ThinLTO: use the callgraph from the combined index to drive the FunctionImporter

Summary:
Now that the summary contains the full reference/call graph, we can
replace the existing function importer that loads and inspect the IR
to iteratively walk the call graph by a traversal based purely on the
summary information. Decouple the actual importing decision from any
IR manipulation.

Reviewers: tejohnson

Subscribers: llvm-commits, joker.eph

Differential Revision: http://reviews.llvm.org/D18343

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264503
This commit is contained in:
Mehdi Amini 2016-03-26 05:40:34 +00:00
parent 40221682ee
commit 01e321306b
7 changed files with 329 additions and 275 deletions

View File

@ -11,7 +11,10 @@
#define LLVM_FUNCTIONIMPORT_H
#include "llvm/ADT/StringMap.h"
#include <functional>
#include <map>
#include <unordered_set>
namespace llvm {
class LLVMContext;
@ -21,23 +24,51 @@ class ModuleSummaryIndex;
/// The function importer is automatically importing function from other modules
/// based on the provided summary informations.
class FunctionImporter {
/// The summaries index used to trigger importing.
const ModuleSummaryIndex &Index;
/// Factory function to load a Module for a given identifier
std::function<std::unique_ptr<Module>(StringRef Identifier)> ModuleLoader;
public:
/// Set of functions to import from a source module. Each entry is a map
/// containing all the functions to import for a source module.
/// The keys is the GUID identifying a function to import, and the value
/// is the threshold applied when deciding to import it.
typedef std::map<uint64_t, unsigned> FunctionsToImportTy;
/// The map contains an entry for every module to import from, the key being
/// the module identifier to pass to the ModuleLoader. The value is the set of
/// functions to import.
typedef StringMap<FunctionsToImportTy> ImportMapTy;
/// The set contains an entry for every global value the module exports.
typedef std::unordered_set<uint64_t> ExportSetTy;
/// Create a Function Importer.
FunctionImporter(
const ModuleSummaryIndex &Index,
std::function<std::unique_ptr<Module>(StringRef Identifier)> ModuleLoader)
: Index(Index), ModuleLoader(ModuleLoader) {}
/// Import functions in Module \p M based on the summary informations.
bool importFunctions(Module &M);
/// Import functions in Module \p M based on the supplied import list.
bool importFunctions(Module &M, const ImportMapTy &ImportList);
private:
/// The summaries index used to trigger importing.
const ModuleSummaryIndex &Index;
/// Factory function to load a Module for a given identifier
std::function<std::unique_ptr<Module>(StringRef Identifier)> ModuleLoader;
};
/// Compute all the imports and exports for every module in the Index.
///
/// \p ImportLists will be populated with an entry for every Module we are
/// importing into. This entry is itself a map that can be passed to
/// FunctionImporter::importFunctions() above (see description there).
///
/// \p ExportLists contains for each Module the set of globals (GUID) that will
/// be imported by another module, or referenced by such a function. I.e. this
/// is the set of globals that need to be promoted/renamed appropriately.
void ComputeCrossModuleImport(
const ModuleSummaryIndex &Index,
StringMap<FunctionImporter::ImportMapTy> &ImportLists,
StringMap<FunctionImporter::ExportSetTy> &ExportLists);
}
#endif // LLVM_FUNCTIONIMPORT_H

View File

@ -131,12 +131,13 @@ static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index) {
report_fatal_error("renameModuleForThinLTO failed");
}
static void crossImportIntoModule(Module &TheModule,
const ModuleSummaryIndex &Index,
StringMap<MemoryBufferRef> &ModuleMap) {
static void
crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index,
StringMap<MemoryBufferRef> &ModuleMap,
const FunctionImporter::ImportMapTy &ImportList) {
ModuleLoader Loader(TheModule.getContext(), ModuleMap);
FunctionImporter Importer(Index, Loader);
Importer.importFunctions(TheModule);
Importer.importFunctions(TheModule, ImportList);
}
static void optimizeModule(Module &TheModule, TargetMachine &TM) {
@ -185,6 +186,7 @@ std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule,
static std::unique_ptr<MemoryBuffer>
ProcessThinLTOModule(Module &TheModule, const ModuleSummaryIndex &Index,
StringMap<MemoryBufferRef> &ModuleMap, TargetMachine &TM,
const FunctionImporter::ImportMapTy &ImportList,
ThinLTOCodeGenerator::CachingOptions CacheOptions,
StringRef SaveTempsDir, unsigned count) {
@ -200,7 +202,7 @@ ProcessThinLTOModule(Module &TheModule, const ModuleSummaryIndex &Index,
// Save temps: after promotion.
saveTempBitcode(TheModule, SaveTempsDir, count, ".2.promoted.bc");
crossImportIntoModule(TheModule, Index, ModuleMap);
crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);
// Save temps: after cross-module import.
saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc");
@ -317,7 +319,15 @@ void ThinLTOCodeGenerator::promote(Module &TheModule,
void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule,
ModuleSummaryIndex &Index) {
auto ModuleMap = generateModuleMap(Modules);
crossImportIntoModule(TheModule, Index, ModuleMap);
// Generate import/export list
auto ModuleCount = Index.modulePaths().size();
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ImportLists, ExportLists);
auto &ImportList = ImportLists[TheModule.getModuleIdentifier()];
crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);
}
/**
@ -358,6 +368,13 @@ void ThinLTOCodeGenerator::run() {
// Prepare the module map.
auto ModuleMap = generateModuleMap(Modules);
auto ModuleCount = Modules.size();
// Collect the import/export lists for all modules from the call-graph in the
// combined index.
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(*Index, ImportLists, ExportLists);
// Parallel optimizer + codegen
{
@ -376,9 +393,10 @@ void ThinLTOCodeGenerator::run() {
saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");
}
auto &ImportList = ImportLists[TheModule->getModuleIdentifier()];
ProducedBinaries[count] = ProcessThinLTOModule(
*TheModule, *Index, ModuleMap, *TMBuilder.create(), CacheOptions,
SaveTempsDir, count);
*TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
CacheOptions, SaveTempsDir, count);
}, count);
count++;
}

View File

@ -13,6 +13,7 @@
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/DiagnosticPrinter.h"
@ -26,12 +27,10 @@
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include <map>
#define DEBUG_TYPE "function-import"
using namespace llvm;
#define DEBUG_TYPE "function-import"
/// Limit on instruction count of imported functions.
static cl::opt<unsigned> ImportInstrLimit(
"import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"),
@ -64,281 +63,243 @@ static std::unique_ptr<Module> loadFile(const std::string &FileName,
namespace {
/// Track functions already seen using a map that record the current
/// Threshold and the importing decision. Since the traversal of the call graph
/// is DFS, we can revisit a function a second time with a higher threshold. In
/// this case and if the function was not imported the first time, it is added
/// back to the worklist with the new threshold
using VisitedFunctionTrackerTy = StringMap<std::pair<unsigned, bool>>;
/// Given a list of possible callee implementation for a call site, select one
/// that fits the \p Threshold.
///
/// FIXME: select "best" instead of first that fits. But what is "best"?
/// - The smallest: more likely to be inlined.
/// - The one with the least outgoing edges (already well optimized).
/// - One from a module already being imported from in order to reduce the
/// number of source modules parsed/linked.
/// - One that has PGO data attached.
/// - [insert you fancy metric here]
static const FunctionSummary *
selectCallee(const GlobalValueInfoList &CalleeInfoList, unsigned Threshold) {
auto It = llvm::find_if(
CalleeInfoList, [&](const std::unique_ptr<GlobalValueInfo> &GlobInfo) {
assert(GlobInfo->summary() &&
"We should not have a Global Info without summary");
auto *Summary = cast<FunctionSummary>(GlobInfo->summary());
/// Helper to load on demand a Module from file and cache it for subsequent
/// queries. It can be used with the FunctionImporter.
class ModuleLazyLoaderCache {
/// Cache of lazily loaded module for import.
StringMap<std::unique_ptr<Module>> ModuleMap;
if (GlobalValue::isWeakAnyLinkage(Summary->linkage()))
return false;
/// Retrieve a Module from the cache or lazily load it on demand.
std::function<std::unique_ptr<Module>(StringRef FileName)> createLazyModule;
if (Summary->instCount() > Threshold)
return false;
public:
/// Create the loader, Module will be initialized in \p Context.
ModuleLazyLoaderCache(std::function<
std::unique_ptr<Module>(StringRef FileName)> createLazyModule)
: createLazyModule(createLazyModule) {}
return true;
});
if (It == CalleeInfoList.end())
return nullptr;
/// Retrieve a Module from the cache or lazily load it on demand.
Module &operator()(StringRef FileName);
std::unique_ptr<Module> takeModule(StringRef FileName) {
auto I = ModuleMap.find(FileName);
assert(I != ModuleMap.end());
std::unique_ptr<Module> Ret = std::move(I->second);
ModuleMap.erase(I);
return Ret;
}
};
// Get a Module for \p FileName from the cache, or load it lazily.
Module &ModuleLazyLoaderCache::operator()(StringRef Identifier) {
auto &Module = ModuleMap[Identifier];
if (!Module)
Module = createLazyModule(Identifier);
return *Module;
return cast<FunctionSummary>((*It)->summary());
}
} // anonymous namespace
/// Walk through the instructions in \p F looking for external
/// calls not already in the \p VisitedFunctions map. If any are
/// found they are added to the \p Worklist for importing.
static void findExternalCalls(
const Module &DestModule, Function &F, const ModuleSummaryIndex &Index,
VisitedFunctionTrackerTy &VisitedFunctions, unsigned Threshold,
SmallVectorImpl<std::pair<StringRef, unsigned>> &Worklist) {
// We need to suffix internal function calls imported from other modules,
// prepare the suffix ahead of time.
std::string Suffix;
if (F.getParent() != &DestModule)
Suffix =
(Twine(".llvm.") +
Twine(Index.getModuleId(F.getParent()->getModuleIdentifier()))).str();
/// Return the summary for the function \p GUID that fits the \p Threshold, or
/// null if there's no match.
static const FunctionSummary *selectCallee(uint64_t GUID, unsigned Threshold,
const ModuleSummaryIndex &Index) {
auto CalleeInfoList = Index.findGlobalValueInfoList(GUID);
if (CalleeInfoList == Index.end()) {
return nullptr; // This function does not have a summary
}
return selectCallee(CalleeInfoList->second, Threshold);
}
for (auto &BB : F) {
for (auto &I : BB) {
if (isa<CallInst>(I)) {
auto CalledFunction = cast<CallInst>(I).getCalledFunction();
// Insert any new external calls that have not already been
// added to set/worklist.
if (!CalledFunction || !CalledFunction->hasName())
continue;
// Ignore intrinsics early
if (CalledFunction->isIntrinsic()) {
assert(CalledFunction->getIntrinsicID() != 0);
continue;
}
auto ImportedName = CalledFunction->getName();
auto Renamed = (ImportedName + Suffix).str();
// Rename internal functions
if (CalledFunction->hasInternalLinkage()) {
ImportedName = Renamed;
}
// Compute the global identifier used in the summary index.
auto CalledFunctionGlobalID = GlobalValue::getGlobalIdentifier(
CalledFunction->getName(), CalledFunction->getLinkage(),
CalledFunction->getParent()->getSourceFileName());
/// Return true if the global \p GUID is exported by module \p ExportModulePath.
static bool isGlobalExported(const ModuleSummaryIndex &Index,
StringRef ExportModulePath, uint64_t GUID) {
auto CalleeInfoList = Index.findGlobalValueInfoList(GUID);
if (CalleeInfoList == Index.end())
// This global does not have a summary, it is not part of the ThinLTO
// process
return false;
auto DefinedInCalleeModule = llvm::find_if(
CalleeInfoList->second,
[&](const std::unique_ptr<GlobalValueInfo> &GlobInfo) {
auto *Summary = GlobInfo->summary();
assert(Summary && "Unexpected GlobalValueInfo without summary");
return Summary->modulePath() == ExportModulePath;
});
return (DefinedInCalleeModule != CalleeInfoList->second.end());
}
auto CalledFunctionInfo = std::make_pair(Threshold, false);
auto It = VisitedFunctions.insert(
std::make_pair(CalledFunctionGlobalID, CalledFunctionInfo));
if (!It.second) {
// This is a call to a function we already considered, if the function
// has been imported the first time, or if the current threshold is
// not higher, skip it.
auto &FunctionInfo = It.first->second;
if (FunctionInfo.second || FunctionInfo.first >= Threshold)
continue;
It.first->second = CalledFunctionInfo;
}
// Ignore functions already present in the destination module
auto *SrcGV = DestModule.getNamedValue(ImportedName);
if (SrcGV) {
if (GlobalAlias *SGA = dyn_cast<GlobalAlias>(SrcGV))
SrcGV = SGA->getBaseObject();
assert(isa<Function>(SrcGV) && "Name collision during import");
if (!cast<Function>(SrcGV)->isDeclaration()) {
DEBUG(dbgs() << DestModule.getModuleIdentifier() << ": Ignoring "
<< ImportedName << " already in DestinationModule\n");
continue;
}
}
using EdgeInfo = std::pair<const FunctionSummary *, unsigned /* Threshold */>;
Worklist.push_back(std::make_pair(It.first->getKey(), Threshold));
DEBUG(dbgs() << DestModule.getModuleIdentifier()
<< ": Adding callee for : " << ImportedName << " : "
<< F.getName() << "\n");
}
/// Compute the list of functions to import for a given caller. Mark these
/// imported functions and the symbols they reference in their source module as
/// exported from their source module.
static void computeImportForFunction(
StringRef ModulePath, const FunctionSummary &Summary,
const ModuleSummaryIndex &Index, unsigned Threshold,
const std::map<uint64_t, FunctionSummary *> &DefinedFunctions,
SmallVectorImpl<EdgeInfo> &Worklist,
FunctionImporter::ImportMapTy &ImportsForModule,
StringMap<FunctionImporter::ExportSetTy> &ExportLists) {
for (auto &Edge : Summary.calls()) {
auto GUID = Edge.first;
DEBUG(dbgs() << " edge -> " << GUID << " Threshold:" << Threshold << "\n");
if (DefinedFunctions.count(GUID)) {
DEBUG(dbgs() << "ignored! Target already in destination module.\n");
continue;
}
auto *CalleeSummary = selectCallee(GUID, Threshold, Index);
if (!CalleeSummary) {
DEBUG(dbgs() << "ignored! No qualifying callee with summary found.\n");
continue;
}
assert(CalleeSummary->instCount() <= Threshold &&
"selectCallee() didn't honor the threshold");
auto &ProcessedThreshold =
ImportsForModule[CalleeSummary->modulePath()][GUID];
/// Since the traversal of the call graph is DFS, we can revisit a function
/// a second time with a higher threshold. In this case, it is added back to
/// the worklist with the new threshold.
if (ProcessedThreshold && ProcessedThreshold > Threshold) {
DEBUG(dbgs() << "ignored! Target was already seen with Threshold "
<< ProcessedThreshold << "\n");
continue;
}
// Mark this function as imported in this module, with the current Threshold
ProcessedThreshold = Threshold;
// Make exports in the source module.
auto ExportModulePath = CalleeSummary->modulePath();
auto ExportList = ExportLists[ExportModulePath];
ExportList.insert(GUID);
// Mark all functions and globals referenced by this function as exported to
// the outside if they are defined in the same source module.
for (auto &Edge : CalleeSummary->calls()) {
auto CalleeGUID = Edge.first;
if (isGlobalExported(Index, ExportModulePath, CalleeGUID))
ExportList.insert(CalleeGUID);
}
for (auto &GUID : CalleeSummary->refs()) {
if (isGlobalExported(Index, ExportModulePath, GUID))
ExportList.insert(GUID);
}
// Insert the newly imported function to the worklist.
Worklist.push_back(std::make_pair(CalleeSummary, Threshold));
}
}
// Helper function: given a worklist and an index, will process all the worklist
// and decide what to import based on the summary information.
//
// Nothing is actually imported, functions are materialized in their source
// module and analyzed there.
//
// \p ModuleToFunctionsToImportMap is filled with the set of Function to import
// per Module.
static void
GetImportList(Module &DestModule,
SmallVectorImpl<std::pair<StringRef, unsigned>> &Worklist,
VisitedFunctionTrackerTy &VisitedFunctions,
std::map<StringRef, DenseSet<const GlobalValue *>>
&ModuleToFunctionsToImportMap,
const ModuleSummaryIndex &Index,
ModuleLazyLoaderCache &ModuleLoaderCache) {
/// Given the list of globals defined in a module, compute the list of imports
/// as well as the list of "exports", i.e. the list of symbols referenced from
/// another module (that may require promotion).
static void ComputeImportForModule(
StringRef ModulePath,
const std::map<uint64_t, FunctionSummary *> &DefinedFunctions,
const ModuleSummaryIndex &Index,
FunctionImporter::ImportMapTy &ImportsForModule,
StringMap<FunctionImporter::ExportSetTy> &ExportLists) {
// Worklist contains the list of function imported in this module, for which
// we will analyse the callees and may import further down the callgraph.
SmallVector<EdgeInfo, 128> Worklist;
// Populate the worklist with the import for the functions in the current
// module
for (auto &FuncInfo : DefinedFunctions) {
auto *Summary = FuncInfo.second;
DEBUG(dbgs() << "Initalize import for " << FuncInfo.first << "\n");
computeImportForFunction(ModulePath, *Summary, Index, ImportInstrLimit,
DefinedFunctions, Worklist, ImportsForModule,
ExportLists);
}
while (!Worklist.empty()) {
StringRef CalledFunctionName;
unsigned Threshold;
std::tie(CalledFunctionName, Threshold) = Worklist.pop_back_val();
DEBUG(dbgs() << DestModule.getModuleIdentifier() << ": Process import for "
<< CalledFunctionName << " with Threshold " << Threshold
<< "\n");
// Try to get a summary for this function call.
auto InfoList = Index.findGlobalValueInfoList(CalledFunctionName);
if (InfoList == Index.end()) {
DEBUG(dbgs() << DestModule.getModuleIdentifier() << ": No summary for "
<< CalledFunctionName << " Ignoring.\n");
continue;
}
assert(!InfoList->second.empty() && "No summary, error at import?");
// Comdat can have multiple entries, FIXME: what do we do with them?
auto &Info = InfoList->second[0];
assert(Info && "Nullptr in list, error importing summaries?\n");
auto *Summary = dyn_cast<FunctionSummary>(Info->summary());
if (!Summary) {
// FIXME: in case we are lazyloading summaries, we can do it now.
DEBUG(dbgs() << DestModule.getModuleIdentifier()
<< ": Missing summary for " << CalledFunctionName
<< ", error at import?\n");
llvm_unreachable("Missing summary");
}
if (Summary->instCount() > Threshold) {
DEBUG(dbgs() << DestModule.getModuleIdentifier() << ": Skip import of "
<< CalledFunctionName << " with " << Summary->instCount()
<< " instructions (limit " << Threshold << ")\n");
continue;
}
// Mark the function as imported in the VisitedFunctions tracker
assert(VisitedFunctions.count(CalledFunctionName));
VisitedFunctions[CalledFunctionName].second = true;
// Get the module path from the summary.
auto ModuleIdentifier = Summary->modulePath();
DEBUG(dbgs() << DestModule.getModuleIdentifier() << ": Importing "
<< CalledFunctionName << " from " << ModuleIdentifier << "\n");
auto &SrcModule = ModuleLoaderCache(ModuleIdentifier);
// The function that we will import!
GlobalValue *SGV = SrcModule.getNamedValue(CalledFunctionName);
if (!SGV) {
// The function is referenced by a global identifier, which has the
// source file name prepended for functions that were originally local
// in the source module. Strip any prepended name to recover the original
// name in the source module.
std::pair<StringRef, StringRef> Split = CalledFunctionName.rsplit(':');
SGV = SrcModule.getNamedValue(Split.second);
assert(SGV && "Can't find function to import in source module");
}
if (!SGV) {
report_fatal_error(Twine("Can't load function '") + CalledFunctionName +
"' in Module '" + SrcModule.getModuleIdentifier() +
"', error in the summary?\n");
}
Function *F = dyn_cast<Function>(SGV);
if (!F && isa<GlobalAlias>(SGV)) {
auto *SGA = dyn_cast<GlobalAlias>(SGV);
F = dyn_cast<Function>(SGA->getBaseObject());
}
assert(F && "Imported Function is ... not a Function");
// We cannot import weak_any functions/aliases without possibly affecting
// the order they are seen and selected by the linker, changing program
// semantics.
if (SGV->hasWeakAnyLinkage()) {
DEBUG(dbgs() << DestModule.getModuleIdentifier()
<< ": Ignoring import request for weak-any "
<< (isa<Function>(SGV) ? "function " : "alias ")
<< CalledFunctionName << " from "
<< SrcModule.getModuleIdentifier() << "\n");
continue;
}
// Add the function to the import list
auto &Entry = ModuleToFunctionsToImportMap[SrcModule.getModuleIdentifier()];
Entry.insert(F);
auto FuncInfo = Worklist.pop_back_val();
auto *Summary = FuncInfo.first;
auto Threshold = FuncInfo.second;
// Process the newly imported functions and add callees to the worklist.
// Adjust the threshold
Threshold = Threshold * ImportInstrFactor;
F->materialize();
findExternalCalls(DestModule, *F, Index, VisitedFunctions, Threshold,
Worklist);
computeImportForFunction(ModulePath, *Summary, Index, Threshold,
DefinedFunctions, Worklist, ImportsForModule,
ExportLists);
}
}
} // anonymous namespace
/// Compute all the import and export for every module in the Index.
void llvm::ComputeCrossModuleImport(
const ModuleSummaryIndex &Index,
StringMap<FunctionImporter::ImportMapTy> &ImportLists,
StringMap<FunctionImporter::ExportSetTy> &ExportLists) {
auto ModuleCount = Index.modulePaths().size();
// Collect for each module the list of function it defines.
// GUID -> Summary
StringMap<std::map<uint64_t, FunctionSummary *>> Module2FunctionInfoMap(
ModuleCount);
for (auto &GlobalList : Index) {
auto GUID = GlobalList.first;
for (auto &GlobInfo : GlobalList.second) {
auto *Summary = dyn_cast_or_null<FunctionSummary>(GlobInfo->summary());
if (!Summary)
/// Ignore global variable, focus on functions
continue;
DEBUG(dbgs() << "Adding definition: Module '" << Summary->modulePath()
<< "' defines '" << GUID << "'\n");
Module2FunctionInfoMap[Summary->modulePath()][GUID] = Summary;
}
}
// For each module that has function defined, compute the import/export lists.
for (auto &DefinedFunctions : Module2FunctionInfoMap) {
auto &ImportsForModule = ImportLists[DefinedFunctions.first()];
DEBUG(dbgs() << "Computing import for Module '" << DefinedFunctions.first()
<< "'\n");
ComputeImportForModule(DefinedFunctions.first(), DefinedFunctions.second,
Index, ImportsForModule, ExportLists);
}
#ifndef NDEBUG
DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size()
<< " modules:\n");
for (auto &ModuleImports : ImportLists) {
auto ModName = ModuleImports.first();
auto &Exports = ExportLists[ModName];
DEBUG(dbgs() << "* Module " << ModName << " exports " << Exports.size()
<< " functions. Imports from " << ModuleImports.second.size()
<< " modules.\n");
for (auto &Src : ModuleImports.second) {
auto SrcModName = Src.first();
DEBUG(dbgs() << " - " << Src.second.size() << " functions imported from "
<< SrcModName << "\n");
}
}
#endif
}
// Automatically import functions in Module \p DestModule based on the summaries
// index.
//
// The current implementation imports every called functions that exists in the
// summaries index.
bool FunctionImporter::importFunctions(Module &DestModule) {
bool FunctionImporter::importFunctions(
Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) {
DEBUG(dbgs() << "Starting import for Module "
<< DestModule.getModuleIdentifier() << "\n");
unsigned ImportedCount = 0;
// First step is collecting the called external functions.
// We keep the function name as well as the import threshold for its callees.
VisitedFunctionTrackerTy VisitedFunctions;
SmallVector<std::pair<StringRef, unsigned>, 64> Worklist;
for (auto &F : DestModule) {
if (F.isDeclaration() || F.hasFnAttribute(Attribute::OptimizeNone))
continue;
findExternalCalls(DestModule, F, Index, VisitedFunctions, ImportInstrLimit,
Worklist);
}
if (Worklist.empty())
return false;
/// Second step: for every call to an external function, try to import it.
// Linker that will be used for importing function
Linker TheLinker(DestModule);
// Map of Module -> List of Function to import from the Module
std::map<StringRef, DenseSet<const GlobalValue *>>
ModuleToFunctionsToImportMap;
// Analyze the summaries and get the list of functions to import by
// populating ModuleToFunctionsToImportMap
ModuleLazyLoaderCache ModuleLoaderCache(ModuleLoader);
GetImportList(DestModule, Worklist, VisitedFunctions,
ModuleToFunctionsToImportMap, Index, ModuleLoaderCache);
assert(Worklist.empty() && "Worklist hasn't been flushed in GetImportList");
// Do the actual import of functions now, one Module at a time
for (auto &FunctionsToImportPerModule : ModuleToFunctionsToImportMap) {
std::set<StringRef> ModuleNameOrderedList;
for (auto &FunctionsToImportPerModule : ImportList) {
ModuleNameOrderedList.insert(FunctionsToImportPerModule.first());
}
for (auto &Name : ModuleNameOrderedList) {
// Get the module for the import
auto &FunctionsToImport = FunctionsToImportPerModule.second;
std::unique_ptr<Module> SrcModule =
ModuleLoaderCache.takeModule(FunctionsToImportPerModule.first);
const auto &FunctionsToImportPerModule = ImportList.find(Name);
assert(FunctionsToImportPerModule != ImportList.end());
std::unique_ptr<Module> SrcModule = ModuleLoader(Name);
assert(&DestModule.getContext() == &SrcModule->getContext() &&
"Context mismatch");
@ -347,15 +308,51 @@ bool FunctionImporter::importFunctions(Module &DestModule) {
SrcModule->materializeMetadata();
UpgradeDebugInfo(*SrcModule);
auto &ImportGUIDs = FunctionsToImportPerModule->second;
// Find the globals to import
DenseSet<const GlobalValue *> GlobalsToImport;
for (auto &GV : *SrcModule) {
if (GV.hasName() && ImportGUIDs.count(GV.getGUID())) {
GV.materialize();
GlobalsToImport.insert(&GV);
}
}
for (auto &GV : SrcModule->aliases()) {
if (!GV.hasName())
continue;
auto GUID = GV.getGUID();
if (ImportGUIDs.count(GUID)) {
GV.materialize();
GlobalsToImport.insert(&GV);
// Alias can't point to "available_externally". However when we import
// linkOnceODR the linkage does not change. So we import the aliasee
// only in this case
const GlobalObject *GO = GV.getBaseObject();
if (!GO->hasLinkOnceODRLinkage())
continue;
GlobalsToImport.insert(GO);
}
}
for (auto &GV : SrcModule->globals()) {
if (!GV.hasName())
continue;
auto GUID = Function::getGUID(Function::getGlobalIdentifier(
GV.getName(), GV.getLinkage(), SrcModule->getModuleIdentifier()));
if (ImportGUIDs.count(GUID)) {
GV.materialize();
GlobalsToImport.insert(&GV);
}
}
// Link in the specified functions.
if (renameModuleForThinLTO(*SrcModule, Index, &FunctionsToImport))
if (renameModuleForThinLTO(*SrcModule, Index, &GlobalsToImport))
return true;
if (TheLinker.linkInModule(std::move(SrcModule), Linker::Flags::None,
&FunctionsToImport))
&GlobalsToImport))
report_fatal_error("Function Import: link error");
ImportedCount += FunctionsToImport.size();
ImportedCount += GlobalsToImport.size();
}
DEBUG(dbgs() << "Imported " << ImportedCount << " functions for Module "
@ -437,9 +434,17 @@ public:
Index = IndexPtr.get();
}
// First we need to promote to global scope and rename any local values that
// First step is collecting the import/export lists
// The export list is not used yet, but could limit the amount of renaming
// performed in renameModuleForThinLTO()
StringMap<FunctionImporter::ImportMapTy> ImportLists;
StringMap<FunctionImporter::ExportSetTy> ExportLists;
ComputeCrossModuleImport(*Index, ImportLists, ExportLists);
auto &ImportList = ImportLists[M.getModuleIdentifier()];
// Next we need to promote to global scope and rename any local values that
// are potentially exported to other modules.
if (renameModuleForThinLTO(M, *Index)) {
if (renameModuleForThinLTO(M, *Index, nullptr)) {
errs() << "Error renaming module\n";
return false;
}
@ -449,7 +454,7 @@ public:
return loadFile(Identifier, M.getContext());
};
FunctionImporter Importer(*Index, ModuleLoader);
return Importer.importFunctions(M);
return Importer.importFunctions(M, ImportList);
}
};
} // anonymous namespace

View File

@ -4,11 +4,11 @@
; RUN: llvm-lto -thinlto -o %t3 %t.bc %t2.bc
; Test import with default progressive instruction factor
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -import-instr-limit=10 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM-DEFAULT
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -import-instr-limit=10 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM-DEFAULT
; INSTLIM-DEFAULT: call void @staticfunc2.llvm.2()
; Test import with a reduced progressive instruction factor
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -import-instr-limit=10 -import-instr-evolution-factor=0.5 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM-PROGRESSIVE
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -import-instr-limit=10 -import-instr-evolution-factor=0.5 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM-PROGRESSIVE
; INSTLIM-PROGRESSIVE-NOT: call void @staticfunc

View File

@ -4,10 +4,10 @@
; RUN: llvm-lto -thinlto -o %t3 %t.bc %t2.bc
; Do the import now
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIMDEF
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIMDEF
; Test import with smaller instruction limit
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -import-instr-limit=5 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM5
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -import-instr-limit=5 -S | FileCheck %s --check-prefix=CHECK --check-prefix=INSTLIM5
; INSTLIM5-NOT: @staticfunc.llvm.2
define i32 @main() #0 {

View File

@ -6,7 +6,7 @@
; Do the import now. Ensures that the importer handles an external call
; from imported callanalias() to a function that is defined already in
; the dest module, but as an alias.
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -S | FileCheck %s
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -S | FileCheck %s
define i32 @main() #0 {
entry:

View File

@ -4,7 +4,7 @@
; RUN: llvm-lto -thinlto -o %t3 %t.bc %t2.bc
; Do the import now and confirm that metadata is linked for imported function.
; RUN: opt -function-import -summary-file %t3.thinlto.bc %s -S | FileCheck %s
; RUN: opt -function-import -summary-file %t3.thinlto.bc %t.bc -S | FileCheck %s
; CHECK: define available_externally void @func()