llvm-project/clang/test/SemaOpenCL/numbered-address-space.cl

32 lines
1.8 KiB
Common Lisp
Raw Normal View History

Try to make builtin address space declarations not useless The way address space declarations for builtins currently work is nearly useless. The code assumes the address spaces used for builtins is a confusingly named "target address space" from user code using __attribute__((address_space(N))) that matches the builtin declaration. There's no way to use this to declare a builtin that returns a language specific address space. The terminology used is highly cofusing since it has nothing to do with the the address space selected by the target to use for a language address space. This feature is essentially unused as-is. AMDGPU and NVPTX are the only in-tree targets attempting to use this. The AMDGPU builtins certainly do not behave as intended (i.e. all of the builtins returning pointers can never compile because the numbered address space never matches the expected named address space). The NVPTX builtins are missing tests for some, and the others seem to rely on an implicit addrspacecast. Change the used address space for builtins based on a target hook to allow using a language address space for a builtin. This allows the same builtin declaration to be used for multiple languages with similarly purposed address spaces (e.g. the same AMDGPU builtin can be used in OpenCL and CUDA even though the constant address spaces are arbitarily different). This breaks the possibility of using arbitrary numbered address spaces alongside the named address spaces for builtins. If this is an issue we probably need to introduce another builtin declaration character to distinguish language address spaces from so-called "target address spaces". llvm-svn: 338707
2018-08-02 20:14:28 +08:00
// REQUIRES: amdgpu-registered-target
// RUN: %clang_cc1 -cl-std=CL2.0 -triple amdgcn-amd-amdhsa -verify -pedantic -fsyntax-only %s
void test_numeric_as_to_generic_implicit_cast(__attribute__((address_space(3))) int *as3_ptr, float src) {
generic int* generic_ptr = as3_ptr; // FIXME: This should error
}
void test_numeric_as_to_generic_explicit_cast(__attribute__((address_space(3))) int *as3_ptr, float src) {
generic int* generic_ptr = (generic int*) as3_ptr; // Should maybe be valid?
}
void test_generic_to_numeric_as_implicit_cast() {
generic int* generic_ptr = 0;
__attribute__((address_space(3))) int *as3_ptr = generic_ptr; // expected-error{{initializing '__attribute__((address_space(3))) int *__private' with an expression of type '__generic int *__private' changes address space of pointer}}
Try to make builtin address space declarations not useless The way address space declarations for builtins currently work is nearly useless. The code assumes the address spaces used for builtins is a confusingly named "target address space" from user code using __attribute__((address_space(N))) that matches the builtin declaration. There's no way to use this to declare a builtin that returns a language specific address space. The terminology used is highly cofusing since it has nothing to do with the the address space selected by the target to use for a language address space. This feature is essentially unused as-is. AMDGPU and NVPTX are the only in-tree targets attempting to use this. The AMDGPU builtins certainly do not behave as intended (i.e. all of the builtins returning pointers can never compile because the numbered address space never matches the expected named address space). The NVPTX builtins are missing tests for some, and the others seem to rely on an implicit addrspacecast. Change the used address space for builtins based on a target hook to allow using a language address space for a builtin. This allows the same builtin declaration to be used for multiple languages with similarly purposed address spaces (e.g. the same AMDGPU builtin can be used in OpenCL and CUDA even though the constant address spaces are arbitarily different). This breaks the possibility of using arbitrary numbered address spaces alongside the named address spaces for builtins. If this is an issue we probably need to introduce another builtin declaration character to distinguish language address spaces from so-called "target address spaces". llvm-svn: 338707
2018-08-02 20:14:28 +08:00
}
void test_generic_to_numeric_as_explicit_cast() {
generic int* generic_ptr = 0;
__attribute__((address_space(3))) int *as3_ptr = (__attribute__((address_space(3))) int *)generic_ptr;
}
void test_generic_as_to_builtin_parameter_explicit_cast_numeric(__attribute__((address_space(3))) int *as3_ptr, float src) {
generic int* generic_ptr = as3_ptr; // FIXME: This should error
volatile float result = __builtin_amdgcn_ds_fmaxf((__attribute__((address_space(3))) float*) generic_ptr, src, 0, 0, false); // expected-error {{passing '__attribute__((address_space(3))) float *' to parameter of type '__local float *' changes address space of pointer}}
}
void test_generic_as_to_builtin_parameterimplicit_cast_numeric(__attribute__((address_space(3))) int *as3_ptr, float src) {
generic int* generic_ptr = as3_ptr;
volatile float result = __builtin_amdgcn_ds_fmaxf(generic_ptr, src, 0, 0, false); // expected-error {{passing '__generic int *__private' to parameter of type '__local float *' changes address space of pointer}}
Try to make builtin address space declarations not useless The way address space declarations for builtins currently work is nearly useless. The code assumes the address spaces used for builtins is a confusingly named "target address space" from user code using __attribute__((address_space(N))) that matches the builtin declaration. There's no way to use this to declare a builtin that returns a language specific address space. The terminology used is highly cofusing since it has nothing to do with the the address space selected by the target to use for a language address space. This feature is essentially unused as-is. AMDGPU and NVPTX are the only in-tree targets attempting to use this. The AMDGPU builtins certainly do not behave as intended (i.e. all of the builtins returning pointers can never compile because the numbered address space never matches the expected named address space). The NVPTX builtins are missing tests for some, and the others seem to rely on an implicit addrspacecast. Change the used address space for builtins based on a target hook to allow using a language address space for a builtin. This allows the same builtin declaration to be used for multiple languages with similarly purposed address spaces (e.g. the same AMDGPU builtin can be used in OpenCL and CUDA even though the constant address spaces are arbitarily different). This breaks the possibility of using arbitrary numbered address spaces alongside the named address spaces for builtins. If this is an issue we probably need to introduce another builtin declaration character to distinguish language address spaces from so-called "target address spaces". llvm-svn: 338707
2018-08-02 20:14:28 +08:00
}