forked from OSchip/llvm-project
[mlir][sparse] Add rewriting rules for concatente using foreach operator.
Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D134895
This commit is contained in:
parent
550288cbc3
commit
00ad065548
|
@ -815,6 +815,12 @@ def SparseTensor_ForeachOp : SparseTensor_Op<"foreach",
|
|||
```
|
||||
}];
|
||||
|
||||
let builders = [
|
||||
OpBuilder<(
|
||||
ins "Value":$tensor,
|
||||
"function_ref<void(OpBuilder &, Location, ValueRange)>")>
|
||||
];
|
||||
|
||||
let regions = (region AnyRegion:$region);
|
||||
let assemblyFormat = "`in` $tensor attr-dict `:` type($tensor) `do` $region";
|
||||
let hasVerifier = 1;
|
||||
|
|
|
@ -597,6 +597,32 @@ LogicalResult CompressOp::verify() {
|
|||
return success();
|
||||
}
|
||||
|
||||
void ForeachOp::build(
|
||||
OpBuilder &builder, OperationState &result, Value tensor,
|
||||
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
|
||||
build(builder, result, tensor);
|
||||
if (!bodyBuilder)
|
||||
return;
|
||||
|
||||
auto rtp = tensor.getType().cast<RankedTensorType>();
|
||||
int64_t rank = rtp.getRank();
|
||||
|
||||
SmallVector<Type, 4> blockArgTypes;
|
||||
// Starts with n index.
|
||||
std::fill_n(std::back_inserter(blockArgTypes), rank, builder.getIndexType());
|
||||
// Followed by one value.
|
||||
blockArgTypes.push_back(rtp.getElementType());
|
||||
|
||||
SmallVector<Location, 4> blockArgLocs;
|
||||
std::fill_n(std::back_inserter(blockArgLocs), rank + 1, tensor.getLoc());
|
||||
|
||||
OpBuilder::InsertionGuard guard(builder);
|
||||
auto ®ion = *result.regions.front();
|
||||
Block *bodyBlock =
|
||||
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
|
||||
bodyBuilder(builder, result.location, bodyBlock->getArguments());
|
||||
}
|
||||
|
||||
LogicalResult ForeachOp::verify() {
|
||||
auto t = getTensor().getType().cast<RankedTensorType>();
|
||||
auto args = getBody()->getArguments();
|
||||
|
|
|
@ -111,6 +111,32 @@ static bool isZeroYield(GenericOp op) {
|
|||
return isZeroValue(yieldOp.getOperand(0));
|
||||
}
|
||||
|
||||
// TODO: The dim level property of the COO type relies on input tensors, the
|
||||
// shape relies on the output tensor
|
||||
// Helpers to setup a COO type.
|
||||
static RankedTensorType getUnorderedCOOFromType(RankedTensorType src) {
|
||||
auto *ctx = src.getContext();
|
||||
auto rank = src.getRank();
|
||||
SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dims;
|
||||
|
||||
// An unordered and non-unique compressed dim at beginning.
|
||||
dims.push_back(SparseTensorEncodingAttr::DimLevelType::CompressedNuNo);
|
||||
// TODO: it is actually ordered at the level for ordered input.
|
||||
// Followed by unordered non-unique n-2 singleton levels.
|
||||
std::fill_n(std::back_inserter(dims), rank - 2,
|
||||
SparseTensorEncodingAttr::DimLevelType::SingletonNuNo);
|
||||
// TODO: only if all the inputs (for concatentate) are unique at the last
|
||||
// level should the COO has a unique level at the end. Ends by a unordered
|
||||
// unique singleton level.
|
||||
dims.push_back(SparseTensorEncodingAttr::DimLevelType::SingletonNo);
|
||||
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
|
||||
// largest one among them) in the original operation instead of using the
|
||||
// default value.
|
||||
auto enc = SparseTensorEncodingAttr::get(
|
||||
ctx, dims, AffineMap::getMultiDimIdentityMap(rank, ctx), 0, 0);
|
||||
return RankedTensorType::get(src.getShape(), src.getElementType(), enc);
|
||||
}
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
// The actual sparse tensor rewriting rules.
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
@ -296,6 +322,61 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(ConcatenateOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto loc = op.getLoc();
|
||||
auto rtp = op.getType().cast<RankedTensorType>();
|
||||
// TODO: Build the output shape if needed.
|
||||
assert(rtp.hasStaticShape());
|
||||
auto rank = rtp.getRank();
|
||||
size_t conDim = op.getDimension().getZExtValue();
|
||||
// %t = concatenate %s1, %s2, %s3 {dim = 1}
|
||||
// ==>
|
||||
// %tmp = bufferization.alloc_tensor : unordered COO
|
||||
// foreach in %s1 : insert d0, d1, %tmp
|
||||
// foreach in %s2 : insert d0, d1 + size(s1), %tmp
|
||||
// foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp
|
||||
// %t = sparse_tensor.cast %tmp
|
||||
auto cooTp = getUnorderedCOOFromType(rtp);
|
||||
auto cooBuffer =
|
||||
rewriter.create<AllocTensorOp>(loc, cooTp, ValueRange()).getResult();
|
||||
|
||||
Value offset = constantIndex(rewriter, loc, 0);
|
||||
for (Value input : op.getInputs()) {
|
||||
// Builds the indexing map.
|
||||
|
||||
// Build a for op for each input tensor to append new values into the
|
||||
// output tensor.
|
||||
rewriter.create<ForeachOp>(
|
||||
loc, input, [&](OpBuilder &builder, Location loc, ValueRange args) {
|
||||
SmallVector<Value, 4> indices;
|
||||
for (int64_t i = 0; i < rank; i++) {
|
||||
uint64_t dim =
|
||||
toStoredDim(getSparseTensorEncoding(input.getType()), i);
|
||||
Value idx = args[dim];
|
||||
if (i == static_cast<int64_t>(conDim))
|
||||
// transform coordinates on matching dim
|
||||
idx = builder.create<arith::AddIOp>(loc, idx, offset);
|
||||
indices.push_back(idx);
|
||||
}
|
||||
builder.create<InsertOp>(loc, args.back(), cooBuffer, indices);
|
||||
builder.create<sparse_tensor::YieldOp>(loc);
|
||||
});
|
||||
// Accumulates the offset. Note that only static-shaped inputs are allowed
|
||||
// by concatenate op verifier, which saves us from computing the offset
|
||||
// dynamically.
|
||||
auto d = input.getType().cast<RankedTensorType>().getShape()[conDim];
|
||||
assert(!ShapedType::isDynamic(d));
|
||||
offset = rewriter.create<arith::AddIOp>(loc, offset,
|
||||
constantIndex(rewriter, loc, d));
|
||||
}
|
||||
rewriter.replaceOpWithNewOp<ConvertOp>(op, rtp, cooBuffer);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
/// Sparse rewriting rule for the foreach operator.
|
||||
struct ForeachRewriter : public OpRewritePattern<ForeachOp> {
|
||||
public:
|
||||
|
@ -363,4 +444,6 @@ void mlir::populateSparseTensorRewriting(RewritePatternSet &patterns,
|
|||
ReshapeRewriter<tensor::CollapseShapeOp>, ForeachRewriter>(
|
||||
patterns.getContext());
|
||||
// TODO: If RT not enabled, rewrite concatenate ops, etc here.
|
||||
if (!enableRT)
|
||||
patterns.add<ConcatenateRewriter>(patterns.getContext());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,81 @@
|
|||
// RUN: mlir-opt %s --sparsification=enable-runtime-library=false | FileCheck %s
|
||||
|
||||
#DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}>
|
||||
|
||||
// CHECK-LABEL: @concat_sparse_sparse(
|
||||
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK-SAME: %[[TMP_arg1:.*]]: tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK-SAME: %[[TMP_arg2:.*]]: tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_c0:.*]] = arith.constant 0 : index
|
||||
// CHECK: %[[TMP_c1:.*]] = arith.constant 1 : index
|
||||
// CHECK: %[[TMP_c5:.*]] = arith.constant 5 : index
|
||||
// CHECK: %[[TMP_c2:.*]] = arith.constant 2 : index
|
||||
// CHECK: %[[TMP_0:.*]] = bufferization.alloc_tensor() : tensor<9x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_1:.*]] = sparse_tensor.pointers %[[TMP_arg0]] {dimension = 0 : index} : tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_2:.*]] = sparse_tensor.indices %[[TMP_arg0]] {dimension = 0 : index} : tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_3:.*]] = sparse_tensor.pointers %[[TMP_arg0]] {dimension = 1 : index} : tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_4:.*]] = sparse_tensor.indices %[[TMP_arg0]] {dimension = 1 : index} : tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_5:.*]] = sparse_tensor.values %[[TMP_arg0]] : tensor<2x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_6:.*]] = memref.load %[[TMP_1]][%[[TMP_c0]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_7:.*]] = memref.load %[[TMP_1]][%[[TMP_c1]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_6]] to %[[TMP_7]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_2]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
|
||||
// CHECK: %[[TMP_25:.*]] = memref.load %[[TMP_3]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_3]][%[[TMP_24]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_4]][%[[TMP_arg4]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_5]][%[[TMP_arg4]]] : memref<?xf64>
|
||||
// CHECK: sparse_tensor.insert %[[TMP_28]] into %[[TMP_0]][%[[TMP_23]], %[[TMP_27]]] : tensor<9x4xf64, #sparse_tensor
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: %[[TMP_8:.*]] = sparse_tensor.pointers %[[TMP_arg1]] {dimension = 0 : index} : tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_9:.*]] = sparse_tensor.indices %[[TMP_arg1]] {dimension = 0 : index} : tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_10:.*]] = sparse_tensor.pointers %[[TMP_arg1]] {dimension = 1 : index} : tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_11:.*]] = sparse_tensor.indices %[[TMP_arg1]] {dimension = 1 : index} : tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_12:.*]] = sparse_tensor.values %[[TMP_arg1]] : tensor<3x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_14:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_13]] to %[[TMP_14]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_9]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
|
||||
// CHECK: %[[TMP_25:.*]] = memref.load %[[TMP_10]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_10]][%[[TMP_24]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_11]][%[[TMP_arg4]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_12]][%[[TMP_arg4]]] : memref<?xf64>
|
||||
// CHECK: %[[TMP_29:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
|
||||
// CHECK: sparse_tensor.insert %[[TMP_28]] into %[[TMP_0]][%[[TMP_29]], %[[TMP_27]]] : tensor<9x4xf64, #sparse_tensor
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: %[[TMP_15:.*]] = sparse_tensor.pointers %[[TMP_arg2]] {dimension = 0 : index} : tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_16:.*]] = sparse_tensor.indices %[[TMP_arg2]] {dimension = 0 : index} : tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_17:.*]] = sparse_tensor.pointers %[[TMP_arg2]] {dimension = 1 : index} : tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_18:.*]] = sparse_tensor.indices %[[TMP_arg2]] {dimension = 1 : index} : tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_19:.*]] = sparse_tensor.values %[[TMP_arg2]] : tensor<4x4xf64, #sparse_tensor
|
||||
// CHECK: %[[TMP_20:.*]] = memref.load %[[TMP_15]][%[[TMP_c0]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_21:.*]] = memref.load %[[TMP_15]][%[[TMP_c1]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_20]] to %[[TMP_21]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_16]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
|
||||
// CHECK: %[[TMP_25:.*]] = memref.load %[[TMP_17]][%[[TMP_arg3]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_17]][%[[TMP_24]]] : memref<?xindex>
|
||||
// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]] {
|
||||
// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_18]][%[[TMP_arg4]]] : memref<?xindex>
|
||||
// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_19]][%[[TMP_arg4]]] : memref<?xf64>
|
||||
// CHECK: %[[TMP_29:.*]] = arith.addi %[[TMP_23]], %[[TMP_c5]] : index
|
||||
// CHECK: sparse_tensor.insert %[[TMP_28]] into %[[TMP_0]][%[[TMP_29]], %[[TMP_27]]] : tensor<9x4xf64, #sparse_tensor
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: %[[TMP_22:.*]] = sparse_tensor.convert %[[TMP_0]] : tensor<9x4xf64, #sparse_tensor
|
||||
// CHECK: return %[[TMP_22]] : tensor<9x4xf64, #sparse_tensor
|
||||
func.func @concat_sparse_sparse(%arg0: tensor<2x4xf64, #DCSR>,
|
||||
%arg1: tensor<3x4xf64, #DCSR>,
|
||||
%arg2: tensor<4x4xf64, #DCSR>)
|
||||
-> tensor<9x4xf64, #DCSR> {
|
||||
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
|
||||
: tensor<2x4xf64, #DCSR>,
|
||||
tensor<3x4xf64, #DCSR>,
|
||||
tensor<4x4xf64, #DCSR> to tensor<9x4xf64, #DCSR>
|
||||
return %0 : tensor<9x4xf64, #DCSR>
|
||||
}
|
Loading…
Reference in New Issue