2018-09-27 22:55:32 +08:00
|
|
|
; REQUIRES: x86-registered-target
|
|
|
|
|
|
|
|
; Test devirtualization through the thin link and backend, ensuring that
|
|
|
|
; it is only applied when the type test corresponding to a devirtualization
|
|
|
|
; dominates an indirect call using the same vtable pointer. Indirect
|
|
|
|
; call promotion and inlining may introduce a guarded indirect call
|
|
|
|
; that can be promoted, which uses the same vtable address as the fallback
|
|
|
|
; indirect call that cannot be devirtualized.
|
|
|
|
|
|
|
|
; The code below illustrates the structure when we started with code like:
|
|
|
|
;
|
|
|
|
; class A {
|
|
|
|
; public:
|
|
|
|
; virtual int foo() { return 1; }
|
|
|
|
; virtual int bar() { return 1; }
|
|
|
|
; };
|
|
|
|
; class B : public A {
|
|
|
|
; public:
|
|
|
|
; virtual int foo();
|
|
|
|
; virtual int bar();
|
|
|
|
; };
|
|
|
|
;
|
|
|
|
; int foo(A *a) {
|
|
|
|
; return a->foo(); // ICP profile says most calls are to B::foo()
|
|
|
|
; }
|
|
|
|
;
|
|
|
|
; int B::foo() {
|
|
|
|
; return bar();
|
|
|
|
; }
|
|
|
|
;
|
|
|
|
; After the compile step, which will perform ICP and a round of inlining, we
|
|
|
|
; have something like:
|
|
|
|
; int foo(A *a) {
|
|
|
|
; if (&a->foo() == B::foo())
|
|
|
|
; return ((B*)a)->bar(); // Inlined from promoted direct call to B::foo()
|
|
|
|
; else
|
|
|
|
; return a->foo();
|
|
|
|
;
|
|
|
|
; The inlined code seqence will have a type test against "_ZTS1B",
|
|
|
|
; which will allow us to devirtualize indirect call ((B*)a)->bar() to B::bar();
|
|
|
|
; Both that type test and the one for the fallback a->foo() indirect call
|
|
|
|
; will use the same vtable pointer. Without a dominance check, we could
|
|
|
|
; incorrectly devirtualize a->foo() to B::foo();
|
|
|
|
|
[LTO] Record whether LTOUnit splitting is enabled in index
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
2019-01-12 02:31:57 +08:00
|
|
|
; RUN: opt -thinlto-bc -thinlto-split-lto-unit -o %t.o %s
|
2018-09-27 22:55:32 +08:00
|
|
|
|
|
|
|
; Legacy PM
|
|
|
|
; RUN: llvm-lto2 run %t.o -save-temps -pass-remarks=. \
|
|
|
|
; RUN: -o %t3 \
|
|
|
|
; RUN: -r=%t.o,_Z3bazP1A,px \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1A, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1B, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1A,px \
|
|
|
|
; RUN: -r=%t.o,_ZTV1B,px 2>&1 | FileCheck %s --check-prefix=REMARK
|
|
|
|
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
|
|
|
|
|
|
|
|
; New PM
|
|
|
|
; RUN: llvm-lto2 run %t.o -save-temps -use-new-pm -pass-remarks=. \
|
|
|
|
; RUN: -o %t3 \
|
|
|
|
; RUN: -r=%t.o,_Z3bazP1A,px \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1A, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1B, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1A3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3fooEv, \
|
|
|
|
; RUN: -r=%t.o,_ZN1B3barEv, \
|
|
|
|
; RUN: -r=%t.o,_ZTV1A,px \
|
|
|
|
; RUN: -r=%t.o,_ZTV1B,px 2>&1 | FileCheck %s --check-prefix=REMARK
|
|
|
|
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
|
|
|
|
|
|
|
|
; We should only devirtualize the inlined call to bar().
|
|
|
|
; REMARK-NOT: single-impl: devirtualized a call to _ZN1B3fooEv
|
|
|
|
; REMARK: single-impl: devirtualized a call to _ZN1B3barEv
|
|
|
|
; REMARK-NOT: single-impl: devirtualized a call to _ZN1B3fooEv
|
|
|
|
|
|
|
|
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
|
|
|
target triple = "x86_64-grtev4-linux-gnu"
|
|
|
|
|
|
|
|
%class.A = type { i32 (...)** }
|
|
|
|
%class.B = type { %class.A }
|
|
|
|
|
|
|
|
@_ZTV1A = linkonce_odr hidden unnamed_addr constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%class.A*)* @_ZN1A3fooEv to i8*), i8* bitcast (i32 (%class.A*)* @_ZN1A3barEv to i8*)] }, align 8, !type !0
|
|
|
|
@_ZTV1B = hidden unnamed_addr constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%class.B*)* @_ZN1B3fooEv to i8*), i8* bitcast (i32 (%class.B*)* @_ZN1B3barEv to i8*)] }, align 8, !type !0, !type !1
|
|
|
|
|
|
|
|
define hidden i32 @_Z3bazP1A(%class.A* %a) local_unnamed_addr {
|
|
|
|
entry:
|
|
|
|
%0 = bitcast %class.A* %a to i32 (%class.A*)***
|
|
|
|
%vtable = load i32 (%class.A*)**, i32 (%class.A*)*** %0, align 8
|
|
|
|
%1 = bitcast i32 (%class.A*)** %vtable to i8*
|
|
|
|
%2 = tail call i1 @llvm.type.test(i8* %1, metadata !"_ZTS1A")
|
|
|
|
tail call void @llvm.assume(i1 %2)
|
|
|
|
%3 = load i32 (%class.A*)*, i32 (%class.A*)** %vtable, align 8
|
|
|
|
; This is the compare instruction inserted by ICP
|
|
|
|
%4 = icmp eq i32 (%class.A*)* %3, bitcast (i32 (%class.B*)* @_ZN1B3fooEv to i32 (%class.A*)*)
|
|
|
|
br i1 %4, label %if.true.direct_targ, label %if.false.orig_indirect
|
|
|
|
|
|
|
|
; This block contains the promoted and inlined call to B::foo();
|
|
|
|
; CHECK-IR: if.true.direct_targ: ; preds = %entry
|
|
|
|
if.true.direct_targ: ; preds = %entry
|
|
|
|
%5 = bitcast %class.A* %a to %class.B*
|
|
|
|
%6 = bitcast i32 (%class.A*)** %vtable to i8*
|
|
|
|
%7 = tail call i1 @llvm.type.test(i8* %6, metadata !"_ZTS1B")
|
|
|
|
tail call void @llvm.assume(i1 %7)
|
|
|
|
%vfn.i1 = getelementptr inbounds i32 (%class.A*)*, i32 (%class.A*)** %vtable, i64 1
|
|
|
|
%vfn.i = bitcast i32 (%class.A*)** %vfn.i1 to i32 (%class.B*)**
|
|
|
|
%8 = load i32 (%class.B*)*, i32 (%class.B*)** %vfn.i, align 8
|
|
|
|
; Call to bar() can be devirtualized to call to B::bar(), since it was
|
|
|
|
; inlined from B::foo() after ICP introduced the guarded promotion.
|
|
|
|
; CHECK-IR: %call.i = tail call i32 @_ZN1B3barEv(%class.B* %3)
|
|
|
|
%call.i = tail call i32 %8(%class.B* %5)
|
|
|
|
br label %if.end.icp
|
|
|
|
|
|
|
|
; This block contains the fallback indirect call a->foo()
|
|
|
|
; CHECK-IR: if.false.orig_indirect:
|
|
|
|
if.false.orig_indirect: ; preds = %entry
|
|
|
|
; Fallback indirect call to foo() cannot be devirtualized.
|
|
|
|
; CHECK-IR: %call = tail call i32 %
|
|
|
|
%call = tail call i32 %3(%class.A* nonnull %a)
|
|
|
|
br label %if.end.icp
|
|
|
|
|
|
|
|
if.end.icp: ; preds = %if.false.orig_indirect, %if.true.direct_targ
|
|
|
|
%9 = phi i32 [ %call, %if.false.orig_indirect ], [ %call.i, %if.true.direct_targ ]
|
|
|
|
ret i32 %9
|
|
|
|
}
|
|
|
|
|
|
|
|
declare i1 @llvm.type.test(i8*, metadata)
|
|
|
|
|
|
|
|
declare void @llvm.assume(i1)
|
|
|
|
|
|
|
|
declare dso_local i32 @_ZN1B3fooEv(%class.B* %this) unnamed_addr
|
|
|
|
declare dso_local i32 @_ZN1B3barEv(%class.B*) unnamed_addr
|
|
|
|
declare dso_local i32 @_ZN1A3barEv(%class.A* %this) unnamed_addr
|
|
|
|
declare dso_local i32 @_ZN1A3fooEv(%class.A* %this) unnamed_addr
|
|
|
|
|
|
|
|
!0 = !{i64 16, !"_ZTS1A"}
|
|
|
|
!1 = !{i64 16, !"_ZTS1B"}
|