[Sanitizers] 64 bit allocator respects allocator_may_return_null flag

Summary:
Make SizeClassAllocator64 return nullptr when it encounters OOM, which
allows the entire sanitizer's allocator to follow
allocator_may_return_null=1 policy
(LargeMmapAllocator: D34243, SizeClassAllocator64: D34433).

Reviewers: eugenis

Subscribers: srhines, kubamracek, llvm-commits

Differential Revision: https://reviews.llvm.org/D34540

llvm-svn: 306342
This commit is contained in:
Alex Shlyapnikov 2017-06-26 22:54:10 +00:00
parent 76bf48d932
commit 01676883cd
6 changed files with 177 additions and 107 deletions

View File

@ -46,8 +46,10 @@ struct SizeClassAllocator64LocalCache {
CHECK_NE(class_id, 0UL);
CHECK_LT(class_id, kNumClasses);
PerClass *c = &per_class_[class_id];
if (UNLIKELY(c->count == 0))
Refill(c, allocator, class_id);
if (UNLIKELY(c->count == 0)) {
if (UNLIKELY(!Refill(c, allocator, class_id)))
return nullptr;
}
stats_.Add(AllocatorStatAllocated, c->class_size);
CHECK_GT(c->count, 0);
CompactPtrT chunk = c->chunks[--c->count];
@ -101,13 +103,15 @@ struct SizeClassAllocator64LocalCache {
}
}
NOINLINE void Refill(PerClass *c, SizeClassAllocator *allocator,
NOINLINE bool Refill(PerClass *c, SizeClassAllocator *allocator,
uptr class_id) {
InitCache();
uptr num_requested_chunks = c->max_count / 2;
allocator->GetFromAllocator(&stats_, class_id, c->chunks,
num_requested_chunks);
if (UNLIKELY(!allocator->GetFromAllocator(&stats_, class_id, c->chunks,
num_requested_chunks)))
return false;
c->count = num_requested_chunks;
return true;
}
NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator, uptr class_id,

View File

@ -80,7 +80,7 @@ class SizeClassAllocator64 {
CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
}
SetReleaseToOSIntervalMs(release_to_os_interval_ms);
MapWithCallback(SpaceEnd(), AdditionalSize());
MapWithCallbackOrDie(SpaceEnd(), AdditionalSize());
}
s32 ReleaseToOSIntervalMs() const {
@ -92,16 +92,6 @@ class SizeClassAllocator64 {
memory_order_relaxed);
}
void MapWithCallback(uptr beg, uptr size) {
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
MapUnmapCallback().OnMap(beg, size);
}
void UnmapWithCallback(uptr beg, uptr size) {
MapUnmapCallback().OnUnmap(beg, size);
UnmapOrDie(reinterpret_cast<void *>(beg), size);
}
static bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
@ -116,16 +106,20 @@ class SizeClassAllocator64 {
BlockingMutexLock l(&region->mutex);
uptr old_num_chunks = region->num_freed_chunks;
uptr new_num_freed_chunks = old_num_chunks + n_chunks;
EnsureFreeArraySpace(region, region_beg, new_num_freed_chunks);
// Failure to allocate free array space while releasing memory is non
// recoverable.
if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
new_num_freed_chunks)))
DieOnFailure::OnOOM();
for (uptr i = 0; i < n_chunks; i++)
free_array[old_num_chunks + i] = chunks[i];
region->num_freed_chunks = new_num_freed_chunks;
region->n_freed += n_chunks;
region->stats.n_freed += n_chunks;
MaybeReleaseToOS(class_id);
}
NOINLINE void GetFromAllocator(AllocatorStats *stat, uptr class_id,
NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
CompactPtrT *chunks, uptr n_chunks) {
RegionInfo *region = GetRegionInfo(class_id);
uptr region_beg = GetRegionBeginBySizeClass(class_id);
@ -133,18 +127,19 @@ class SizeClassAllocator64 {
BlockingMutexLock l(&region->mutex);
if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
PopulateFreeArray(stat, class_id, region,
n_chunks - region->num_freed_chunks);
if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
n_chunks - region->num_freed_chunks)))
return false;
CHECK_GE(region->num_freed_chunks, n_chunks);
}
region->num_freed_chunks -= n_chunks;
uptr base_idx = region->num_freed_chunks;
for (uptr i = 0; i < n_chunks; i++)
chunks[i] = free_array[base_idx + i];
region->n_allocated += n_chunks;
region->stats.n_allocated += n_chunks;
return true;
}
bool PointerIsMine(const void *p) {
uptr P = reinterpret_cast<uptr>(p);
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
@ -211,7 +206,7 @@ class SizeClassAllocator64 {
// Test-only.
void TestOnlyUnmap() {
UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize + AdditionalSize());
}
static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
@ -224,15 +219,15 @@ class SizeClassAllocator64 {
void PrintStats(uptr class_id, uptr rss) {
RegionInfo *region = GetRegionInfo(class_id);
if (region->mapped_user == 0) return;
uptr in_use = region->n_allocated - region->n_freed;
uptr in_use = region->stats.n_allocated - region->stats.n_freed;
uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
Printf(
" %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
"%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
"num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd\n",
class_id, ClassIdToSize(class_id), region->mapped_user >> 10,
region->n_allocated, region->n_freed, in_use,
region->num_freed_chunks, avail_chunks, rss >> 10,
region->rtoi.num_releases);
region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
region->mapped_user >> 10, region->stats.n_allocated,
region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
rss >> 10, region->rtoi.num_releases);
}
void PrintStats() {
@ -242,8 +237,8 @@ class SizeClassAllocator64 {
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
total_mapped += region->mapped_user;
n_allocated += region->n_allocated;
n_freed += region->n_freed;
n_allocated += region->stats.n_allocated;
n_freed += region->stats.n_freed;
}
Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
"remains %zd\n",
@ -326,6 +321,11 @@ class SizeClassAllocator64 {
atomic_sint32_t release_to_os_interval_ms_;
struct Stats {
uptr n_allocated;
uptr n_freed;
};
struct ReleaseToOsInfo {
uptr n_freed_at_last_release;
uptr num_releases;
@ -340,8 +340,9 @@ class SizeClassAllocator64 {
uptr allocated_meta; // Bytes allocated for metadata.
uptr mapped_user; // Bytes mapped for user memory.
uptr mapped_meta; // Bytes mapped for metadata.
u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
uptr n_allocated, n_freed; // Just stats.
u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
bool exhausted; // Whether region is out of space for new chunks.
Stats stats;
ReleaseToOsInfo rtoi;
};
COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
@ -386,7 +387,26 @@ class SizeClassAllocator64 {
kFreeArraySize);
}
void EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
bool MapWithCallback(uptr beg, uptr size) {
uptr mapped = reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(beg, size));
if (!mapped)
return false;
CHECK_EQ(beg, mapped);
MapUnmapCallback().OnMap(beg, size);
return true;
}
void MapWithCallbackOrDie(uptr beg, uptr size) {
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
MapUnmapCallback().OnMap(beg, size);
}
void UnmapWithCallbackOrDie(uptr beg, uptr size) {
MapUnmapCallback().OnUnmap(beg, size);
UnmapOrDie(reinterpret_cast<void *>(beg), size);
}
bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
uptr num_freed_chunks) {
uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
if (region->mapped_free_array < needed_space) {
@ -395,66 +415,87 @@ class SizeClassAllocator64 {
uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
region->mapped_free_array;
uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
MapWithCallback(current_map_end, new_map_size);
if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size)))
return false;
region->mapped_free_array = new_mapped_free_array;
}
return true;
}
NOINLINE void PopulateFreeArray(AllocatorStats *stat, uptr class_id,
NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
RegionInfo *region, uptr requested_count) {
// region->mutex is held.
uptr size = ClassIdToSize(class_id);
uptr beg_idx = region->allocated_user;
uptr end_idx = beg_idx + requested_count * size;
uptr region_beg = GetRegionBeginBySizeClass(class_id);
if (end_idx > region->mapped_user) {
const uptr size = ClassIdToSize(class_id);
const uptr new_space_beg = region->allocated_user;
const uptr new_space_end = new_space_beg + requested_count * size;
const uptr region_beg = GetRegionBeginBySizeClass(class_id);
// Map more space for chunks, if necessary.
if (new_space_end > region->mapped_user) {
if (!kUsingConstantSpaceBeg && region->mapped_user == 0)
region->rand_state = static_cast<u32>(region_beg >> 12); // From ASLR.
// Do the mmap for the user memory.
uptr map_size = kUserMapSize;
while (end_idx > region->mapped_user + map_size)
while (new_space_end > region->mapped_user + map_size)
map_size += kUserMapSize;
CHECK_GE(region->mapped_user + map_size, end_idx);
MapWithCallback(region_beg + region->mapped_user, map_size);
CHECK_GE(region->mapped_user + map_size, new_space_end);
if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
map_size)))
return false;
stat->Add(AllocatorStatMapped, map_size);
region->mapped_user += map_size;
}
CompactPtrT *free_array = GetFreeArray(region_beg);
uptr total_count = (region->mapped_user - beg_idx) / size;
uptr num_freed_chunks = region->num_freed_chunks;
EnsureFreeArraySpace(region, region_beg, num_freed_chunks + total_count);
for (uptr i = 0; i < total_count; i++) {
uptr chunk = beg_idx + i * size;
free_array[num_freed_chunks + total_count - 1 - i] =
PointerToCompactPtr(0, chunk);
}
if (kRandomShuffleChunks)
RandomShuffle(&free_array[num_freed_chunks], total_count,
&region->rand_state);
region->num_freed_chunks += total_count;
region->allocated_user += total_count * size;
CHECK_LE(region->allocated_user, region->mapped_user);
const uptr new_chunks_count = (region->mapped_user - new_space_beg) / size;
region->allocated_meta += total_count * kMetadataSize;
if (region->allocated_meta > region->mapped_meta) {
uptr map_size = kMetaMapSize;
while (region->allocated_meta > region->mapped_meta + map_size)
map_size += kMetaMapSize;
// Do the mmap for the metadata.
CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
MapWithCallback(GetMetadataEnd(region_beg) -
region->mapped_meta - map_size, map_size);
region->mapped_meta += map_size;
}
CHECK_LE(region->allocated_meta, region->mapped_meta);
if (region->mapped_user + region->mapped_meta >
// Calculate the required space for metadata.
const uptr requested_allocated_meta =
region->allocated_meta + new_chunks_count * kMetadataSize;
uptr requested_mapped_meta = region->mapped_meta;
while (requested_allocated_meta > requested_mapped_meta)
requested_mapped_meta += kMetaMapSize;
// Check whether this size class is exhausted.
if (region->mapped_user + requested_mapped_meta >
kRegionSize - kFreeArraySize) {
Printf("%s: Out of memory. Dying. ", SanitizerToolName);
Printf("The process has exhausted %zuMB for size class %zu.\n",
kRegionSize / 1024 / 1024, size);
Die();
if (!region->exhausted) {
region->exhausted = true;
Printf("%s: Out of memory. ", SanitizerToolName);
Printf("The process has exhausted %zuMB for size class %zu.\n",
kRegionSize >> 20, size);
}
return false;
}
// Map more space for metadata, if necessary.
if (requested_mapped_meta > region->mapped_meta) {
if (UNLIKELY(!MapWithCallback(
GetMetadataEnd(region_beg) - requested_mapped_meta,
requested_mapped_meta - region->mapped_meta)))
return false;
region->mapped_meta = requested_mapped_meta;
}
// If necessary, allocate more space for the free array and populate it with
// newly allocated chunks.
const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
return false;
CompactPtrT *free_array = GetFreeArray(region_beg);
for (uptr i = 0, chunk = new_space_beg; i < new_chunks_count;
i++, chunk += size)
free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
if (kRandomShuffleChunks)
RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
&region->rand_state);
// All necessary memory is mapped and now it is safe to advance all
// 'allocated_*' counters.
region->num_freed_chunks += new_chunks_count;
region->allocated_user += new_chunks_count * size;
CHECK_LE(region->allocated_user, region->mapped_user);
region->allocated_meta = requested_allocated_meta;
CHECK_LE(region->allocated_meta, region->mapped_meta);
region->exhausted = false;
return true;
}
void MaybeReleaseChunkRange(uptr region_beg, uptr chunk_size,
@ -478,8 +519,8 @@ class SizeClassAllocator64 {
uptr n = region->num_freed_chunks;
if (n * chunk_size < page_size)
return; // No chance to release anything.
if ((region->n_freed - region->rtoi.n_freed_at_last_release) * chunk_size <
page_size) {
if ((region->stats.n_freed -
region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
return; // Nothing new to release.
}
@ -508,7 +549,7 @@ class SizeClassAllocator64 {
CHECK_GT(chunk - prev, scaled_chunk_size);
if (prev + scaled_chunk_size - range_beg >= kScaledGranularity) {
MaybeReleaseChunkRange(region_beg, chunk_size, range_beg, prev);
region->rtoi.n_freed_at_last_release = region->n_freed;
region->rtoi.n_freed_at_last_release = region->stats.n_freed;
region->rtoi.num_releases++;
}
range_beg = chunk;
@ -517,5 +558,3 @@ class SizeClassAllocator64 {
}
}
};

View File

@ -92,6 +92,9 @@ void *MmapFixedNoReserve(uptr fixed_addr, uptr size,
const char *name = nullptr);
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
void *MmapFixedOrDie(uptr fixed_addr, uptr size);
// Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
// that case returns nullptr.
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size);
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
void *MmapNoAccess(uptr size);
// Map aligned chunk of address space; size and alignment are powers of two.

View File

@ -198,7 +198,7 @@ void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return (void *)p;
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
void *MmapFixedImpl(uptr fixed_addr, uptr size, bool tolerate_enomem) {
uptr PageSize = GetPageSizeCached();
uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
RoundUpTo(size, PageSize),
@ -207,6 +207,8 @@ void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
-1, 0);
int reserrno;
if (internal_iserror(p, &reserrno)) {
if (tolerate_enomem && reserrno == ENOMEM)
return nullptr;
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
@ -216,6 +218,14 @@ void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return (void *)p;
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return MmapFixedImpl(fixed_addr, size, false /*tolerate_enomem*/);
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
return MmapFixedImpl(fixed_addr, size, true /*tolerate_enomem*/);
}
bool MprotectNoAccess(uptr addr, uptr size) {
return 0 == internal_mprotect((void*)addr, size, PROT_NONE);
}

View File

@ -235,6 +235,18 @@ void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return p;
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
}
return p;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
// FIXME: make this really NoReserve?
return MmapOrDie(size, mem_type);

View File

@ -436,29 +436,30 @@ TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) {
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1);
}
template<class Allocator>
void FailInAssertionOnOOM() {
Allocator a;
a.Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
AllocatorStats stats;
stats.Init();
const size_t kNumChunks = 128;
uint32_t chunks[kNumChunks];
for (int i = 0; i < 1000000; i++) {
a.GetFromAllocator(&stats, 52, chunks, kNumChunks);
}
a.TestOnlyUnmap();
}
// Don't test OOM conditions on Win64 because it causes other tests on the same
// machine to OOM.
#if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64Overflow) {
EXPECT_DEATH(FailInAssertionOnOOM<Allocator64>(), "Out of memory");
Allocator64 a;
a.Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator64> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
AllocatorStats stats;
stats.Init();
const size_t kNumChunks = 128;
uint32_t chunks[kNumChunks];
bool allocation_failed = false;
for (int i = 0; i < 1000000; i++) {
if (!a.GetFromAllocator(&stats, 52, chunks, kNumChunks)) {
allocation_failed = true;
break;
}
}
EXPECT_EQ(allocation_failed, true);
a.TestOnlyUnmap();
}
#endif
@ -970,9 +971,9 @@ TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) {
const uptr kAllocationSize = SpecialSizeClassMap::Size(kClassID);
ASSERT_LT(2 * kAllocationSize, kRegionSize);
ASSERT_GT(3 * kAllocationSize, kRegionSize);
cache.Allocate(a, kClassID);
EXPECT_DEATH(cache.Allocate(a, kClassID) && cache.Allocate(a, kClassID),
"The process has exhausted");
EXPECT_NE(cache.Allocate(a, kClassID), nullptr);
EXPECT_NE(cache.Allocate(a, kClassID), nullptr);
EXPECT_EQ(cache.Allocate(a, kClassID), nullptr);
const uptr Class2 = 100;
const uptr Size2 = SpecialSizeClassMap::Size(Class2);
@ -980,11 +981,12 @@ TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) {
char *p[7];
for (int i = 0; i < 7; i++) {
p[i] = (char*)cache.Allocate(a, Class2);
EXPECT_NE(p[i], nullptr);
fprintf(stderr, "p[%d] %p s = %lx\n", i, (void*)p[i], Size2);
p[i][Size2 - 1] = 42;
if (i) ASSERT_LT(p[i - 1], p[i]);
}
EXPECT_DEATH(cache.Allocate(a, Class2), "The process has exhausted");
EXPECT_EQ(cache.Allocate(a, Class2), nullptr);
cache.Deallocate(a, Class2, p[0]);
cache.Drain(a);
ASSERT_EQ(p[6][Size2 - 1], 42);