llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp

578 lines
18 KiB
C++
Raw Normal View History

//===- X86InstructionSelector.cpp ----------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86RegisterBankInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "X86-isel"
using namespace llvm;
#ifndef LLVM_BUILD_GLOBAL_ISEL
#error "You shouldn't build this"
#endif
namespace {
class X86InstructionSelector : public InstructionSelector {
public:
X86InstructionSelector(const X86Subtarget &STI,
const X86RegisterBankInfo &RBI);
bool select(MachineInstr &I) const override;
private:
/// tblgen-erated 'select' implementation, used as the initial selector for
/// the patterns that don't require complex C++.
bool selectImpl(MachineInstr &I) const;
// TODO: remove after selectImpl support pattern with a predicate.
unsigned getFAddOp(LLT &Ty, const RegisterBank &RB) const;
unsigned getFSubOp(LLT &Ty, const RegisterBank &RB) const;
unsigned getAddOp(LLT &Ty, const RegisterBank &RB) const;
unsigned getSubOp(LLT &Ty, const RegisterBank &RB) const;
unsigned getLoadStoreOp(LLT &Ty, const RegisterBank &RB, unsigned Opc,
uint64_t Alignment) const;
bool selectBinaryOp(MachineInstr &I, MachineRegisterInfo &MRI,
MachineFunction &MF) const;
bool selectLoadStoreOp(MachineInstr &I, MachineRegisterInfo &MRI,
MachineFunction &MF) const;
bool selectFrameIndex(MachineInstr &I, MachineRegisterInfo &MRI,
MachineFunction &MF) const;
bool selectConstant(MachineInstr &I, MachineRegisterInfo &MRI,
MachineFunction &MF) const;
bool selectTrunc(MachineInstr &I, MachineRegisterInfo &MRI,
MachineFunction &MF) const;
const X86Subtarget &STI;
const X86InstrInfo &TII;
const X86RegisterInfo &TRI;
const X86RegisterBankInfo &RBI;
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "X86GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "X86GenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
X86InstructionSelector::X86InstructionSelector(const X86Subtarget &STI,
const X86RegisterBankInfo &RBI)
: InstructionSelector(), STI(STI), TII(*STI.getInstrInfo()),
TRI(*STI.getRegisterInfo()), RBI(RBI)
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "X86GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
// FIXME: This should be target-independent, inferred from the types declared
// for each class in the bank.
static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB) {
if (RB.getID() == X86::GPRRegBankID) {
if (Ty.getSizeInBits() <= 8)
return &X86::GR8RegClass;
if (Ty.getSizeInBits() == 16)
return &X86::GR16RegClass;
if (Ty.getSizeInBits() == 32)
return &X86::GR32RegClass;
if (Ty.getSizeInBits() == 64)
return &X86::GR64RegClass;
}
if (RB.getID() == X86::VECRRegBankID) {
if (Ty.getSizeInBits() == 32)
return &X86::FR32XRegClass;
if (Ty.getSizeInBits() == 64)
return &X86::FR64XRegClass;
if (Ty.getSizeInBits() == 128)
return &X86::VR128XRegClass;
if (Ty.getSizeInBits() == 256)
return &X86::VR256XRegClass;
if (Ty.getSizeInBits() == 512)
return &X86::VR512RegClass;
}
llvm_unreachable("Unknown RegBank!");
}
// Set X86 Opcode and constrain DestReg.
static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
unsigned DstReg = I.getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
assert(I.isCopy() && "Generic operators do not allow physical registers");
return true;
}
const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI);
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
(void)DstSize;
unsigned SrcReg = I.getOperand(1).getReg();
const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
(void)SrcSize;
assert((!TargetRegisterInfo::isPhysicalRegister(SrcReg) || I.isCopy()) &&
"No phys reg on generic operators");
assert((DstSize == SrcSize ||
// Copies are a mean to setup initial types, the number of
// bits may not exactly match.
(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
DstSize <= RBI.getSizeInBits(SrcReg, MRI, TRI))) &&
"Copy with different width?!");
const TargetRegisterClass *RC = nullptr;
switch (RegBank.getID()) {
case X86::GPRRegBankID:
assert((DstSize <= 64) && "GPRs cannot get more than 64-bit width values.");
RC = getRegClassForTypeOnBank(MRI.getType(DstReg), RegBank);
break;
case X86::VECRRegBankID:
RC = getRegClassForTypeOnBank(MRI.getType(DstReg), RegBank);
break;
default:
llvm_unreachable("Unknown RegBank!");
}
// No need to constrain SrcReg. It will get constrained when
// we hit another of its use or its defs.
// Copies do not have constraints.
const TargetRegisterClass *OldRC = MRI.getRegClassOrNull(DstReg);
if (!OldRC || !RC->hasSubClassEq(OldRC)) {
if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) {
DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
<< " operand\n");
return false;
}
}
I.setDesc(TII.get(X86::COPY));
return true;
}
bool X86InstructionSelector::select(MachineInstr &I) const {
assert(I.getParent() && "Instruction should be in a basic block!");
assert(I.getParent()->getParent() && "Instruction should be in a function!");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Opcode = I.getOpcode();
if (!isPreISelGenericOpcode(Opcode)) {
// Certain non-generic instructions also need some special handling.
if (I.isCopy())
return selectCopy(I, TII, MRI, TRI, RBI);
// TODO: handle more cases - LOAD_STACK_GUARD, PHI
return true;
}
assert(I.getNumOperands() == I.getNumExplicitOperands() &&
"Generic instruction has unexpected implicit operands\n");
// TODO: This should be implemented by tblgen, pattern with predicate not
// supported yet.
if (selectBinaryOp(I, MRI, MF))
return true;
if (selectLoadStoreOp(I, MRI, MF))
return true;
if (selectFrameIndex(I, MRI, MF))
return true;
if (selectConstant(I, MRI, MF))
return true;
if (selectTrunc(I, MRI, MF))
return true;
return selectImpl(I);
}
unsigned X86InstructionSelector::getFAddOp(LLT &Ty,
const RegisterBank &RB) const {
if (X86::VECRRegBankID != RB.getID())
return TargetOpcode::G_FADD;
if (Ty == LLT::scalar(32)) {
if (STI.hasAVX512()) {
return X86::VADDSSZrr;
} else if (STI.hasAVX()) {
return X86::VADDSSrr;
} else if (STI.hasSSE1()) {
return X86::ADDSSrr;
}
} else if (Ty == LLT::scalar(64)) {
if (STI.hasAVX512()) {
return X86::VADDSDZrr;
} else if (STI.hasAVX()) {
return X86::VADDSDrr;
} else if (STI.hasSSE2()) {
return X86::ADDSDrr;
}
} else if (Ty == LLT::vector(4, 32)) {
if ((STI.hasAVX512()) && (STI.hasVLX())) {
return X86::VADDPSZ128rr;
} else if (STI.hasAVX()) {
return X86::VADDPSrr;
} else if (STI.hasSSE1()) {
return X86::ADDPSrr;
}
}
return TargetOpcode::G_FADD;
}
unsigned X86InstructionSelector::getFSubOp(LLT &Ty,
const RegisterBank &RB) const {
if (X86::VECRRegBankID != RB.getID())
return TargetOpcode::G_FSUB;
if (Ty == LLT::scalar(32)) {
if (STI.hasAVX512()) {
return X86::VSUBSSZrr;
} else if (STI.hasAVX()) {
return X86::VSUBSSrr;
} else if (STI.hasSSE1()) {
return X86::SUBSSrr;
}
} else if (Ty == LLT::scalar(64)) {
if (STI.hasAVX512()) {
return X86::VSUBSDZrr;
} else if (STI.hasAVX()) {
return X86::VSUBSDrr;
} else if (STI.hasSSE2()) {
return X86::SUBSDrr;
}
} else if (Ty == LLT::vector(4, 32)) {
if ((STI.hasAVX512()) && (STI.hasVLX())) {
return X86::VSUBPSZ128rr;
} else if (STI.hasAVX()) {
return X86::VSUBPSrr;
} else if (STI.hasSSE1()) {
return X86::SUBPSrr;
}
}
return TargetOpcode::G_FSUB;
}
unsigned X86InstructionSelector::getAddOp(LLT &Ty,
const RegisterBank &RB) const {
if (X86::VECRRegBankID != RB.getID())
return TargetOpcode::G_ADD;
if (Ty == LLT::vector(4, 32)) {
if (STI.hasAVX512() && STI.hasVLX()) {
return X86::VPADDDZ128rr;
} else if (STI.hasAVX()) {
return X86::VPADDDrr;
} else if (STI.hasSSE2()) {
return X86::PADDDrr;
}
}
return TargetOpcode::G_ADD;
}
unsigned X86InstructionSelector::getSubOp(LLT &Ty,
const RegisterBank &RB) const {
if (X86::VECRRegBankID != RB.getID())
return TargetOpcode::G_SUB;
if (Ty == LLT::vector(4, 32)) {
if (STI.hasAVX512() && STI.hasVLX()) {
return X86::VPSUBDZ128rr;
} else if (STI.hasAVX()) {
return X86::VPSUBDrr;
} else if (STI.hasSSE2()) {
return X86::PSUBDrr;
}
}
return TargetOpcode::G_SUB;
}
bool X86InstructionSelector::selectBinaryOp(MachineInstr &I,
MachineRegisterInfo &MRI,
MachineFunction &MF) const {
const unsigned DefReg = I.getOperand(0).getReg();
LLT Ty = MRI.getType(DefReg);
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
unsigned NewOpc = I.getOpcode();
switch (NewOpc) {
case TargetOpcode::G_FADD:
NewOpc = getFAddOp(Ty, RB);
break;
case TargetOpcode::G_FSUB:
NewOpc = getFSubOp(Ty, RB);
break;
case TargetOpcode::G_ADD:
NewOpc = getAddOp(Ty, RB);
break;
case TargetOpcode::G_SUB:
NewOpc = getSubOp(Ty, RB);
break;
default:
break;
}
if (NewOpc == I.getOpcode())
return false;
I.setDesc(TII.get(NewOpc));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
unsigned X86InstructionSelector::getLoadStoreOp(LLT &Ty, const RegisterBank &RB,
unsigned Opc,
uint64_t Alignment) const {
bool Isload = (Opc == TargetOpcode::G_LOAD);
bool HasAVX = STI.hasAVX();
bool HasAVX512 = STI.hasAVX512();
bool HasVLX = STI.hasVLX();
if (Ty == LLT::scalar(8)) {
if (X86::GPRRegBankID == RB.getID())
return Isload ? X86::MOV8rm : X86::MOV8mr;
} else if (Ty == LLT::scalar(16)) {
if (X86::GPRRegBankID == RB.getID())
return Isload ? X86::MOV16rm : X86::MOV16mr;
} else if (Ty == LLT::scalar(32)) {
if (X86::GPRRegBankID == RB.getID())
return Isload ? X86::MOV32rm : X86::MOV32mr;
if (X86::VECRRegBankID == RB.getID())
return Isload ? (HasAVX512 ? X86::VMOVSSZrm
: HasAVX ? X86::VMOVSSrm : X86::MOVSSrm)
: (HasAVX512 ? X86::VMOVSSZmr
: HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
} else if (Ty == LLT::scalar(64)) {
if (X86::GPRRegBankID == RB.getID())
return Isload ? X86::MOV64rm : X86::MOV64mr;
if (X86::VECRRegBankID == RB.getID())
return Isload ? (HasAVX512 ? X86::VMOVSDZrm
: HasAVX ? X86::VMOVSDrm : X86::MOVSDrm)
: (HasAVX512 ? X86::VMOVSDZmr
: HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
} else if (Ty.isVector() && Ty.getSizeInBits() == 128) {
if (Alignment >= 16)
return Isload ? (HasVLX ? X86::VMOVAPSZ128rm
: HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
: HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm)
: (HasVLX ? X86::VMOVAPSZ128mr
: HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
: HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
else
return Isload ? (HasVLX ? X86::VMOVUPSZ128rm
: HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
: HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm)
: (HasVLX ? X86::VMOVUPSZ128mr
: HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
: HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
}
return Opc;
}
bool X86InstructionSelector::selectLoadStoreOp(MachineInstr &I,
MachineRegisterInfo &MRI,
MachineFunction &MF) const {
unsigned Opc = I.getOpcode();
if (Opc != TargetOpcode::G_STORE && Opc != TargetOpcode::G_LOAD)
return false;
const unsigned DefReg = I.getOperand(0).getReg();
LLT Ty = MRI.getType(DefReg);
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
auto &MemOp = **I.memoperands_begin();
unsigned NewOpc = getLoadStoreOp(Ty, RB, Opc, MemOp.getAlignment());
if (NewOpc == Opc)
return false;
I.setDesc(TII.get(NewOpc));
MachineInstrBuilder MIB(MF, I);
if (Opc == TargetOpcode::G_LOAD)
addOffset(MIB, 0);
else {
// G_STORE (VAL, Addr), X86Store instruction (Addr, VAL)
I.RemoveOperand(0);
addOffset(MIB, 0).addUse(DefReg);
}
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
bool X86InstructionSelector::selectFrameIndex(MachineInstr &I,
MachineRegisterInfo &MRI,
MachineFunction &MF) const {
if (I.getOpcode() != TargetOpcode::G_FRAME_INDEX)
return false;
const unsigned DefReg = I.getOperand(0).getReg();
LLT Ty = MRI.getType(DefReg);
// Use LEA to calculate frame index.
unsigned NewOpc;
if (Ty == LLT::pointer(0, 64))
NewOpc = X86::LEA64r;
else if (Ty == LLT::pointer(0, 32))
NewOpc = STI.isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r;
else
llvm_unreachable("Can't select G_FRAME_INDEX, unsupported type.");
I.setDesc(TII.get(NewOpc));
MachineInstrBuilder MIB(MF, I);
addOffset(MIB, 0);
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
bool X86InstructionSelector::selectConstant(MachineInstr &I,
MachineRegisterInfo &MRI,
MachineFunction &MF) const {
if (I.getOpcode() != TargetOpcode::G_CONSTANT)
return false;
const unsigned DefReg = I.getOperand(0).getReg();
LLT Ty = MRI.getType(DefReg);
assert(Ty.isScalar() && "invalid element type.");
uint64_t Val = 0;
if (I.getOperand(1).isCImm()) {
Val = I.getOperand(1).getCImm()->getZExtValue();
I.getOperand(1).ChangeToImmediate(Val);
} else if (I.getOperand(1).isImm()) {
Val = I.getOperand(1).getImm();
} else
llvm_unreachable("Unsupported operand type.");
unsigned NewOpc;
switch (Ty.getSizeInBits()) {
case 8:
NewOpc = X86::MOV8ri;
break;
case 16:
NewOpc = X86::MOV16ri;
break;
case 32:
NewOpc = X86::MOV32ri;
break;
case 64: {
// TODO: in case isUInt<32>(Val), X86::MOV32ri can be used
if (isInt<32>(Val))
NewOpc = X86::MOV64ri32;
else
NewOpc = X86::MOV64ri;
break;
}
default:
llvm_unreachable("Can't select G_CONSTANT, unsupported type.");
}
I.setDesc(TII.get(NewOpc));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
bool X86InstructionSelector::selectTrunc(MachineInstr &I,
MachineRegisterInfo &MRI,
MachineFunction &MF) const {
if (I.getOpcode() != TargetOpcode::G_TRUNC)
return false;
const unsigned DstReg = I.getOperand(0).getReg();
const unsigned SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI.getType(DstReg);
const LLT SrcTy = MRI.getType(SrcReg);
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
if (DstRB.getID() != SrcRB.getID()) {
DEBUG(dbgs() << "G_TRUNC input/output on different banks\n");
return false;
}
if (DstRB.getID() != X86::GPRRegBankID)
return false;
const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
if (!DstRC)
return false;
const TargetRegisterClass *SrcRC = getRegClassForTypeOnBank(SrcTy, SrcRB);
if (!SrcRC)
return false;
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
DEBUG(dbgs() << "Failed to constrain G_TRUNC\n");
return false;
}
if (DstRC == SrcRC) {
// Nothing to be done
} else if (DstRC == &X86::GR32RegClass) {
I.getOperand(1).setSubReg(X86::sub_32bit);
} else if (DstRC == &X86::GR16RegClass) {
I.getOperand(1).setSubReg(X86::sub_16bit);
} else if (DstRC == &X86::GR8RegClass) {
I.getOperand(1).setSubReg(X86::sub_8bit);
} else {
return false;
}
I.setDesc(TII.get(X86::COPY));
return true;
}
InstructionSelector *
llvm::createX86InstructionSelector(X86Subtarget &Subtarget,
X86RegisterBankInfo &RBI) {
return new X86InstructionSelector(Subtarget, RBI);
}