llvm-project/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp

1690 lines
60 KiB
C++
Raw Normal View History

//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "NVPTXISelLowering.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXUtilities.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream>
#undef DEBUG_TYPE
#define DEBUG_TYPE "nvptx-lower"
using namespace llvm;
static unsigned int uniqueCallSite = 0;
static cl::opt<bool>
sched4reg("nvptx-sched4reg",
cl::desc("NVPTX Specific: schedule for register pressue"),
cl::init(false));
static bool IsPTXVectorType(MVT VT) {
switch (VT.SimpleTy) {
default: return false;
case MVT::v2i8:
case MVT::v4i8:
case MVT::v2i16:
case MVT::v4i16:
case MVT::v2i32:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v4f32:
case MVT::v2f64:
return true;
}
}
// NVPTXTargetLowering Constructor.
NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
: TargetLowering(TM, new NVPTXTargetObjectFile()),
nvTM(&TM),
nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
// always lower memset, memcpy, and memmove intrinsics to load/store
// instructions, rather
// then generating calls to memset, mempcy or memmove.
MaxStoresPerMemset = (unsigned)0xFFFFFFFF;
MaxStoresPerMemcpy = (unsigned)0xFFFFFFFF;
MaxStoresPerMemmove = (unsigned)0xFFFFFFFF;
setBooleanContents(ZeroOrNegativeOneBooleanContent);
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
// condition branches.
setJumpIsExpensive(true);
// By default, use the Source scheduling
if (sched4reg)
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Source);
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
addRegisterClass(MVT::i8, &NVPTX::Int8RegsRegClass);
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
// Operations not directly supported by NVPTX.
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::BR_CC, MVT::i8, Expand);
setOperationAction(ISD::BR_CC, MVT::i16, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
if (nvptxSubtarget.hasROT64()) {
setOperationAction(ISD::ROTL , MVT::i64, Legal);
setOperationAction(ISD::ROTR , MVT::i64, Legal);
}
else {
setOperationAction(ISD::ROTL , MVT::i64, Expand);
setOperationAction(ISD::ROTR , MVT::i64, Expand);
}
if (nvptxSubtarget.hasROT32()) {
setOperationAction(ISD::ROTL , MVT::i32, Legal);
setOperationAction(ISD::ROTR , MVT::i32, Legal);
}
else {
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
}
setOperationAction(ISD::ROTL , MVT::i16, Expand);
setOperationAction(ISD::ROTR , MVT::i16, Expand);
setOperationAction(ISD::ROTL , MVT::i8, Expand);
setOperationAction(ISD::ROTR , MVT::i8, Expand);
setOperationAction(ISD::BSWAP , MVT::i16, Expand);
setOperationAction(ISD::BSWAP , MVT::i32, Expand);
setOperationAction(ISD::BSWAP , MVT::i64, Expand);
// Indirect branch is not supported.
// This also disables Jump Table creation.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
// We want to legalize constant related memmove and memcopy
// intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
// Turn FP extload into load/fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PTX does not support load / store predicate registers
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::i32, MVT::i1, Expand);
setTruncStoreAction(MVT::i16, MVT::i1, Expand);
setTruncStoreAction(MVT::i8, MVT::i1, Expand);
// This is legal in NVPTX
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
// TRAP can be lowered to PTX trap
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Register custom handling for vector loads/stores
for (int i = MVT::FIRST_VECTOR_VALUETYPE;
i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT VT = (MVT::SimpleValueType)i;
if (IsPTXVectorType(VT)) {
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
}
}
// Now deduce the information based on the above mentioned
// actions
computeRegisterProperties();
}
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case NVPTXISD::CALL: return "NVPTXISD::CALL";
case NVPTXISD::RET_FLAG: return "NVPTXISD::RET_FLAG";
case NVPTXISD::Wrapper: return "NVPTXISD::Wrapper";
case NVPTXISD::NVBuiltin: return "NVPTXISD::NVBuiltin";
case NVPTXISD::DeclareParam: return "NVPTXISD::DeclareParam";
case NVPTXISD::DeclareScalarParam:
return "NVPTXISD::DeclareScalarParam";
case NVPTXISD::DeclareRet: return "NVPTXISD::DeclareRet";
case NVPTXISD::DeclareRetParam: return "NVPTXISD::DeclareRetParam";
case NVPTXISD::PrintCall: return "NVPTXISD::PrintCall";
case NVPTXISD::LoadParam: return "NVPTXISD::LoadParam";
case NVPTXISD::StoreParam: return "NVPTXISD::StoreParam";
case NVPTXISD::StoreParamS32: return "NVPTXISD::StoreParamS32";
case NVPTXISD::StoreParamU32: return "NVPTXISD::StoreParamU32";
case NVPTXISD::MoveToParam: return "NVPTXISD::MoveToParam";
case NVPTXISD::CallArgBegin: return "NVPTXISD::CallArgBegin";
case NVPTXISD::CallArg: return "NVPTXISD::CallArg";
case NVPTXISD::LastCallArg: return "NVPTXISD::LastCallArg";
case NVPTXISD::CallArgEnd: return "NVPTXISD::CallArgEnd";
case NVPTXISD::CallVoid: return "NVPTXISD::CallVoid";
case NVPTXISD::CallVal: return "NVPTXISD::CallVal";
case NVPTXISD::CallSymbol: return "NVPTXISD::CallSymbol";
case NVPTXISD::Prototype: return "NVPTXISD::Prototype";
case NVPTXISD::MoveParam: return "NVPTXISD::MoveParam";
case NVPTXISD::MoveRetval: return "NVPTXISD::MoveRetval";
case NVPTXISD::MoveToRetval: return "NVPTXISD::MoveToRetval";
case NVPTXISD::StoreRetval: return "NVPTXISD::StoreRetval";
case NVPTXISD::PseudoUseParam: return "NVPTXISD::PseudoUseParam";
case NVPTXISD::RETURN: return "NVPTXISD::RETURN";
case NVPTXISD::CallSeqBegin: return "NVPTXISD::CallSeqBegin";
case NVPTXISD::CallSeqEnd: return "NVPTXISD::CallSeqEnd";
case NVPTXISD::LoadV2: return "NVPTXISD::LoadV2";
case NVPTXISD::LoadV4: return "NVPTXISD::LoadV4";
case NVPTXISD::LDGV2: return "NVPTXISD::LDGV2";
case NVPTXISD::LDGV4: return "NVPTXISD::LDGV4";
case NVPTXISD::LDUV2: return "NVPTXISD::LDUV2";
case NVPTXISD::LDUV4: return "NVPTXISD::LDUV4";
case NVPTXISD::StoreV2: return "NVPTXISD::StoreV2";
case NVPTXISD::StoreV4: return "NVPTXISD::StoreV4";
}
}
bool NVPTXTargetLowering::shouldSplitVectorElementType(EVT VT) const {
return VT == MVT::i1;
}
SDValue
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Op = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
return DAG.getNode(NVPTXISD::Wrapper, dl, getPointerTy(), Op);
}
std::string NVPTXTargetLowering::getPrototype(Type *retTy,
const ArgListTy &Args,
const SmallVectorImpl<ISD::OutputArg> &Outs,
unsigned retAlignment) const {
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
std::stringstream O;
O << "prototype_" << uniqueCallSite << " : .callprototype ";
if (retTy->getTypeID() == Type::VoidTyID)
O << "()";
else {
O << "(";
if (isABI) {
if (retTy->isPrimitiveType() || retTy->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(retTy)) {
size = ITy->getBitWidth();
if (size < 32) size = 32;
}
else {
assert(retTy->isFloatingPointTy() &&
"Floating point type expected here");
size = retTy->getPrimitiveSizeInBits();
}
O << ".param .b" << size << " _";
}
else if (isa<PointerType>(retTy))
O << ".param .b" << getPointerTy().getSizeInBits()
<< " _";
else {
if ((retTy->getTypeID() == Type::StructTyID) ||
isa<VectorType>(retTy)) {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, retTy, vtparts);
unsigned totalsz = 0;
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0, je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8)) sz = 8;
totalsz += sz/8;
}
}
O << ".param .align "
<< retAlignment
<< " .b8 _["
<< totalsz << "]";
}
else {
assert(false &&
"Unknown return type");
}
}
}
else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, retTy, vtparts);
unsigned idx = 0;
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0, je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32)) sz = 32;
O << ".reg .b" << sz << " _";
if (j<je-1) O << ", ";
++idx;
}
if (i < e-1)
O << ", ";
}
}
O << ") ";
}
O << "_ (";
bool first = true;
MVT thePointerTy = getPointerTy();
for (unsigned i=0,e=Args.size(); i!=e; ++i) {
const Type *Ty = Args[i].Ty;
if (!first) {
O << ", ";
}
first = false;
if (Outs[i].Flags.isByVal() == false) {
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32) sz = 32;
}
else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else
sz = Ty->getPrimitiveSizeInBits();
if (isABI)
O << ".param .b" << sz << " ";
else
O << ".reg .b" << sz << " ";
O << "_";
continue;
}
const PointerType *PTy = dyn_cast<PointerType>(Ty);
assert(PTy &&
"Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
if (isABI) {
unsigned align = Outs[i].Flags.getByValAlign();
unsigned sz = getDataLayout()->getTypeAllocSize(ETy);
O << ".param .align " << align
<< " .b8 ";
O << "_";
O << "[" << sz << "]";
continue;
}
else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, ETy, vtparts);
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0,je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32)) sz = 32;
O << ".reg .b" << sz << " ";
O << "_";
if (j<je-1) O << ", ";
}
if (i<e-1)
O << ", ";
}
continue;
}
}
O << ");";
return O.str();
}
SDValue
NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
DebugLoc &dl = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
ArgListTy &Args = CLI.Args;
Type *retTy = CLI.RetTy;
ImmutableCallSite *CS = CLI.CS;
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
SDValue tempChain = Chain;
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getIntPtrConstant(uniqueCallSite, true));
SDValue InFlag = Chain.getValue(1);
assert((Outs.size() == Args.size()) &&
"Unexpected number of arguments to function call");
unsigned paramCount = 0;
// Declare the .params or .reg need to pass values
// to the function
for (unsigned i=0, e=Outs.size(); i!=e; ++i) {
EVT VT = Outs[i].VT;
if (Outs[i].Flags.isByVal() == false) {
// Plain scalar
// for ABI, declare .param .b<size> .param<n>;
// for nonABI, declare .reg .b<size> .param<n>;
unsigned isReg = 1;
if (isABI)
isReg = 0;
unsigned sz = VT.getSizeInBits();
if (VT.isInteger() && (sz < 32)) sz = 32;
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareParamOps[] = { Chain,
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(sz, MVT::i32),
DAG.getConstant(isReg, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(0, MVT::i32), OutVals[i], InFlag };
unsigned opcode = NVPTXISD::StoreParam;
if (isReg)
opcode = NVPTXISD::MoveToParam;
else {
if (Outs[i].Flags.isZExt())
opcode = NVPTXISD::StoreParamU32;
else if (Outs[i].Flags.isSExt())
opcode = NVPTXISD::StoreParamS32;
}
Chain = DAG.getNode(opcode, dl, CopyParamVTs, CopyParamOps, 5);
InFlag = Chain.getValue(1);
++paramCount;
continue;
}
// struct or vector
SmallVector<EVT, 16> vtparts;
const PointerType *PTy = dyn_cast<PointerType>(Args[i].Ty);
assert(PTy &&
"Type of a byval parameter should be pointer");
ComputeValueVTs(*this, PTy->getElementType(), vtparts);
if (isABI) {
// declare .param .align 16 .b8 .param<n>[<size>];
unsigned sz = Outs[i].Flags.getByValSize();
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
// The ByValAlign in the Outs[i].Flags is alway set at this point, so we
// don't need to
// worry about natural alignment or not. See TargetLowering::LowerCallTo()
SDValue DeclareParamOps[] = { Chain,
DAG.getConstant(Outs[i].Flags.getByValAlign(), MVT::i32),
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(sz, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
unsigned curOffset = 0;
for (unsigned j=0,je=vtparts.size(); j!=je; ++j) {
unsigned elems = 1;
EVT elemtype = vtparts[j];
if (vtparts[j].isVector()) {
elems = vtparts[j].getVectorNumElements();
elemtype = vtparts[j].getVectorElementType();
}
for (unsigned k=0,ke=elems; k!=ke; ++k) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8)) sz = 8;
SDValue srcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
OutVals[i],
DAG.getConstant(curOffset,
getPointerTy()));
SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
MachinePointerInfo(), false, false, false, 0);
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount,
MVT::i32),
DAG.getConstant(curOffset, MVT::i32),
theVal, InFlag };
Chain = DAG.getNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
CopyParamOps, 5);
InFlag = Chain.getValue(1);
curOffset += sz/8;
}
}
++paramCount;
continue;
}
// Non-abi, struct or vector
// Declare a bunch or .reg .b<size> .param<n>
unsigned curOffset = 0;
for (unsigned j=0,je=vtparts.size(); j!=je; ++j) {
unsigned elems = 1;
EVT elemtype = vtparts[j];
if (vtparts[j].isVector()) {
elems = vtparts[j].getVectorNumElements();
elemtype = vtparts[j].getVectorElementType();
}
for (unsigned k=0,ke=elems; k!=ke; ++k) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32)) sz = 32;
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareParamOps[] = { Chain, DAG.getConstant(paramCount,
MVT::i32),
DAG.getConstant(sz, MVT::i32),
DAG.getConstant(1, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
SDValue srcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[i],
DAG.getConstant(curOffset,
getPointerTy()));
SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
MachinePointerInfo(), false, false, false, 0);
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(0, MVT::i32), theVal,
InFlag };
Chain = DAG.getNode(NVPTXISD::MoveToParam, dl, CopyParamVTs,
CopyParamOps, 5);
InFlag = Chain.getValue(1);
++paramCount;
}
}
}
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
unsigned retAlignment = 0;
// Handle Result
unsigned retCount = 0;
if (Ins.size() > 0) {
SmallVector<EVT, 16> resvtparts;
ComputeValueVTs(*this, retTy, resvtparts);
// Declare one .param .align 16 .b8 func_retval0[<size>] for ABI or
// individual .reg .b<size> func_retval<0..> for non ABI
unsigned resultsz = 0;
for (unsigned i=0,e=resvtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = resvtparts[i];
if (resvtparts[i].isVector()) {
elems = resvtparts[i].getVectorNumElements();
elemtype = resvtparts[i].getVectorElementType();
}
for (unsigned j=0,je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (isABI == false) {
if (elemtype.isInteger() && (sz < 32)) sz = 32;
}
else {
if (elemtype.isInteger() && (sz < 8)) sz = 8;
}
if (isABI == false) {
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(2, MVT::i32),
DAG.getConstant(sz, MVT::i32),
DAG.getConstant(retCount, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
DeclareRetOps, 5);
InFlag = Chain.getValue(1);
++retCount;
}
resultsz += sz;
}
}
if (isABI) {
if (retTy->isPrimitiveType() || retTy->isIntegerTy() ||
retTy->isPointerTy() ) {
// Scalar needs to be at least 32bit wide
if (resultsz < 32)
resultsz = 32;
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, MVT::i32),
DAG.getConstant(resultsz, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
DeclareRetOps, 5);
InFlag = Chain.getValue(1);
}
else {
if (Func) { // direct call
if (!llvm::getAlign(*(CS->getCalledFunction()), 0, retAlignment))
retAlignment = getDataLayout()->getABITypeAlignment(retTy);
} else { // indirect call
const CallInst *CallI = dyn_cast<CallInst>(CS->getInstruction());
if (!llvm::getAlign(*CallI, 0, retAlignment))
retAlignment = getDataLayout()->getABITypeAlignment(retTy);
}
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(retAlignment,
MVT::i32),
DAG.getConstant(resultsz/8, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
DeclareRetOps, 5);
InFlag = Chain.getValue(1);
}
}
}
if (!Func) {
// This is indirect function call case : PTX requires a prototype of the
// form
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
// to be emitted, and the label has to used as the last arg of call
// instruction.
// The prototype is embedded in a string and put as the operand for an
// INLINEASM SDNode.
SDVTList InlineAsmVTs = DAG.getVTList(MVT::Other, MVT::Glue);
std::string proto_string = getPrototype(retTy, Args, Outs, retAlignment);
const char *asmstr = nvTM->getManagedStrPool()->
getManagedString(proto_string.c_str())->c_str();
SDValue InlineAsmOps[] = { Chain,
DAG.getTargetExternalSymbol(asmstr,
getPointerTy()),
DAG.getMDNode(0),
DAG.getTargetConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(ISD::INLINEASM, dl, InlineAsmVTs, InlineAsmOps, 5);
InFlag = Chain.getValue(1);
}
// Op to just print "call"
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrintCallOps[] = { Chain,
DAG.getConstant(isABI ? ((Ins.size()==0) ? 0 : 1)
: retCount, MVT::i32),
InFlag };
Chain = DAG.getNode(Func?(NVPTXISD::PrintCallUni):(NVPTXISD::PrintCall), dl,
PrintCallVTs, PrintCallOps, 3);
InFlag = Chain.getValue(1);
// Ops to print out the function name
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallVoidOps[] = { Chain, Callee, InFlag };
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps, 3);
InFlag = Chain.getValue(1);
// Ops to print out the param list
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgBeginOps[] = { Chain, InFlag };
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
CallArgBeginOps, 2);
InFlag = Chain.getValue(1);
for (unsigned i=0, e=paramCount; i!=e; ++i) {
unsigned opcode;
if (i==(e-1))
opcode = NVPTXISD::LastCallArg;
else
opcode = NVPTXISD::CallArg;
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, MVT::i32),
DAG.getConstant(i, MVT::i32),
InFlag };
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps, 4);
InFlag = Chain.getValue(1);
}
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgEndOps[] = { Chain,
DAG.getConstant(Func ? 1 : 0, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps,
3);
InFlag = Chain.getValue(1);
if (!Func) {
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrototypeOps[] = { Chain,
DAG.getConstant(uniqueCallSite, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps, 3);
InFlag = Chain.getValue(1);
}
// Generate loads from param memory/moves from registers for result
if (Ins.size() > 0) {
if (isABI) {
unsigned resoffset = 0;
for (unsigned i=0,e=Ins.size(); i!=e; ++i) {
unsigned sz = Ins[i].VT.getSizeInBits();
if (Ins[i].VT.isInteger() && (sz < 8)) sz = 8;
EVT LoadRetVTs[] = { Ins[i].VT, MVT::Other, MVT::Glue };
SDValue LoadRetOps[] = {
Chain,
DAG.getConstant(1, MVT::i32),
DAG.getConstant(resoffset, MVT::i32),
InFlag
};
SDValue retval = DAG.getNode(NVPTXISD::LoadParam, dl, LoadRetVTs,
LoadRetOps, array_lengthof(LoadRetOps));
Chain = retval.getValue(1);
InFlag = retval.getValue(2);
InVals.push_back(retval);
resoffset += sz/8;
}
}
else {
SmallVector<EVT, 16> resvtparts;
ComputeValueVTs(*this, retTy, resvtparts);
assert(Ins.size() == resvtparts.size() &&
"Unexpected number of return values in non-ABI case");
unsigned paramNum = 0;
for (unsigned i=0,e=Ins.size(); i!=e; ++i) {
assert(EVT(Ins[i].VT) == resvtparts[i] &&
"Unexpected EVT type in non-ABI case");
unsigned numelems = 1;
EVT elemtype = Ins[i].VT;
if (Ins[i].VT.isVector()) {
numelems = Ins[i].VT.getVectorNumElements();
elemtype = Ins[i].VT.getVectorElementType();
}
std::vector<SDValue> tempRetVals;
for (unsigned j=0; j<numelems; ++j) {
EVT MoveRetVTs[] = { elemtype, MVT::Other, MVT::Glue };
SDValue MoveRetOps[] = {
Chain,
DAG.getConstant(0, MVT::i32),
DAG.getConstant(paramNum, MVT::i32),
InFlag
};
SDValue retval = DAG.getNode(NVPTXISD::LoadParam, dl, MoveRetVTs,
MoveRetOps, array_lengthof(MoveRetOps));
Chain = retval.getValue(1);
InFlag = retval.getValue(2);
tempRetVals.push_back(retval);
++paramNum;
}
if (Ins[i].VT.isVector())
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, Ins[i].VT,
&tempRetVals[0], tempRetVals.size()));
else
InVals.push_back(tempRetVals[0]);
}
}
}
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(uniqueCallSite, true),
DAG.getIntPtrConstant(uniqueCallSite+1, true),
InFlag);
uniqueCallSite++;
// set isTailCall to false for now, until we figure out how to express
// tail call optimization in PTX
isTailCall = false;
return Chain;
}
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
// (see LegalizeDAG.cpp). This is slow and uses local memory.
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
SDValue NVPTXTargetLowering::
LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
SmallVector<SDValue, 8> Ops;
unsigned NumOperands = Node->getNumOperands();
for (unsigned i=0; i < NumOperands; ++i) {
SDValue SubOp = Node->getOperand(i);
EVT VVT = SubOp.getNode()->getValueType(0);
EVT EltVT = VVT.getVectorElementType();
unsigned NumSubElem = VVT.getVectorNumElements();
for (unsigned j=0; j < NumSubElem; ++j) {
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
DAG.getIntPtrConstant(j)));
}
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
&Ops[0], Ops.size());
}
SDValue NVPTXTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::RETURNADDR: return SDValue();
case ISD::FRAMEADDR: return SDValue();
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return Op;
case ISD::BUILD_VECTOR:
case ISD::EXTRACT_SUBVECTOR:
return Op;
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
default:
llvm_unreachable("Custom lowering not defined for operation");
}
}
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i1)
return LowerLOADi1(Op, DAG);
else
return SDValue();
}
// v = ld i1* addr
// =>
// v1 = ld i8* addr
// v = trunc v1 to i1
SDValue NVPTXTargetLowering::
LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(Node);
DebugLoc dl = Node->getDebugLoc();
assert(LD->getExtensionType() == ISD::NON_EXTLOAD) ;
assert(Node->getValueType(0) == MVT::i1 &&
"Custom lowering for i1 load only");
SDValue newLD = DAG.getLoad(MVT::i8, dl, LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(),
LD->getAlignment());
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
// The legalizer (the caller) is expecting two values from the legalized
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
// in LegalizeDAG.cpp which also uses MergeValues.
SDValue Ops[] = {result, LD->getChain()};
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
EVT ValVT = Op.getOperand(1).getValueType();
if (ValVT == MVT::i1)
return LowerSTOREi1(Op, DAG);
else if (ValVT.isVector())
return LowerSTOREVector(Op, DAG);
else
return SDValue();
}
SDValue
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
SDNode *N = Op.getNode();
SDValue Val = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
EVT ValVT = Val.getValueType();
if (ValVT.isVector()) {
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 stores of <2 x double> here
// but I'm leaving that as a TODO for now.
if (!ValVT.isSimple())
return SDValue();
switch (ValVT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f32:
// This is a "native" vector type
break;
}
unsigned Opcode = 0;
EVT EltVT = ValVT.getVectorElementType();
unsigned NumElts = ValVT.getVectorNumElements();
// Since StoreV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// stored type to i16 and propogate the "real" type as the memory type.
bool NeedExt = false;
if (EltVT.getSizeInBits() < 16)
NeedExt = true;
switch (NumElts) {
default: return SDValue();
case 2:
Opcode = NVPTXISD::StoreV2;
break;
case 4: {
Opcode = NVPTXISD::StoreV4;
break;
}
}
SmallVector<SDValue, 8> Ops;
// First is the chain
Ops.push_back(N->getOperand(0));
// Then the split values
for (unsigned i = 0; i < NumElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(i));
if (NeedExt)
// ANY_EXTEND is correct here since the store will only look at the
// lower-order bits anyway.
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
}
// Then any remaining arguments
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
Ops.push_back(N->getOperand(i));
}
MemSDNode *MemSD = cast<MemSDNode>(N);
SDValue NewSt = DAG.getMemIntrinsicNode(Opcode, DL,
DAG.getVTList(MVT::Other), &Ops[0],
Ops.size(), MemSD->getMemoryVT(),
MemSD->getMemOperand());
//return DCI.CombineTo(N, NewSt, true);
return NewSt;
}
return SDValue();
}
// st i1 v, addr
// =>
// v1 = zxt v to i8
// st i8, addr
SDValue NVPTXTargetLowering::
LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Tmp1 = ST->getChain();
SDValue Tmp2 = ST->getBasePtr();
SDValue Tmp3 = ST->getValue();
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl,
MVT::i8, Tmp3);
SDValue Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
ST->getPointerInfo(), isVolatile,
isNonTemporal, Alignment);
return Result;
}
SDValue
NVPTXTargetLowering::getExtSymb(SelectionDAG &DAG, const char *inname, int idx,
EVT v) const {
std::string *name = nvTM->getManagedStrPool()->getManagedString(inname);
std::stringstream suffix;
suffix << idx;
*name += suffix.str();
return DAG.getTargetExternalSymbol(name->c_str(), v);
}
SDValue
NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
return getExtSymb(DAG, ".PARAM", idx, v);
}
SDValue
NVPTXTargetLowering::getParamHelpSymbol(SelectionDAG &DAG, int idx) {
return getExtSymb(DAG, ".HLPPARAM", idx);
}
// Check to see if the kernel argument is image*_t or sampler_t
bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
static const char *const specialTypes[] = {
"struct._image2d_t",
"struct._image3d_t",
"struct._sampler_t"
};
const Type *Ty = arg->getType();
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return false;
if (!context)
return false;
const StructType *STy = dyn_cast<StructType>(PTy->getElementType());
const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
for (int i = 0, e = array_lengthof(specialTypes); i != e; ++i)
if (TypeName == specialTypes[i])
return true;
return false;
}
SDValue
NVPTXTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout *TD = getDataLayout();
const Function *F = MF.getFunction();
const AttributeSet &PAL = F->getAttributes();
SDValue Root = DAG.getRoot();
std::vector<SDValue> OutChains;
bool isKernel = llvm::isKernelFunction(*F);
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
std::vector<Type *> argTypes;
std::vector<const Argument *> theArgs;
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
theArgs.push_back(I);
argTypes.push_back(I->getType());
}
//assert(argTypes.size() == Ins.size() &&
// "Ins types and function types did not match");
int idx = 0;
for (unsigned i=0, e=argTypes.size(); i!=e; ++i, ++idx) {
Type *Ty = argTypes[i];
EVT ObjectVT = getValueType(Ty);
//assert(ObjectVT == Ins[i].VT &&
// "Ins type did not match function type");
// If the kernel argument is image*_t or sampler_t, convert it to
// a i32 constant holding the parameter position. This can later
// matched in the AsmPrinter to output the correct mangled name.
if (isImageOrSamplerVal(theArgs[i],
(theArgs[i]->getParent() ?
theArgs[i]->getParent()->getParent() : 0))) {
assert(isKernel && "Only kernels can have image/sampler params");
InVals.push_back(DAG.getConstant(i+1, MVT::i32));
continue;
}
if (theArgs[i]->use_empty()) {
// argument is dead
if (ObjectVT.isVector()) {
EVT EltVT = ObjectVT.getVectorElementType();
unsigned NumElts = ObjectVT.getVectorNumElements();
for (unsigned vi = 0; vi < NumElts; ++vi) {
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, EltVT));
}
} else {
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT));
}
continue;
}
// In the following cases, assign a node order of "idx+1"
// to newly created nodes. The SDNOdes for params have to
// appear in the same order as their order of appearance
// in the original function. "idx+1" holds that order.
if (PAL.hasAttribute(i+1, Attribute::ByVal) == false) {
if (ObjectVT.isVector()) {
unsigned NumElts = ObjectVT.getVectorNumElements();
EVT EltVT = ObjectVT.getVectorElementType();
unsigned Offset = 0;
for (unsigned vi = 0; vi < NumElts; ++vi) {
SDValue A = getParamSymbol(DAG, idx, getPointerTy());
SDValue B = DAG.getIntPtrConstant(Offset);
SDValue Addr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
//getParamSymbol(DAG, idx, EltVT),
//DAG.getConstant(Offset, getPointerTy()));
A, B);
Value *SrcValue = Constant::getNullValue(PointerType::get(
EltVT.getTypeForEVT(F->getContext()),
llvm::ADDRESS_SPACE_PARAM));
SDValue Ld = DAG.getLoad(EltVT, dl, Root, Addr,
MachinePointerInfo(SrcValue),
false, false, false,
TD->getABITypeAlignment(EltVT.getTypeForEVT(
F->getContext())));
Offset += EltVT.getStoreSizeInBits()/8;
InVals.push_back(Ld);
}
continue;
}
// A plain scalar.
if (isABI || isKernel) {
// If ABI, load from the param symbol
SDValue Arg = getParamSymbol(DAG, idx);
// Conjure up a value that we can get the address space from.
// FIXME: Using a constant here is a hack.
Value *srcValue = Constant::getNullValue(PointerType::get(
ObjectVT.getTypeForEVT(F->getContext()),
llvm::ADDRESS_SPACE_PARAM));
SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg,
MachinePointerInfo(srcValue), false, false,
false,
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(
F->getContext())));
if (p.getNode())
DAG.AssignOrdering(p.getNode(), idx+1);
InVals.push_back(p);
}
else {
// If no ABI, just move the param symbol
SDValue Arg = getParamSymbol(DAG, idx, ObjectVT);
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
if (p.getNode())
DAG.AssignOrdering(p.getNode(), idx+1);
InVals.push_back(p);
}
continue;
}
// Param has ByVal attribute
if (isABI || isKernel) {
// Return MoveParam(param symbol).
// Ideally, the param symbol can be returned directly,
// but when SDNode builder decides to use it in a CopyToReg(),
// machine instruction fails because TargetExternalSymbol
// (not lowered) is target dependent, and CopyToReg assumes
// the source is lowered.
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
if (p.getNode())
DAG.AssignOrdering(p.getNode(), idx+1);
if (isKernel)
InVals.push_back(p);
else {
SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32),
p);
InVals.push_back(p2);
}
} else {
// Have to move a set of param symbols to registers and
// store them locally and return the local pointer in InVals
const PointerType *elemPtrType = dyn_cast<PointerType>(argTypes[i]);
assert(elemPtrType &&
"Byval parameter should be a pointer type");
Type *elemType = elemPtrType->getElementType();
// Compute the constituent parts
SmallVector<EVT, 16> vtparts;
SmallVector<uint64_t, 16> offsets;
ComputeValueVTs(*this, elemType, vtparts, &offsets, 0);
unsigned totalsize = 0;
for (unsigned j=0, je=vtparts.size(); j!=je; ++j)
totalsize += vtparts[j].getStoreSizeInBits();
SDValue localcopy = DAG.getFrameIndex(MF.getFrameInfo()->
CreateStackObject(totalsize/8, 16, false),
getPointerTy());
unsigned sizesofar = 0;
std::vector<SDValue> theChains;
for (unsigned j=0, je=vtparts.size(); j!=je; ++j) {
unsigned numElems = 1;
if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements();
for (unsigned k=0, ke=numElems; k!=ke; ++k) {
EVT tmpvt = vtparts[j];
if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType();
SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt,
getParamSymbol(DAG, idx, tmpvt));
SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy,
DAG.getConstant(sizesofar, getPointerTy()));
theChains.push_back(DAG.getStore(Chain, dl, arg, addr,
MachinePointerInfo(), false, false, 0));
sizesofar += tmpvt.getStoreSizeInBits()/8;
++idx;
}
}
--idx;
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0],
theChains.size());
InVals.push_back(localcopy);
}
}
// Clang will check explicit VarArg and issue error if any. However, Clang
// will let code with
// implicit var arg like f() pass.
// We treat this case as if the arg list is empty.
//if (F.isVarArg()) {
// assert(0 && "VarArg not supported yet!");
//}
if (!OutChains.empty())
DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size()));
return Chain;
}
SDValue
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
unsigned sizesofar = 0;
unsigned idx = 0;
for (unsigned i=0, e=Outs.size(); i!=e; ++i) {
SDValue theVal = OutVals[i];
EVT theValType = theVal.getValueType();
unsigned numElems = 1;
if (theValType.isVector()) numElems = theValType.getVectorNumElements();
for (unsigned j=0,je=numElems; j!=je; ++j) {
SDValue tmpval = theVal;
if (theValType.isVector())
tmpval = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
theValType.getVectorElementType(),
tmpval, DAG.getIntPtrConstant(j));
Chain = DAG.getNode(isABI ? NVPTXISD::StoreRetval :NVPTXISD::MoveToRetval,
dl, MVT::Other,
Chain,
DAG.getConstant(isABI ? sizesofar : idx, MVT::i32),
tmpval);
if (theValType.isVector())
sizesofar += theValType.getVectorElementType().getStoreSizeInBits()/8;
else
sizesofar += theValType.getStoreSizeInBits()/8;
++idx;
}
}
return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
}
void
NVPTXTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const
{
if (Constraint.length() > 1)
return;
else
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// NVPTX suuport vector of legal types of any length in Intrinsics because the
// NVPTX specific type legalizer
// will legalize them to the PTX supported length.
bool
NVPTXTargetLowering::isTypeSupportedInIntrinsic(MVT VT) const {
if (isTypeLegal(VT))
return true;
if (VT.isVector()) {
MVT eVT = VT.getVectorElementType();
if (isTypeLegal(eVT))
return true;
}
return false;
}
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
// TgtMemIntrinsic
// because we need the information that is only available in the "Value" type
// of destination
// pointer. In particular, the address space information.
bool
NVPTXTargetLowering::getTgtMemIntrinsic(IntrinsicInfo& Info, const CallInst &I,
unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::nvvm_atomic_load_add_f32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = true;
Info.align = 0;
return true;
case Intrinsic::nvvm_atomic_load_inc_32:
case Intrinsic::nvvm_atomic_load_dec_32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = true;
Info.align = 0;
return true;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Info.opc = ISD::INTRINSIC_W_CHAIN;
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
Info.memVT = MVT::i32;
else if (Intrinsic == Intrinsic::nvvm_ldu_global_p)
Info.memVT = getPointerTy();
else
Info.memVT = MVT::f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = false;
Info.align = 0;
return true;
}
return false;
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// Used to guide target specific optimizations, like loop strength reduction
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
/// (CodeGenPrepare.cpp)
bool
NVPTXTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// AddrMode - This represents an addressing mode of:
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
//
// The legal address modes are
// - [avar]
// - [areg]
// - [areg+immoff]
// - [immAddr]
if (AM.BaseGV) {
if (AM.BaseOffs || AM.HasBaseReg || AM.Scale)
return false;
return true;
}
switch (AM.Scale) {
case 0: // "r", "r+i" or "i" is allowed
break;
case 1:
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
return false;
// Otherwise we have r+i.
break;
default:
// No scale > 1 is allowed
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// NVPTX Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
NVPTXTargetLowering::ConstraintType
NVPTXTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'r':
case 'h':
case 'c':
case 'l':
case 'f':
case 'd':
case '0':
case 'N':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
NVPTXTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'c':
return std::make_pair(0U, &NVPTX::Int8RegsRegClass);
case 'h':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'r':
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
case 'l':
case 'N':
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
case 'f':
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
case 'd':
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned NVPTXTargetLowering::getFunctionAlignment(const Function *) const {
return 4;
}
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue>& Results) {
EVT ResVT = N->getValueType(0);
DebugLoc DL = N->getDebugLoc();
assert(ResVT.isVector() && "Vector load must have vector type");
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 loads of <2 x double> here
// but I'm leaving that as a TODO for now.
assert(ResVT.isSimple() && "Can only handle simple types");
switch (ResVT.getSimpleVT().SimpleTy) {
default: return;
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f32:
// This is a "native" vector type
break;
}
EVT EltVT = ResVT.getVectorElementType();
unsigned NumElts = ResVT.getVectorNumElements();
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propogate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default: return;
case 2:
Opcode = NVPTXISD::LoadV2;
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
Opcode = NVPTXISD::LoadV4;
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs, 5);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
OtherOps.push_back(N->getOperand(i));
LoadSDNode *LD = cast<LoadSDNode>(N);
// The select routine does not have access to the LoadSDNode instance, so
// pass along the extension information
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType()));
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, &OtherOps[0],
OtherOps.size(), LD->getMemoryVT(),
LD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
}
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
SDValue Chain = N->getOperand(0);
SDValue Intrin = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// Get the intrinsic ID
unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
switch(IntrinNo) {
default: return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
EVT ResVT = N->getValueType(0);
if (ResVT.isVector()) {
// Vector LDG/LDU
unsigned NumElts = ResVT.getVectorNumElements();
EVT EltVT = ResVT.getVectorElementType();
// Since LDU/LDG are target nodes, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propogate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default: return;
case 2:
switch(IntrinNo) {
default: return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV2;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV2;
break;
}
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
switch(IntrinNo) {
default: return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV4;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV4;
break;
}
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs, 5);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
OtherOps.push_back(Chain); // Chain
// Skip operand 1 (intrinsic ID)
// Others
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i)
OtherOps.push_back(N->getOperand(i));
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, &OtherOps[0],
OtherOps.size(), MemSD->getMemoryVT(),
MemSD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
} else {
// i8 LDG/LDU
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
"Custom handling of non-i8 ldu/ldg?");
// Just copy all operands as-is
SmallVector<SDValue, 4> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
// Force output to i16
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
// We make sure the memory type is i8, which will be used during isel
// to select the proper instruction.
SDValue NewLD = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL,
LdResVTs, &Ops[0],
Ops.size(), MVT::i8,
MemSD->getMemOperand());
Results.push_back(NewLD.getValue(0));
Results.push_back(NewLD.getValue(1));
}
}
}
}
void NVPTXTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default: report_fatal_error("Unhandled custom legalization");
case ISD::LOAD:
ReplaceLoadVector(N, DAG, Results);
return;
case ISD::INTRINSIC_W_CHAIN:
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
return;
}
}