[mlir][linalg] Vectorize linalg.pad_op source copying (improved)

Vectorize linalg.pad_op source copying if source or result shape are static.

Differential Revision: https://reviews.llvm.org/D103791
This commit is contained in:
Matthias Springer 2021-06-14 14:41:07 +09:00
parent 4c2f3d810b
commit 01e3b34469
2 changed files with 49 additions and 20 deletions

View File

@ -719,15 +719,9 @@ struct GenericPadTensorOpVectorizationPattern
auto sourceType = padOp.getSourceType(); auto sourceType = padOp.getSourceType();
// Copy of source with static shape can be vectorized. // Try vectorizing the copy of source.
if (sourceType.hasStaticShape()) { if (tryVectorizeCopy(rewriter, padOp, padValue, fill).succeeded())
auto vecType = VectorType::get(sourceType.getShape(),
sourceType.getElementType());
vectorizeStaticShapeSource(rewriter, padOp, fill, vecType);
return success(); return success();
}
// TODO: Vectorize dynamic source but static destination.
// Neither source type nor PadTensorOp result type have static shape. Such // Neither source type nor PadTensorOp result type have static shape. Such
// PadTensorOps cannot be vectorized. Generate a SubTensorInsertOp instead. // PadTensorOps cannot be vectorized. Generate a SubTensorInsertOp instead.
@ -751,23 +745,57 @@ struct GenericPadTensorOpVectorizationPattern
return success(); return success();
} }
/// Vectorize the copying of a PadTensorOp's source that has static shape. /// Vectorize the copying of a PadTensorOp's source. This is possible if each
void vectorizeStaticShapeSource(PatternRewriter &rewriter, PadTensorOp padOp, /// dimension size is statically know in the source type or the result type
Value dest, VectorType vecType) const { /// (or both).
LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, PadTensorOp padOp,
Value padValue, Value dest) const {
auto sourceType = padOp.getSourceType();
auto resultType = padOp.getResultType();
SmallVector<int64_t> vecShape;
SmallVector<bool> readInBounds;
SmallVector<bool> writeInBounds;
for (unsigned i = 0; i < sourceType.getRank(); ++i) {
if (!sourceType.isDynamicDim(i)) {
vecShape.push_back(sourceType.getDimSize(i));
// Source shape is statically known: Neither read nor write are out-of-
// bounds.
readInBounds.push_back(true);
writeInBounds.push_back(true);
} else if (!resultType.isDynamicDim(i)) {
// Source shape is not statically known, but result shape is. Vectorize
// with size of result shape. This may be larger than the source size.
vecShape.push_back(resultType.getDimSize(i));
// Read may be out-of-bounds because the result size could be larger
// than the source size.
readInBounds.push_back(false);
// Write is out-of-bounds if low padding > 0.
writeInBounds.push_back(
isEqualConstantIntOrValue(padOp.getMixedLowPad()[i],
rewriter.getIndexAttr(0)));
} else {
// Neither source nor result dim of padOp is static. Cannot vectorize
// the copy.
return failure();
}
}
auto vecType = VectorType::get(vecShape, sourceType.getElementType());
// Generate TransferReadOp. // Generate TransferReadOp.
SmallVector<Value> readIndices( SmallVector<Value> readIndices(
vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
auto read = rewriter.create<vector::TransferReadOp>( auto read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vecType, padOp.source(), readIndices); padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
readInBounds);
// Generate TransferWriteOp. The destination dimensions may be dynamic, but // Generate TransferWriteOp.
// the write cannot be out-of-bounds. (A large enough destination tensor is
// allocated in this pattern.)
auto writeIndices = ofrToIndexValues( auto writeIndices = ofrToIndexValues(
rewriter, padOp.getLoc(), padOp.getMixedLowPad()); rewriter, padOp.getLoc(), padOp.getMixedLowPad());
SmallVector<bool> inBounds(vecType.getRank(), true);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
padOp, read, dest, writeIndices, inBounds); padOp, read, dest, writeIndices, writeInBounds);
return success();
} }
}; };

View File

@ -515,12 +515,13 @@ func @matmul_i8_i8_i32(%a: memref<4x6xi8>, %b: memref<6x12xi8>, %c: memref<4x12x
// CHECK-LABEL: func @pad_static( // CHECK-LABEL: func @pad_static(
// CHECK-SAME: %[[ARG0:.*]]: tensor<2x?x2xf32>, %[[PAD:.*]]: f32 // CHECK-SAME: %[[ARG0:.*]]: tensor<2x?x2xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor // CHECK-NOT: linalg.pad_tensor
// CHECK-DAG: %[[C1:.*]] = constant 1 : index // CHECK-DAG: %[[C0:.*]] = constant 0 : index
// CHECK-DAG: %[[C2:.*]] = constant 2 : index
// CHECK-DAG: %[[INIT:.*]] = linalg.init_tensor [2, 3, 4] : tensor<2x3x4xf32> // CHECK-DAG: %[[INIT:.*]] = linalg.init_tensor [2, 3, 4] : tensor<2x3x4xf32>
// CHECK-DAG: %[[VEC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<2x3x4xf32> // CHECK-DAG: %[[VEC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<2x3x4xf32>
// CHECK: %[[FILL:.*]] = vector.transfer_write %[[VEC]], %[[INIT]]{{.*}} : vector<2x3x4xf32>, tensor<2x3x4xf32> // CHECK: %[[FILL:.*]] = vector.transfer_write %[[VEC]], %[[INIT]]{{.*}} : vector<2x3x4xf32>, tensor<2x3x4xf32>
// CHECK-DAG: %[[DIM1:.*]] = memref.dim %[[ARG0]], %[[C1]] // CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, false, true]} : tensor<2x?x2xf32>, vector<2x3x2xf32>
// CHECK: %[[RESULT:.*]] = subtensor_insert %[[ARG0]] into %2[0, 0, 2] [2, %[[DIM1]], 2] [1, 1, 1] : tensor<2x?x2xf32> into tensor<2x3x4xf32> // CHECK: %[[RESULT:.*]] = vector.transfer_write %[[READ]], %[[FILL]][%[[C0]], %[[C0]], %[[C2]]] {in_bounds = [true, true, true]} : vector<2x3x2xf32>, tensor<2x3x4xf32>
// CHECK: return %[[RESULT]] // CHECK: return %[[RESULT]]
func @pad_static(%arg0: tensor<2x?x2xf32>, %pad_value: f32) -> tensor<2x3x4xf32> { func @pad_static(%arg0: tensor<2x?x2xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
%0 = linalg.pad_tensor %arg0 low[0, 0, 2] high[0, 1, 0] { %0 = linalg.pad_tensor %arg0 low[0, 0, 2] high[0, 1, 0] {