forked from OSchip/llvm-project
[ADT] Support const-qualified unique_functions
Summary: This technique should extend to rvalue-qualified etc, but I didn't add any. I removed "volatile" from the future plans, which seems... speculative at best. While here I moved the callbacks object out of the constructor into a variable template, which I believe addresses the fixme there about unused objects. (I'm not a template guru, so it's always possible the old version was designed for compile-time performance in a way I'm missing) Reviewers: kadircet Subscribers: dexonsmith, llvm-commits, chandlerc Tags: #llvm Differential Revision: https://reviews.llvm.org/D82581
This commit is contained in:
parent
0da1e7ebf9
commit
01bf8cdf5f
|
@ -11,11 +11,11 @@
|
|||
/// in `<function>`.
|
||||
///
|
||||
/// It provides `unique_function`, which works like `std::function` but supports
|
||||
/// move-only callable objects.
|
||||
/// move-only callable objects and const-qualification.
|
||||
///
|
||||
/// Future plans:
|
||||
/// - Add a `function` that provides const, volatile, and ref-qualified support,
|
||||
/// which doesn't work with `std::function`.
|
||||
/// - Add a `function` that provides ref-qualified support, which doesn't work
|
||||
/// with `std::function`.
|
||||
/// - Provide support for specifying multiple signatures to type erase callable
|
||||
/// objects with an overload set, such as those produced by generic lambdas.
|
||||
/// - Expand to include a copyable utility that directly replaces std::function
|
||||
|
@ -37,13 +37,31 @@
|
|||
#include "llvm/Support/MemAlloc.h"
|
||||
#include "llvm/Support/type_traits.h"
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// unique_function is a type-erasing functor similar to std::function.
|
||||
///
|
||||
/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
|
||||
/// Accordingly, it is movable but not copyable.
|
||||
///
|
||||
/// It supports const-qualification:
|
||||
/// - unique_function<int() const> has a const operator().
|
||||
/// It can only hold functions which themselves have a const operator().
|
||||
/// - unique_function<int()> has a non-const operator().
|
||||
/// It can hold functions with a non-const operator(), like mutable lambdas.
|
||||
template <typename FunctionT> class unique_function;
|
||||
|
||||
template <typename ReturnT, typename... ParamTs>
|
||||
class unique_function<ReturnT(ParamTs...)> {
|
||||
namespace detail {
|
||||
|
||||
template <typename T>
|
||||
using EnableIfTrivial =
|
||||
std::enable_if_t<llvm::is_trivially_move_constructible<T>::value &&
|
||||
std::is_trivially_destructible<T>::value>;
|
||||
|
||||
template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
|
||||
protected:
|
||||
static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
|
||||
|
||||
// MSVC has a bug and ICEs if we give it a particular dependent value
|
||||
|
@ -113,8 +131,11 @@ class unique_function<ReturnT(ParamTs...)> {
|
|||
|
||||
// For in-line storage, we just provide an aligned character buffer. We
|
||||
// provide three pointers worth of storage here.
|
||||
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
|
||||
InlineStorage;
|
||||
// This is mutable as an inlined `const unique_function<void() const>` may
|
||||
// still modify its own mutable members.
|
||||
mutable
|
||||
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
|
||||
InlineStorage;
|
||||
} StorageUnion;
|
||||
|
||||
// A compressed pointer to either our dispatching callback or our table of
|
||||
|
@ -137,11 +158,25 @@ class unique_function<ReturnT(ParamTs...)> {
|
|||
.template get<NonTrivialCallbacks *>();
|
||||
}
|
||||
|
||||
void *getInlineStorage() { return &StorageUnion.InlineStorage; }
|
||||
CallPtrT getCallPtr() const {
|
||||
return isTrivialCallback() ? getTrivialCallback()
|
||||
: getNonTrivialCallbacks()->CallPtr;
|
||||
}
|
||||
|
||||
void *getOutOfLineStorage() {
|
||||
// These three functions are only const in the narrow sense. They return
|
||||
// mutable pointers to function state.
|
||||
// This allows unique_function<T const>::operator() to be const, even if the
|
||||
// underlying functor may be internally mutable.
|
||||
//
|
||||
// const callers must ensure they're only used in const-correct ways.
|
||||
void *getCalleePtr() const {
|
||||
return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
|
||||
}
|
||||
void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
|
||||
void *getOutOfLineStorage() const {
|
||||
return StorageUnion.OutOfLineStorage.StoragePtr;
|
||||
}
|
||||
|
||||
size_t getOutOfLineStorageSize() const {
|
||||
return StorageUnion.OutOfLineStorage.Size;
|
||||
}
|
||||
|
@ -153,10 +188,11 @@ class unique_function<ReturnT(ParamTs...)> {
|
|||
StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
|
||||
}
|
||||
|
||||
template <typename CallableT>
|
||||
static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) {
|
||||
return (*reinterpret_cast<CallableT *>(CallableAddr))(
|
||||
std::forward<ParamTs>(Params)...);
|
||||
template <typename CalledAsT>
|
||||
static ReturnT CallImpl(void *CallableAddr,
|
||||
AdjustedParamT<ParamTs>... Params) {
|
||||
auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
|
||||
return Func(std::forward<ParamTs>(Params)...);
|
||||
}
|
||||
|
||||
template <typename CallableT>
|
||||
|
@ -170,11 +206,49 @@ class unique_function<ReturnT(ParamTs...)> {
|
|||
reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
|
||||
}
|
||||
|
||||
public:
|
||||
unique_function() = default;
|
||||
unique_function(std::nullptr_t /*null_callable*/) {}
|
||||
// The pointers to call/move/destroy functions are determined for each
|
||||
// callable type (and called-as type, which determines the overload chosen).
|
||||
// (definitions are out-of-line).
|
||||
|
||||
~unique_function() {
|
||||
// By default, we need an object that contains all the different
|
||||
// type erased behaviors needed. Create a static instance of the struct type
|
||||
// here and each instance will contain a pointer to it.
|
||||
template <typename CallableT, typename CalledAs, typename Enable = void>
|
||||
static NonTrivialCallbacks Callbacks;
|
||||
// See if we can create a trivial callback. We need the callable to be
|
||||
// trivially moved and trivially destroyed so that we don't have to store
|
||||
// type erased callbacks for those operations.
|
||||
template <typename CallableT, typename CalledAs>
|
||||
static TrivialCallback
|
||||
Callbacks<CallableT, CalledAs, EnableIfTrivial<CallableT>>;
|
||||
|
||||
// A simple tag type so the call-as type to be passed to the constructor.
|
||||
template <typename T> struct CalledAs {};
|
||||
|
||||
// Essentially the "main" unique_function constructor, but subclasses
|
||||
// provide the qualified type to be used for the call.
|
||||
// (We always store a T, even if the call will use a pointer to const T).
|
||||
template <typename CallableT, typename CalledAsT>
|
||||
UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
|
||||
bool IsInlineStorage = true;
|
||||
void *CallableAddr = getInlineStorage();
|
||||
if (sizeof(CallableT) > InlineStorageSize ||
|
||||
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
|
||||
IsInlineStorage = false;
|
||||
// Allocate out-of-line storage. FIXME: Use an explicit alignment
|
||||
// parameter in C++17 mode.
|
||||
auto Size = sizeof(CallableT);
|
||||
auto Alignment = alignof(CallableT);
|
||||
CallableAddr = allocate_buffer(Size, Alignment);
|
||||
setOutOfLineStorage(CallableAddr, Size, Alignment);
|
||||
}
|
||||
|
||||
// Now move into the storage.
|
||||
new (CallableAddr) CallableT(std::move(Callable));
|
||||
CallbackAndInlineFlag = {&Callbacks<CallableT, CalledAsT>, IsInlineStorage};
|
||||
}
|
||||
|
||||
~UniqueFunctionBase() {
|
||||
if (!CallbackAndInlineFlag.getPointer())
|
||||
return;
|
||||
|
||||
|
@ -190,7 +264,7 @@ public:
|
|||
getOutOfLineStorageAlignment());
|
||||
}
|
||||
|
||||
unique_function(unique_function &&RHS) noexcept {
|
||||
UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
|
||||
// Copy the callback and inline flag.
|
||||
CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
|
||||
|
||||
|
@ -219,75 +293,85 @@ public:
|
|||
#endif
|
||||
}
|
||||
|
||||
unique_function &operator=(unique_function &&RHS) noexcept {
|
||||
UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
|
||||
if (this == &RHS)
|
||||
return *this;
|
||||
|
||||
// Because we don't try to provide any exception safety guarantees we can
|
||||
// implement move assignment very simply by first destroying the current
|
||||
// object and then move-constructing over top of it.
|
||||
this->~unique_function();
|
||||
new (this) unique_function(std::move(RHS));
|
||||
this->~UniqueFunctionBase();
|
||||
new (this) UniqueFunctionBase(std::move(RHS));
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename CallableT> unique_function(CallableT Callable) {
|
||||
bool IsInlineStorage = true;
|
||||
void *CallableAddr = getInlineStorage();
|
||||
if (sizeof(CallableT) > InlineStorageSize ||
|
||||
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
|
||||
IsInlineStorage = false;
|
||||
// Allocate out-of-line storage. FIXME: Use an explicit alignment
|
||||
// parameter in C++17 mode.
|
||||
auto Size = sizeof(CallableT);
|
||||
auto Alignment = alignof(CallableT);
|
||||
CallableAddr = allocate_buffer(Size, Alignment);
|
||||
setOutOfLineStorage(CallableAddr, Size, Alignment);
|
||||
}
|
||||
|
||||
// Now move into the storage.
|
||||
new (CallableAddr) CallableT(std::move(Callable));
|
||||
|
||||
// See if we can create a trivial callback. We need the callable to be
|
||||
// trivially moved and trivially destroyed so that we don't have to store
|
||||
// type erased callbacks for those operations.
|
||||
//
|
||||
// FIXME: We should use constexpr if here and below to avoid instantiating
|
||||
// the non-trivial static objects when unnecessary. While the linker should
|
||||
// remove them, it is still wasteful.
|
||||
if (llvm::is_trivially_move_constructible<CallableT>::value &&
|
||||
std::is_trivially_destructible<CallableT>::value) {
|
||||
// We need to create a nicely aligned object. We use a static variable
|
||||
// for this because it is a trivial struct.
|
||||
static TrivialCallback Callback = { &CallImpl<CallableT> };
|
||||
|
||||
CallbackAndInlineFlag = {&Callback, IsInlineStorage};
|
||||
return;
|
||||
}
|
||||
|
||||
// Otherwise, we need to point at an object that contains all the different
|
||||
// type erased behaviors needed. Create a static instance of the struct type
|
||||
// here and then use a pointer to that.
|
||||
static NonTrivialCallbacks Callbacks = {
|
||||
&CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
|
||||
|
||||
CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
|
||||
}
|
||||
|
||||
ReturnT operator()(ParamTs... Params) {
|
||||
void *CallableAddr =
|
||||
isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
|
||||
|
||||
return (isTrivialCallback()
|
||||
? getTrivialCallback()
|
||||
: getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
|
||||
}
|
||||
UniqueFunctionBase() = default;
|
||||
|
||||
public:
|
||||
explicit operator bool() const {
|
||||
return (bool)CallbackAndInlineFlag.getPointer();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename R, typename... P>
|
||||
template <typename CallableT, typename CalledAsT, typename Enable>
|
||||
typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks
|
||||
UniqueFunctionBase<R, P...>::Callbacks = {
|
||||
&CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
|
||||
|
||||
template <typename R, typename... P>
|
||||
template <typename CallableT, typename CalledAsT>
|
||||
typename UniqueFunctionBase<R, P...>::TrivialCallback UniqueFunctionBase<
|
||||
R, P...>::Callbacks<CallableT, CalledAsT, EnableIfTrivial<CallableT>>{
|
||||
&CallImpl<CalledAsT>};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template <typename R, typename... P>
|
||||
class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
|
||||
using Base = detail::UniqueFunctionBase<R, P...>;
|
||||
|
||||
public:
|
||||
unique_function() = default;
|
||||
unique_function(std::nullptr_t) {}
|
||||
unique_function(unique_function &&) = default;
|
||||
unique_function(const unique_function &) = delete;
|
||||
unique_function &operator=(unique_function &&) = default;
|
||||
unique_function &operator=(const unique_function &) = delete;
|
||||
|
||||
template <typename CallableT>
|
||||
unique_function(CallableT Callable)
|
||||
: Base(std::forward<CallableT>(Callable),
|
||||
typename Base::template CalledAs<CallableT>{}) {}
|
||||
|
||||
R operator()(P... Params) {
|
||||
return this->getCallPtr()(this->getCalleePtr(), Params...);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename R, typename... P>
|
||||
class unique_function<R(P...) const>
|
||||
: public detail::UniqueFunctionBase<R, P...> {
|
||||
using Base = detail::UniqueFunctionBase<R, P...>;
|
||||
|
||||
public:
|
||||
unique_function() = default;
|
||||
unique_function(std::nullptr_t) {}
|
||||
unique_function(unique_function &&) = default;
|
||||
unique_function(const unique_function &) = delete;
|
||||
unique_function &operator=(unique_function &&) = default;
|
||||
unique_function &operator=(const unique_function &) = delete;
|
||||
|
||||
template <typename CallableT>
|
||||
unique_function(CallableT Callable)
|
||||
: Base(std::forward<CallableT>(Callable),
|
||||
typename Base::template CalledAs<const CallableT>{}) {}
|
||||
|
||||
R operator()(P... Params) const {
|
||||
return this->getCallPtr()(this->getCalleePtr(), Params...);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_ADT_FUNCTION_H
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#include "gtest/gtest.h"
|
||||
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
|
@ -224,4 +225,41 @@ TEST(UniqueFunctionTest, CountForwardingMoves) {
|
|||
UnmovableF(X);
|
||||
}
|
||||
|
||||
TEST(UniqueFunctionTest, Const) {
|
||||
// Can assign from const lambda.
|
||||
unique_function<int(int) const> Plus2 = [X(std::make_unique<int>(2))](int Y) {
|
||||
return *X + Y;
|
||||
};
|
||||
EXPECT_EQ(5, Plus2(3));
|
||||
|
||||
// Can call through a const ref.
|
||||
const auto &Plus2Ref = Plus2;
|
||||
EXPECT_EQ(5, Plus2Ref(3));
|
||||
|
||||
// Can move-construct and assign.
|
||||
unique_function<int(int) const> Plus2A = std::move(Plus2);
|
||||
EXPECT_EQ(5, Plus2A(3));
|
||||
unique_function<int(int) const> Plus2B;
|
||||
Plus2B = std::move(Plus2A);
|
||||
EXPECT_EQ(5, Plus2B(3));
|
||||
|
||||
// Can convert to non-const function type, but not back.
|
||||
unique_function<int(int)> Plus2C = std::move(Plus2B);
|
||||
EXPECT_EQ(5, Plus2C(3));
|
||||
|
||||
// Overloaded call operator correctly resolved.
|
||||
struct ChooseCorrectOverload {
|
||||
StringRef operator()() { return "non-const"; }
|
||||
StringRef operator()() const { return "const"; }
|
||||
};
|
||||
unique_function<StringRef()> ChooseMutable = ChooseCorrectOverload();
|
||||
ChooseCorrectOverload A;
|
||||
EXPECT_EQ("non-const", ChooseMutable());
|
||||
EXPECT_EQ("non-const", A());
|
||||
unique_function<StringRef() const> ChooseConst = ChooseCorrectOverload();
|
||||
const ChooseCorrectOverload &X = A;
|
||||
EXPECT_EQ("const", ChooseConst());
|
||||
EXPECT_EQ("const", X());
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
|
Loading…
Reference in New Issue