Add source-level dominators analysis. Patch by Guoping Long!

llvm-svn: 142885
This commit is contained in:
Ted Kremenek 2011-10-25 00:25:24 +00:00
parent 2d7bb04788
commit 0062e74961
6 changed files with 509 additions and 0 deletions

View File

@ -0,0 +1,156 @@
//==- Dominators.cpp - Construct the Dominance Tree Given CFG ----*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple, fast dominance algorithm for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_DOMINATORS_H
#define LLVM_CLANG_DOMINATORS_H
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "llvm/ADT/DenseMap.h"
namespace clang {
class CFG;
class CFGBlock;
class DominatorTree : public ManagedAnalysis {
typedef llvm::DenseMap<const CFGBlock *, CFGBlock*> CFGBlockMapTy;
public:
DominatorTree(AnalysisDeclContext &ac)
: AC(ac) {};
virtual ~DominatorTree();
/// Return the immediate dominator node given a CFGBlock.
/// For entry block, the dominator is itself.
/// This is the same as using operator[] on this class.
CFGBlock *getNode(const CFGBlock *B) const;
/// This returns the Entry Block for the given CFG
CFGBlock *getRootNode() { return RootNode; }
const CFGBlock *getRootNode() const { return RootNode; }
/// Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation.
bool properlyDominates(const CFGBlock *A, const CFGBlock *B) const;
/// Returns true iff A dominates B.
bool dominates(const CFGBlock *A, const CFGBlock *B) const;
/// Find nearest common dominator for blocks A and B.
/// Common dominator always exists, ex: entry block.
const CFGBlock *findNearestCommonDominator(const CFGBlock *A,
const CFGBlock *B) const;
/// Constructs immediate dominator tree for a given CFG based on the algorithm
/// described in this paper:
///
/// A Simple, Fast Dominance Algorithm
/// Keith D. Cooper, Timothy J. Harvey and Ken Kennedy
/// Software-Practice and Expreience, 2001;4:1-10.
///
/// This implementation is simple and runs faster in practice than the classis
/// Lengauer-Tarjan algorithm. For detailed discussions, refer to the paper.
void BuildDominatorTree();
/// Dump the immediate dominance tree
void dump();
private:
AnalysisDeclContext &AC;
CFGBlock *RootNode;
CFGBlockMapTy IDoms;
};
} // end namespace clang
#endif
//==- Dominators.cpp - Construct the Dominance Tree Given CFG ----*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple, fast dominance algorithm for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_DOMINATORS_H
#define LLVM_CLANG_DOMINATORS_H
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "llvm/ADT/DenseMap.h"
namespace clang {
class CFG;
class CFGBlock;
class DominatorTree : public ManagedAnalysis {
typedef llvm::DenseMap<const CFGBlock *, CFGBlock*> CFGBlockMapTy;
public:
DominatorTree(AnalysisDeclContext &ac)
: AC(ac) {};
virtual ~DominatorTree();
/// Return the immediate dominator node given a CFGBlock.
/// For entry block, the dominator is itself.
/// This is the same as using operator[] on this class.
CFGBlock *getNode(const CFGBlock *B) const;
/// This returns the Entry Block for the given CFG
CFGBlock *getRootNode() { return RootNode; }
const CFGBlock *getRootNode() const { return RootNode; }
/// Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation.
bool properlyDominates(const CFGBlock *A, const CFGBlock *B) const;
/// Returns true iff A dominates B.
bool dominates(const CFGBlock *A, const CFGBlock *B) const;
/// Find nearest common dominator for blocks A and B.
/// Common dominator always exists, ex: entry block.
const CFGBlock *findNearestCommonDominator(const CFGBlock *A,
const CFGBlock *B) const;
/// Constructs immediate dominator tree for a given CFG based on the algorithm
/// described in this paper:
///
/// A Simple, Fast Dominance Algorithm
/// Keith D. Cooper, Timothy J. Harvey and Ken Kennedy
/// Software-Practice and Expreience, 2001;4:1-10.
///
/// This implementation is simple and runs faster in practice than the classis
/// Lengauer-Tarjan algorithm. For detailed discussions, refer to the paper.
void BuildDominatorTree();
/// Dump the immediate dominance tree
void dump();
private:
AnalysisDeclContext &AC;
CFGBlock *RootNode;
CFGBlockMapTy IDoms;
};
} // end namespace clang
#endif

View File

@ -6,6 +6,7 @@ add_clang_library(clangAnalysis
CFGReachabilityAnalysis.cpp
CFGStmtMap.cpp
CocoaConventions.cpp
Dominators.cpp
FormatString.cpp
LiveVariables.cpp
PostOrderCFGView.cpp

View File

@ -0,0 +1,160 @@
//==- Dominators.cpp - Construct the Dominance Tree Given CFG ----*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple, fast dominance algorithm for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/Dominators.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
using namespace clang;
DominatorTree::~DominatorTree() {
IDoms.clear();
RootNode = 0;
}
CFGBlock * DominatorTree::getNode(const CFGBlock *B) const {
CFGBlockMapTy::const_iterator I = IDoms.find(B);
return I != IDoms.end() ? I->second : 0;
}
bool DominatorTree::properlyDominates(const CFGBlock *A,
const CFGBlock *B) const {
if (0 == A || 0 == B || A == B)
return false;
// The EntryBlock dominates every other block.
if (A == RootNode)
return true;
// Note: The dominator of the EntryBlock is itself.
CFGBlock *IDom = getNode(B);
while (IDom != A && IDom != RootNode)
IDom = getNode(IDom);
return IDom != RootNode;
}
bool DominatorTree::dominates(const CFGBlock *A,
const CFGBlock *B) const {
if (A == B)
return true;
return properlyDominates(A, B);
}
const CFGBlock * DominatorTree::findNearestCommonDominator
(const CFGBlock *A, const CFGBlock *B) const {
//If A dominates B, then A is the nearest common dominator
if (dominates(A, B))
return A;
//If B dominates A, then B is the nearest common dominator
if (dominates(B, A))
return B;
//Collect all A's dominators
llvm::SmallPtrSet<CFGBlock *, 16> ADoms;
ADoms.insert(RootNode);
CFGBlock *ADom = getNode(A);
while (ADom != RootNode) {
ADoms.insert(ADom);
ADom = getNode(ADom);
}
//Check all B's dominators against ADoms
CFGBlock *BDom = getNode(B);
while (BDom != RootNode){
if (ADoms.count(BDom) != 0)
return BDom;
BDom = getNode(BDom);
}
//The RootNode dominates every other node
return RootNode;
}
/// Constructs immediate dominator tree for a given CFG based on the algorithm
/// described in this paper:
///
/// A Simple, Fast Dominance Algorithm
/// Keith D. Cooper, Timothy J. Harvey and Ken Kennedy
/// Software-Practice and Expreience, 2001;4:1-10.
///
/// This implementation is simple and runs faster in practice than the classis
/// Lengauer-Tarjan algorithm. For detailed discussions, refer to the paper.
void DominatorTree::BuildDominatorTree() {
CFG *cfg = AC.getCFG();
CFGBlock *EntryBlk = &cfg->getEntry();
//Sort all CFGBlocks in reverse order
PostOrderCFGView *rpocfg = AC.getAnalysis<PostOrderCFGView>();
//Set the root of the dominance tree
RootNode = EntryBlk;
//Compute the immediate dominator for each CFGBlock
IDoms[EntryBlk] = EntryBlk;
bool changed = true;
while (changed){
changed = false;
for (PostOrderCFGView::iterator I = rpocfg->begin(),
E = rpocfg->end(); I != E; ++I){
if (EntryBlk == *I)
continue;
if (const CFGBlock *B = *I) {
//Compute immediate dominance information for CFGBlock B
CFGBlock *IDom = 0;
for (CFGBlock::const_pred_iterator J = B->pred_begin(),
K = B->pred_end(); J != K; ++J)
if( CFGBlock *P = *J) {
if (IDoms.find(P) == IDoms.end())
continue;
if (!IDom)
IDom = P;
else {
//intersect IDom and P
CFGBlock *B1 = IDom, *B2 = P;
while (B1 != B2) {
while ((rpocfg->getComparator())(B2,B1))
B1 = IDoms[B1];
while ((rpocfg->getComparator())(B1,B2))
B2 = IDoms[B2];
}
IDom = B1;
}
}
if (IDoms[B] != IDom) {
IDoms[B] = IDom;
changed = true;
}
}
}
}//while
}
void DominatorTree::dump() {
CFG *cfg = AC.getCFG();
llvm::errs() << "Immediate dominance tree (Node#,IDom#):\n";
for (CFG::const_iterator I = cfg->begin(),
E = cfg->end(); I != E; ++I) {
assert(IDoms[(*I)] &&
"Failed to find the immediate dominator for all CFG blocks.");
llvm::errs() << "(" << (*I)->getBlockID()
<< "," << IDoms[(*I)]->getBlockID() << ")\n";
}
}

View File

@ -359,6 +359,10 @@ def LLVMConventionsChecker : Checker<"Conventions">,
let ParentPackage = Debug in {
def DominatorsTreeDumper : Checker<"DumpDominators">,
HelpText<"Print the dominance tree for a given CFG">,
DescFile<"DebugCheckers.cpp">;
def LiveVariablesDumper : Checker<"DumpLiveVars">,
HelpText<"Print results of live variable analysis">,
DescFile<"DebugCheckers.cpp">;

View File

@ -15,10 +15,33 @@
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/Analyses/Dominators.h"
using namespace clang;
using namespace ento;
//===----------------------------------------------------------------------===//
// DominatorsTreeDumper
//===----------------------------------------------------------------------===//
namespace {
class DominatorsTreeDumper : public Checker<check::ASTCodeBody> {
public:
void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
BugReporter &BR) const {
if (AnalysisDeclContext *AC = mgr.getAnalysisDeclContext(D)) {
DominatorTree dom(*AC);
dom.BuildDominatorTree();
dom.dump();
}
}
};
}
void ento::registerDominatorsTreeDumper(CheckerManager &mgr) {
mgr.registerChecker<DominatorsTreeDumper>();
}
//===----------------------------------------------------------------------===//
// LiveVariablesDumper
//===----------------------------------------------------------------------===//

View File

@ -0,0 +1,165 @@
// RUN: %clang -cc1 -analyze -analyzer-checker=debug.DumpDominators %s 2>&1 | FileCheck %s
// Test the DominatorsTree implementation with various control flows
int test1()
{
int x = 6;
int y = x/2;
int z;
while(y > 0) {
if(y < x) {
x = x/y;
y = y-1;
}else{
z = x - y;
}
x = x - 1;
x = x - 1;
}
z = x+y;
z = 3;
return 0;
}
// CHECK: Immediate dominance tree (Node#,IDom#):
// CHECK: (0,1)
// CHECK: (1,2)
// CHECK: (2,8)
// CHECK: (3,4)
// CHECK: (4,7)
// CHECK: (5,7)
// CHECK: (6,7)
// CHECK: (7,2)
// CHECK: (8,9)
// CHECK: (9,9)
int test2()
{
int x,y,z;
x = 10; y = 100;
if(x > 0){
y = 1;
}else{
while(x<=0){
x++;
y++;
}
}
z = y;
return 0;
}
// CHECK: Immediate dominance tree (Node#,IDom#):
// CHECK: (0,1)
// CHECK: (1,6)
// CHECK: (2,6)
// CHECK: (3,4)
// CHECK: (4,2)
// CHECK: (5,6)
// CHECK: (6,7)
// CHECK: (7,7)
int test3()
{
int x,y,z;
x = y = z = 1;
if(x>0) {
while(x>=0){
while(y>=x) {
x = x-1;
y = y/2;
}
}
}
z = y;
return 0;
}
// CHECK: Immediate dominance tree (Node#,IDom#):
// CHECK: (0,1)
// CHECK: (1,7)
// CHECK: (2,7)
// CHECK: (3,4)
// CHECK: (4,2)
// CHECK: (5,6)
// CHECK: (6,4)
// CHECK: (7,8)
// CHECK: (8,8)
int test4()
{
int y = 3;
while(y > 0) {
if(y < 3) {
while(y>0)
y ++;
}else{
while(y<10)
y ++;
}
}
return 0;
}
// CHECK: Immediate dominance tree (Node#,IDom#):
// CHECK: (0,1)
// CHECK: (1,2)
// CHECK: (2,11)
// CHECK: (3,10)
// CHECK: (4,10)
// CHECK: (5,6)
// CHECK: (6,4)
// CHECK: (7,10)
// CHECK: (8,9)
// CHECK: (9,7)
// CHECK: (10,2)
// CHECK: (11,12)
// CHECK: (12,12)
int test5()
{
int x,y,z,a,b,c;
x = 1;
y = 2;
z = 3;
a = 4;
b = 5;
c = 6;
if ( x < 10 ) {
if ( y < 10 ) {
if ( z < 10 ) {
x = 4;
} else {
x = 5;
}
a = 10;
} else {
x = 6;
}
b = 10;
} else {
x = 7;
}
c = 11;
return 0;
}
// CHECK: Immediate dominance tree (Node#,IDom#):
// CHECK: (0,1)
// CHECK: (1,10)
// CHECK: (2,10)
// CHECK: (3,9)
// CHECK: (4,9)
// CHECK: (5,8)
// CHECK: (6,8)
// CHECK: (7,8)
// CHECK: (8,9)
// CHECK: (9,10)
// CHECK: (10,11)
// CHECK: (11,11)