DV, CE, State, C),
C.addTransition(State->BindExpr(Call.getOriginExpr(),
C.getLocationContext(),
C.getSValBuilder().makeNull(), false),
C.getNoteTag("Assuming null pointer is passed into cast",
/*IsPrunable=*/true));
}
void CastValueChecker::evalCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
void CastValueChecker::evalCast(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalNonNullParamNonNullReturn(CE, DV, C, /*IsCheckedCast=*/true);
evalNonNullParamNonNullReturn(Call, DV, C, /*IsCheckedCast=*/true);
}
void CastValueChecker::evalDynCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
void CastValueChecker::evalDynCast(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalNonNullParamNonNullReturn(CE, DV, C);
evalNonNullParamNullReturn(CE, DV, C);
evalNonNullParamNonNullReturn(Call, DV, C);
evalNonNullParamNullReturn(Call, DV, C);
}
void CastValueChecker::evalCastOrNull(const CallExpr *CE,
void CastValueChecker::evalCastOrNull(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalNonNullParamNonNullReturn(CE, DV, C);
evalNullParamNullReturn(CE, DV, C);
evalNonNullParamNonNullReturn(Call, DV, C);
evalNullParamNullReturn(Call, DV, C);
}
void CastValueChecker::evalDynCastOrNull(const CallExpr *CE,
void CastValueChecker::evalDynCastOrNull(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalNonNullParamNonNullReturn(CE, DV, C);
evalNonNullParamNullReturn(CE, DV, C);
evalNullParamNullReturn(CE, DV, C);
evalNonNullParamNonNullReturn(Call, DV, C);
evalNonNullParamNullReturn(Call, DV, C);
evalNullParamNullReturn(Call, DV, C);
}
//===----------------------------------------------------------------------===//
// Evaluating castAs, getAs.
//===----------------------------------------------------------------------===//
static void evalZeroParamNonNullReturn(const CallExpr *CE,
static void evalZeroParamNonNullReturn(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C,
bool IsCheckedCast = false) {
bool IsNullReturn = false;
if (ProgramStateRef State = C.getState()->assume(DV, true))
C.addTransition(getState(IsNullReturn, DV, CE, C.getState(), C),
getCastTag(IsNullReturn, CE, C, IsCheckedCast));
addCastTransition(Call, DV, C, /*IsNonNullParam=*/true,
/*IsNonNullReturn=*/true, IsCheckedCast);
}
static void evalZeroParamNullReturn(const CallExpr *CE, DefinedOrUnknownSVal DV,
static void evalZeroParamNullReturn(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) {
bool IsNullReturn = true;
if (ProgramStateRef State = C.getState()->assume(DV, true))
C.addTransition(getState(IsNullReturn, DV, CE, C.getState(), C),
getCastTag(IsNullReturn, CE, C));
addCastTransition(Call, DV, C, /*IsNonNullParam=*/true,
/*IsNonNullReturn=*/false);
}
void CastValueChecker::evalCastAs(const CallExpr *CE, DefinedOrUnknownSVal DV,
void CastValueChecker::evalCastAs(const CallEvent &Call,
DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalZeroParamNonNullReturn(CE, DV, C, /*IsCheckedCast=*/true);
evalZeroParamNonNullReturn(Call, DV, C, /*IsCheckedCast=*/true);
}
void CastValueChecker::evalGetAs(const CallExpr *CE, DefinedOrUnknownSVal DV,
void CastValueChecker::evalGetAs(const CallEvent &Call, DefinedOrUnknownSVal DV,
CheckerContext &C) const {
evalZeroParamNonNullReturn(CE, DV, C);
evalZeroParamNullReturn(CE, DV, C);
evalZeroParamNonNullReturn(Call, DV, C);
evalZeroParamNullReturn(Call, DV, C);
}
//===----------------------------------------------------------------------===//
// Main logic to evaluate a call.
//===----------------------------------------------------------------------===//
bool CastValueChecker::evalCall(const CallEvent &Call,
CheckerContext &C) const {
const auto *Lookup = CDM.lookup(Call);
if (!Lookup)
return false;
// If we cannot obtain the call's class we cannot be sure how to model it.
QualType ResultTy = Call.getResultType();
if (!ResultTy->getPointeeCXXRecordDecl())
// We need to obtain the record type of the call's result to model it.
if (!getRecordType(Call.getResultType())->isRecordType())
return false;
const CastCheck &Check = Lookup->first;
CastKind Kind = Lookup->second;
const auto *CE = cast<CallExpr>(Call.getOriginExpr());
CallKind Kind = Lookup->second;
Optional<DefinedOrUnknownSVal> DV;
switch (Kind) {
case CastKind::Function: {
// If we cannot obtain the arg's class we cannot be sure how to model it.
QualType ArgTy = Call.parameters()[0]->getType();
if (!ArgTy->getAsCXXRecordDecl() && !ArgTy->getPointeeCXXRecordDecl())
case CallKind::Function: {
// We need to obtain the record type of the call's parameter to model it.
if (!getRecordType(Call.parameters()[0]->getType())->isRecordType())
return false;
DV = Call.getArgSVal(0).getAs<DefinedOrUnknownSVal>();
break;
}
case CastKind::Method:
// If we cannot obtain the 'InstanceCall' we cannot be sure how to model it.
case CallKind::Method:
const auto *InstanceCall = dyn_cast<CXXInstanceCall>(&Call);
if (!InstanceCall)
return false;
@ -247,10 +316,15 @@ bool CastValueChecker::evalCall(const CallEvent &Call,
if (!DV)
return false;
Check(this, CE, *DV, C);
Check(this, Call, *DV, C);
return true;
}
void CastValueChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
C.addTransition(removeDeadCasts(C.getState(), SR));
}
void ento::registerCastValueChecker(CheckerManager &Mgr) {
Mgr.registerChecker<CastValueChecker>();
}

View File

@ -20,16 +20,16 @@
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
@ -113,14 +113,7 @@ public:
void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
DynamicTypeMapTy TypeMap = State->get<DynamicTypeMap>();
for (DynamicTypeMapTy::iterator I = TypeMap.begin(), E = TypeMap.end();
I != E; ++I) {
if (!SR.isLiveRegion(I->first)) {
State = State->remove<DynamicTypeMap>(I->first);
}
}
ProgramStateRef State = removeDeadTypes(C.getState(), SR);
MostSpecializedTypeArgsMapTy TyArgMap =
State->get<MostSpecializedTypeArgsMap>();
@ -882,7 +875,7 @@ void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
// When there is an entry available for the return symbol in DynamicTypeMap,
// the call was inlined, and the information in the DynamicTypeMap is should
// be precise.
if (RetRegion && !State->get<DynamicTypeMap>(RetRegion)) {
if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
// TODO: we have duplicated information in DynamicTypeMap and
// MostSpecializedTypeArgsMap. We should only store anything in the later if
// the stored data differs from the one stored in the former.

View File

@ -16,7 +16,7 @@ add_clang_library(clangStaticAnalyzerCore
CommonBugCategories.cpp
ConstraintManager.cpp
CoreEngine.cpp
DynamicTypeMap.cpp
DynamicType.cpp
Environment.cpp
ExplodedGraph.cpp
ExprEngine.cpp

View File

@ -0,0 +1,223 @@
//===- DynamicType.cpp - Dynamic type related APIs --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines APIs that track and query dynamic type information. This
// information can be used to devirtualize calls during the symbolic execution
// or do type checking.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
/// The GDM component containing the dynamic type info. This is a map from a
/// symbol to its most likely type.
REGISTER_MAP_WITH_PROGRAMSTATE(DynamicTypeMap, const clang::ento::MemRegion *,
clang::ento::DynamicTypeInfo)
/// A set factory of dynamic cast informations.
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(CastSet, clang::ento::DynamicCastInfo)
/// A map from symbols to cast informations.
REGISTER_MAP_WITH_PROGRAMSTATE(DynamicCastMap, const clang::ento::MemRegion *,
CastSet)
namespace clang {
namespace ento {
DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR) {
MR = MR->StripCasts();
// Look up the dynamic type in the GDM.
if (const DynamicTypeInfo *DTI = State->get<DynamicTypeMap>(MR))
return *DTI;
// Otherwise, fall back to what we know about the region.
if (const auto *TR = dyn_cast<TypedRegion>(MR))
return DynamicTypeInfo(TR->getLocationType(), /*CanBeSub=*/false);
if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
SymbolRef Sym = SR->getSymbol();
return DynamicTypeInfo(Sym->getType());
}
return {};
}
const DynamicTypeInfo *getRawDynamicTypeInfo(ProgramStateRef State,
const MemRegion *MR) {
return State->get<DynamicTypeMap>(MR);
}
const DynamicCastInfo *getDynamicCastInfo(ProgramStateRef State,
const MemRegion *MR,
QualType CastFromTy,
QualType CastToTy) {
const auto *Lookup = State->get<DynamicCastMap>().lookup(MR);
if (!Lookup)
return nullptr;
for (const DynamicCastInfo &Cast : *Lookup)
if (Cast.equals(CastFromTy, CastToTy))
return &Cast;
return nullptr;
}
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
DynamicTypeInfo NewTy) {
State = State->set<DynamicTypeMap>(MR->StripCasts(), NewTy);
assert(State);
return State;
}
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
QualType NewTy, bool CanBeSubClassed) {
return setDynamicTypeInfo(State, MR, DynamicTypeInfo(NewTy, CanBeSubClassed));
}
ProgramStateRef setDynamicTypeAndCastInfo(ProgramStateRef State,
const MemRegion *MR,
QualType CastFromTy,
QualType CastToTy, QualType ResultTy,
bool CastSucceeds) {
if (CastSucceeds)
State = State->set<DynamicTypeMap>(MR, ResultTy);
DynamicCastInfo::CastResult ResultKind =
CastSucceeds ? DynamicCastInfo::CastResult::Success
: DynamicCastInfo::CastResult::Failure;
CastSet::Factory &F = State->get_context<CastSet>();
const CastSet *TempSet = State->get<DynamicCastMap>(MR);
CastSet Set = TempSet ? *TempSet : F.getEmptySet();
Set = F.add(Set, {CastFromTy, CastToTy, ResultKind});
State = State->set<DynamicCastMap>(MR, Set);
assert(State);
return State;
}
template <typename MapTy>
ProgramStateRef removeDead(ProgramStateRef State, const MapTy &Map,
SymbolReaper &SR) {
for (const auto &Elem : Map)
if (!SR.isLiveRegion(Elem.first))
State = State->remove<DynamicCastMap>(Elem.first);
return State;
}
ProgramStateRef removeDeadTypes(ProgramStateRef State, SymbolReaper &SR) {
return removeDead(State, State->get<DynamicTypeMap>(), SR);
}
ProgramStateRef removeDeadCasts(ProgramStateRef State, SymbolReaper &SR) {
return removeDead(State, State->get<DynamicCastMap>(), SR);
}
static void printDynamicTypesJson(raw_ostream &Out, ProgramStateRef State,
const char *NL, unsigned int Space,
bool IsDot) {
Indent(Out, Space, IsDot) << "\"dynamic_types\": ";
const DynamicTypeMapTy &Map = State->get<DynamicTypeMap>();
if (Map.isEmpty()) {
Out << "null," << NL;
return;
}
++Space;
Out << '[' << NL;
for (DynamicTypeMapTy::iterator I = Map.begin(); I != Map.end(); ++I) {
const MemRegion *MR = I->first;
const DynamicTypeInfo &DTI = I->second;
Indent(Out, Space, IsDot)
<< "{ \"region\": \"" << MR << "\", \"dyn_type\": ";
if (!DTI.isValid()) {
Out << "null";
} else {
Out << '\"' << DTI.getType()->getPointeeType().getAsString()
<< "\", \"sub_classable\": "
<< (DTI.canBeASubClass() ? "true" : "false");
}
Out << " }";
if (std::next(I) != Map.end())
Out << ',';
Out << NL;
}
--Space;
Indent(Out, Space, IsDot) << "]," << NL;
}
static void printDynamicCastsJson(raw_ostream &Out, ProgramStateRef State,
const char *NL, unsigned int Space,
bool IsDot) {
Indent(Out, Space, IsDot) << "\"dynamic_casts\": ";
const DynamicCastMapTy &Map = State->get<DynamicCastMap>();
if (Map.isEmpty()) {
Out << "null," << NL;
return;
}
++Space;
Out << '[' << NL;
for (DynamicCastMapTy::iterator I = Map.begin(); I != Map.end(); ++I) {
const MemRegion *MR = I->first;
const CastSet &Set = I->second;
Indent(Out, Space, IsDot) << "{ \"region\": \"" << MR << "\", \"casts\": ";
if (Set.isEmpty()) {
Out << "null ";
} else {
++Space;
Out << '[' << NL;
for (CastSet::iterator SI = Set.begin(); SI != Set.end(); ++SI) {
Indent(Out, Space, IsDot)
<< "{ \"from\": \"" << SI->from().getAsString() << "\", \"to\": \""
<< SI->to().getAsString() << "\", \"kind\": \""
<< (SI->succeeds() ? "success" : "fail") << "\" }";
if (std::next(SI) != Set.end())
Out << ',';
Out << NL;
}
--Space;
Indent(Out, Space, IsDot) << ']';
}
Out << '}';
if (std::next(I) != Map.end())
Out << ',';
Out << NL;
}
--Space;
Indent(Out, Space, IsDot) << "]," << NL;
}
void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
const char *NL, unsigned int Space, bool IsDot) {
printDynamicTypesJson(Out, State, NL, Space, IsDot);
printDynamicCastsJson(Out, State, NL, Space, IsDot);
}
} // namespace ento
} // namespace clang

View File

@ -1,97 +0,0 @@
//===- DynamicTypeMap.cpp - Dynamic Type Info related APIs ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines APIs that track and query dynamic type information. This
// information can be used to devirtualize calls during the symbolic execution
// or do type checking.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
namespace clang {
namespace ento {
DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State,
const MemRegion *Reg) {
Reg = Reg->StripCasts();
// Look up the dynamic type in the GDM.
const DynamicTypeInfo *GDMType = State->get<DynamicTypeMap>(Reg);
if (GDMType)
return *GDMType;
// Otherwise, fall back to what we know about the region.
if (const auto *TR = dyn_cast<TypedRegion>(Reg))
return DynamicTypeInfo(TR->getLocationType(), /*CanBeSub=*/false);
if (const auto *SR = dyn_cast<SymbolicRegion>(Reg)) {
SymbolRef Sym = SR->getSymbol();
return DynamicTypeInfo(Sym->getType());
}
return {};
}
ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *Reg,
DynamicTypeInfo NewTy) {
Reg = Reg->StripCasts();
ProgramStateRef NewState = State->set<DynamicTypeMap>(Reg, NewTy);
assert(NewState);
return NewState;
}
void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
const char *NL, unsigned int Space, bool IsDot) {
Indent(Out, Space, IsDot) << "\"dynamic_types\": ";
const DynamicTypeMapTy &DTM = State->get<DynamicTypeMap>();
if (DTM.isEmpty()) {
Out << "null," << NL;
return;
}
++Space;
Out << '[' << NL;
for (DynamicTypeMapTy::iterator I = DTM.begin(); I != DTM.end(); ++I) {
const MemRegion *MR = I->first;
const DynamicTypeInfo &DTI = I->second;
Out << "{ \"region\": \"" << MR << "\", \"dyn_type\": ";
if (DTI.isValid()) {
Out << '\"' << DTI.getType()->getPointeeType().getAsString()
<< "\", \"sub_classable\": "
<< (DTI.canBeASubClass() ? "true" : "false");
} else {
Out << "null"; // Invalid type info
}
Out << "}";
if (std::next(I) != DTM.end())
Out << ',';
Out << NL;
}
--Space;
Indent(Out, Space, IsDot) << "]," << NL;
}
void *ProgramStateTrait<DynamicTypeMap>::GDMIndex() {
static int index = 0;
return &index;
}
} // namespace ento
} // namespace clang

View File

@ -15,7 +15,7 @@
#include "clang/Basic/JsonSupport.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
#include "llvm/Support/raw_ostream.h"

View File

@ -0,0 +1,19 @@
#pragma clang system_header
namespace llvm {
template <class X, class Y>
const X *cast(Y Value);
template <class X, class Y>
const X *dyn_cast(Y *Value);
template <class X, class Y>
const X &dyn_cast(Y &Value);
template <class X, class Y>
const X *cast_or_null(Y Value);
template <class X, class Y>
const X *dyn_cast_or_null(Y *Value);
template <class X, class Y>
const X *dyn_cast_or_null(Y &Value);
} // namespace llvm

View File

@ -0,0 +1,128 @@
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,apiModeling.llvm.CastValue,debug.ExprInspection\
// RUN: -verify %s
#include "Inputs/llvm.h"
void clang_analyzer_numTimesReached();
void clang_analyzer_warnIfReached();
void clang_analyzer_eval(bool);
namespace clang {
struct Shape {
template <typename T>
const T *castAs() const;
template <typename T>
const T *getAs() const;
};
class Triangle : public Shape {};
class Circle : public Shape {};
} // namespace clang
using namespace llvm;
using namespace clang;
void test_regions(const Shape *A, const Shape *B) {
if (dyn_cast<Circle>(A) && !dyn_cast<Circle>(B))
clang_analyzer_warnIfReached(); // expected-warning {{REACHABLE}}
}
namespace test_cast {
void evalLogic(const Shape *S) {
const Circle *C = cast<Circle>(S);
clang_analyzer_numTimesReached(); // expected-warning {{1}}
if (S && C)
clang_analyzer_eval(C == S); // expected-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_cast
namespace test_dyn_cast {
void evalLogic(const Shape *S) {
const Circle *C = dyn_cast<Circle>(S);
clang_analyzer_numTimesReached(); // expected-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S); // expected-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // expected-warning {{REACHABLE}}
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_dyn_cast
namespace test_cast_or_null {
void evalLogic(const Shape *S) {
const Circle *C = cast_or_null<Circle>(S);
clang_analyzer_numTimesReached(); // expected-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S); // expected-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_eval(!C); // expected-warning {{TRUE}}
}
} // namespace test_cast_or_null
namespace test_dyn_cast_or_null {
void evalLogic(const Shape *S) {
const Circle *C = dyn_cast_or_null<Circle>(S);
clang_analyzer_numTimesReached(); // expected-warning {{3}}
if (S && C)
clang_analyzer_eval(C == S); // expected-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // expected-warning {{REACHABLE}}
if (!S)
clang_analyzer_eval(!C); // expected-warning {{TRUE}}
}
} // namespace test_dyn_cast_or_null
namespace test_cast_as {
void evalLogic(const Shape *S) {
const Circle *C = S->castAs<Circle>();
clang_analyzer_numTimesReached(); // expected-warning {{1}}
if (S && C)
clang_analyzer_eval(C == S);
// expected-warning@-1 {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_cast_as
namespace test_get_as {
void evalLogic(const Shape *S) {
const Circle *C = S->getAs<Circle>();
clang_analyzer_numTimesReached(); // expected-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S);
// expected-warning@-1 {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // expected-warning {{REACHABLE}}
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_get_as

View File

@ -0,0 +1,144 @@
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,apiModeling.llvm.CastValue \
// RUN: -analyzer-output=text -verify %s
#include "Inputs/llvm.h"
namespace clang {
struct Shape {
template <typename T>
const T *castAs() const;
template <typename T>
const T *getAs() const;
};
class Triangle : public Shape {};
class Circle : public Shape {};
} // namespace clang
using namespace llvm;
using namespace clang;
void evalReferences(const Shape &S) {
const auto &C = dyn_cast<Circle>(S);
// expected-note@-1 {{Assuming 'S' is not a 'Circle'}}
// expected-note@-2 {{Dereference of null pointer}}
// expected-warning@-3 {{Dereference of null pointer}}
}
void evalNonNullParamNonNullReturnReference(const Shape &S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming 'S' is a 'Circle'}}
// expected-note@-2 {{'C' initialized here}}
if (!dyn_cast_or_null<Circle>(C)) {
// expected-note@-1 {{'C' is a 'Circle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
if (dyn_cast_or_null<Triangle>(C)) {
// expected-note@-1 {{Assuming 'C' is not a 'Triangle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
if (dyn_cast_or_null<Triangle>(C)) {
// expected-note@-1 {{'C' is not a 'Triangle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
(void)(1 / !C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}
void evalNonNullParamNonNullReturn(const Shape *S) {
const auto *C = cast<Circle>(S);
// expected-note@-1 {{'S' is a 'Circle'}}
// expected-note@-2 {{'C' initialized here}}
if (!cast<Triangle>(C)) {
// expected-note@-1 {{'C' is a 'Triangle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
(void)(1 / !C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}
void evalNonNullParamNullReturn(const Shape *S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming 'S' is not a 'Circle'}}
if (const auto *T = dyn_cast_or_null<Triangle>(S)) {
// expected-note@-1 {{Assuming 'S' is a 'Triangle'}}
// expected-note@-2 {{'T' initialized here}}
// expected-note@-3 {{'T' is non-null}}
// expected-note@-4 {{Taking true branch}}
(void)(1 / !T);
// expected-note@-1 {{'T' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}
}
void evalNullParamNullReturn(const Shape *S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming null pointer is passed into cast}}
// expected-note@-2 {{'C' initialized to a null pointer value}}
(void)(1 / (bool)C);
// expected-note@-1 {{Division by zero}}
// expected-warning@-2 {{Division by zero}}
}
void evalZeroParamNonNullReturnPointer(const Shape *S) {
const auto *C = S->castAs<Circle>();
// expected-note@-1 {{'S' is a 'Circle'}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}
void evalZeroParamNonNullReturn(const Shape &S) {
const auto *C = S.castAs<Circle>();
// expected-note@-1 {{'S' is a 'Circle'}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}
void evalZeroParamNullReturn(const Shape &S) {
const auto *C = S.getAs<Circle>();
// expected-note@-1 {{Assuming 'S' is not a 'Circle'}}
// expected-note@-2 {{'C' initialized to a null pointer value}}
if (!dyn_cast_or_null<Triangle>(S)) {
// expected-note@-1 {{Assuming 'S' is a 'Triangle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
if (!dyn_cast_or_null<Triangle>(S)) {
// expected-note@-1 {{'S' is a 'Triangle'}}
// expected-note@-2 {{Taking false branch}}
return;
}
(void)(1 / (bool)C);
// expected-note@-1 {{Division by zero}}
// expected-warning@-2 {{Division by zero}}
}

View File

@ -0,0 +1,47 @@
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,apiModeling.llvm.CastValue,debug.ExprInspection\
// RUN: -analyzer-output=text -verify %s 2>&1 | FileCheck %s
#include "Inputs/llvm.h"
void clang_analyzer_printState();
namespace clang {
struct Shape {};
class Triangle : public Shape {};
class Circle : public Shape {};
class Square : public Shape {};
} // namespace clang
using namespace llvm;
using namespace clang;
void evalNonNullParamNonNullReturnReference(const Shape &S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming 'S' is a 'Circle'}}
// expected-note@-2 {{'C' initialized here}}
// FIXME: We assumed that 'S' is a 'Circle' therefore it is not a 'Square'.
if (dyn_cast_or_null<Square>(S)) {
// expected-note@-1 {{Assuming 'S' is not a 'Square'}}
// expected-note@-2 {{Taking false branch}}
return;
}
clang_analyzer_printState();
// CHECK: "dynamic_types": [
// CHECK-NEXT: { "region": "SymRegion{reg_$0<const struct clang::Shape & S>}", "dyn_type": "const class clang::Circle", "sub_classable": true }
// CHECK-NEXT: ],
// CHECK-NEXT: "dynamic_casts": [
// CHECK: { "region": "SymRegion{reg_$0<const struct clang::Shape & S>}", "casts": [
// CHECK-NEXT: { "from": "struct clang::Shape", "to": "class clang::Circle", "kind": "success" },
// CHECK-NEXT: { "from": "struct clang::Shape", "to": "class clang::Square", "kind": "fail" }
// CHECK-NEXT: ]}
(void)(1 / !C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
}

View File

@ -1,239 +0,0 @@
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,apiModeling.llvm.CastValue,debug.ExprInspection\
// RUN: -verify=logic %s
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,apiModeling.llvm.CastValue \
// RUN: -analyzer-output=text -verify %s
void clang_analyzer_numTimesReached();
void clang_analyzer_warnIfReached();
void clang_analyzer_eval(bool);
namespace llvm {
template <class X, class Y>
const X *cast(Y Value);
template <class X, class Y>
const X *dyn_cast(Y *Value);
template <class X, class Y>
const X &dyn_cast(Y &Value);
template <class X, class Y>
const X *cast_or_null(Y Value);
template <class X, class Y>
const X *dyn_cast_or_null(Y *Value);
template <class X, class Y>
const X *dyn_cast_or_null(Y &Value);
} // namespace llvm
namespace clang {
struct Shape {
template <typename T>
const T *castAs() const;
template <typename T>
const T *getAs() const;
};
class Triangle : public Shape {};
class Circle : public Shape {};
} // namespace clang
using namespace llvm;
using namespace clang;
namespace test_cast {
void evalLogic(const Shape *S) {
const Circle *C = cast<Circle>(S);
clang_analyzer_numTimesReached(); // logic-warning {{1}}
if (S && C)
clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_cast
namespace test_dyn_cast {
void evalLogic(const Shape *S) {
const Circle *C = dyn_cast<Circle>(S);
clang_analyzer_numTimesReached(); // logic-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_dyn_cast
namespace test_cast_or_null {
void evalLogic(const Shape *S) {
const Circle *C = cast_or_null<Circle>(S);
clang_analyzer_numTimesReached(); // logic-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_eval(!C); // logic-warning {{TRUE}}
}
} // namespace test_cast_or_null
namespace test_dyn_cast_or_null {
void evalLogic(const Shape *S) {
const Circle *C = dyn_cast_or_null<Circle>(S);
clang_analyzer_numTimesReached(); // logic-warning {{3}}
if (S && C)
clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
if (!S)
clang_analyzer_eval(!C); // logic-warning {{TRUE}}
}
} // namespace test_dyn_cast_or_null
namespace test_cast_as {
void evalLogic(const Shape *S) {
const Circle *C = S->castAs<Circle>();
clang_analyzer_numTimesReached(); // logic-warning {{1}}
if (S && C)
clang_analyzer_eval(C == S);
// logic-warning@-1 {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // no-warning
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_cast_as
namespace test_get_as {
void evalLogic(const Shape *S) {
const Circle *C = S->getAs<Circle>();
clang_analyzer_numTimesReached(); // logic-warning {{2}}
if (S && C)
clang_analyzer_eval(C == S);
// logic-warning@-1 {{TRUE}}
if (S && !C)
clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
if (!S)
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace test_get_as
namespace test_notes {
void evalReferences(const Shape &S) {
const auto &C = dyn_cast<Circle>(S);
// expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' fails}}
// expected-note@-2 {{Dereference of null pointer}}
// expected-warning@-3 {{Dereference of null pointer}}
// logic-warning@-4 {{Dereference of null pointer}}
}
void evalNonNullParamNonNullReturnReference(const Shape &S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' succeeds}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !(bool)C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
// logic-warning@-4 {{Division by zero}}
}
void evalNonNullParamNonNullReturn(const Shape *S) {
const auto *C = cast<Circle>(S);
// expected-note@-1 {{Checked cast from 'Shape' to 'Circle' succeeds}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !(bool)C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
// logic-warning@-4 {{Division by zero}}
}
void evalNonNullParamNullReturn(const Shape *S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' fails}}
if (const auto *T = dyn_cast_or_null<Triangle>(S)) {
// expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Triangle' succeeds}}
// expected-note@-2 {{'T' initialized here}}
// expected-note@-3 {{'T' is non-null}}
// expected-note@-4 {{Taking true branch}}
(void)(1 / !T);
// expected-note@-1 {{'T' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
// logic-warning@-4 {{Division by zero}}
}
}
void evalNullParamNullReturn(const Shape *S) {
const auto *C = dyn_cast_or_null<Circle>(S);
// expected-note@-1 {{Assuming null pointer is passed into cast}}
// expected-note@-2 {{'C' initialized to a null pointer value}}
(void)(1 / (bool)C);
// expected-note@-1 {{Division by zero}}
// expected-warning@-2 {{Division by zero}}
// logic-warning@-3 {{Division by zero}}
}
void evalZeroParamNonNullReturnPointer(const Shape *S) {
const auto *C = S->castAs<Circle>();
// expected-note@-1 {{Checked cast to 'Circle' succeeds}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !(bool)C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
// logic-warning@-4 {{Division by zero}}
}
void evalZeroParamNonNullReturn(const Shape &S) {
const auto *C = S.castAs<Circle>();
// expected-note@-1 {{Checked cast to 'Circle' succeeds}}
// expected-note@-2 {{'C' initialized here}}
(void)(1 / !(bool)C);
// expected-note@-1 {{'C' is non-null}}
// expected-note@-2 {{Division by zero}}
// expected-warning@-3 {{Division by zero}}
// logic-warning@-4 {{Division by zero}}
}
void evalZeroParamNullReturn(const Shape &S) {
const auto *C = S.getAs<Circle>();
// expected-note@-1 {{Assuming dynamic cast to 'Circle' fails}}
// expected-note@-2 {{'C' initialized to a null pointer value}}
(void)(1 / (bool)C);
// expected-note@-1 {{Division by zero}}
// expected-warning@-2 {{Division by zero}}
// logic-warning@-3 {{Division by zero}}
}
} // namespace test_notes

View File

@ -24,4 +24,5 @@ void foo() {
// CHECK: \"cluster\": \"t\", \"pointer\": \"{{0x[0-9a-f]+}}\", \"items\": [\l&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\{ \"kind\": \"Default\", \"offset\": 0, \"value\": \"conj_$2\{int, LC5, no stmt, #1\}\"
// CHECK: \"dynamic_types\": [\l\{ \"region\": \"HeapSymRegion\{conj_$1\{struct S *, LC1, S{{[0-9]+}}, #1\}\}\", \"dyn_type\": \"struct S\", \"sub_classable\": false\}\l
// CHECK: \"dynamic_types\": [\l&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\{ \"region\": \"HeapSymRegion\{conj_$1\{struct S *, LC1, S{{[0-9]+}}, #1\}\}\", \"dyn_type\": \"struct S\", \"sub_classable\": false \}\l

View File

@ -38,6 +38,7 @@ void foo(int x) {
// CHECK-NEXT: { "symbol": "reg_$0<int x>", "range": "{ [-2147483648, 13] }" }
// CHECK-NEXT: ],
// CHECK-NEXT: "dynamic_types": null,
// CHECK-NEXT: "dynamic_casts": null,
// CHECK-NEXT: "constructing_objects": null,
// CHECK-NEXT: "checker_messages": null
// CHECK-NEXT: }