llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

959 lines
35 KiB
C++
Raw Normal View History

2012-01-17 07:50:58 +08:00
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "RuntimeDyldCheckerImpl.h"
#include "RuntimeDyldCOFF.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}
// Pin LoadedObjectInfo's vtables to this file.
void RuntimeDyld::LoadedObjectInfo::anchor() {}
namespace llvm {
void RuntimeDyldImpl::registerEHFrames() {}
void RuntimeDyldImpl::deregisterEHFrames() {}
#ifndef NDEBUG
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
if (S.Address == nullptr) {
dbgs() << "\n <section not emitted>\n";
return;
}
const unsigned ColsPerRow = 16;
uint8_t *DataAddr = S.Address;
uint64_t LoadAddr = S.LoadAddress;
unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
unsigned BytesRemaining = S.Size;
if (StartPadding) {
dbgs() << "\n" << format("0x%016" PRIx64,
LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
while (StartPadding--)
dbgs() << " ";
}
while (BytesRemaining > 0) {
if ((LoadAddr & (ColsPerRow - 1)) == 0)
dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
dbgs() << " " << format("%02x", *DataAddr);
++DataAddr;
++LoadAddr;
--BytesRemaining;
}
dbgs() << "\n";
}
#endif
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ llvm-svn: 129388
2011-04-13 05:20:41 +08:00
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
MutexGuard locked(lock);
// First, resolve relocations associated with external symbols.
resolveExternalSymbols();
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
// The Section here (Sections[i]) refers to the section in which the
// symbol for the relocation is located. The SectionID in the relocation
// entry provides the section to which the relocation will be applied.
uint64_t Addr = Sections[i].LoadAddress;
DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
<< format("%p", (uintptr_t)Addr) << "\n");
DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
resolveRelocationList(Relocations[i], Addr);
DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
Relocations.erase(i);
}
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ llvm-svn: 129388
2011-04-13 05:20:41 +08:00
}
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
MutexGuard locked(lock);
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
if (Sections[i].Address == LocalAddress) {
reassignSectionAddress(i, TargetAddress);
return;
}
}
llvm_unreachable("Attempting to remap address of unknown section!");
}
static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
ErrorOr<uint64_t> AddressOrErr = Sym.getAddress();
if (std::error_code EC = AddressOrErr.getError())
return EC;
uint64_t Address = *AddressOrErr;
if (Address == UnknownAddress) {
Result = UnknownAddress;
return std::error_code();
}
const ObjectFile *Obj = Sym.getObject();
section_iterator SecI(Obj->section_begin());
if (std::error_code EC = Sym.getSection(SecI))
return EC;
2014-10-08 23:12:20 +08:00
if (SecI == Obj->section_end()) {
Result = UnknownAddress;
return std::error_code();
2014-10-08 23:12:20 +08:00
}
uint64_t SectionAddress = SecI->getAddress();
Result = Address - SectionAddress;
return std::error_code();
}
std::pair<unsigned, unsigned>
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
MutexGuard locked(lock);
// Grab the first Section ID. We'll use this later to construct the underlying
// range for the returned LoadedObjectInfo.
unsigned SectionsAddedBeginIdx = Sections.size();
// Save information about our target
Arch = (Triple::ArchType)Obj.getArch();
IsTargetLittleEndian = Obj.isLittleEndian();
setMipsABI(Obj);
// Compute the memory size required to load all sections to be loaded
// and pass this information to the memory manager
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
if (MemMgr.needsToReserveAllocationSpace()) {
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
// Used sections from the object file
ObjSectionToIDMap LocalSections;
// Common symbols requiring allocation, with their sizes and alignments
CommonSymbolList CommonSymbols;
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
uint32_t Flags = I->getFlags();
bool IsCommon = Flags & SymbolRef::SF_Common;
if (IsCommon)
CommonSymbols.push_back(*I);
else {
object::SymbolRef::Type SymType = I->getType();
if (SymType == object::SymbolRef::ST_Function ||
SymType == object::SymbolRef::ST_Data ||
SymType == object::SymbolRef::ST_Unknown) {
ErrorOr<StringRef> NameOrErr = I->getName();
Check(NameOrErr.getError());
StringRef Name = *NameOrErr;
uint64_t SectOffset;
Check(getOffset(*I, SectOffset));
section_iterator SI = Obj.section_end();
Check(I->getSection(SI));
if (SI == Obj.section_end())
continue;
StringRef SectionData;
Check(SI->getContents(SectionData));
bool IsCode = SI->isText();
unsigned SectionID =
findOrEmitSection(Obj, *SI, IsCode, LocalSections);
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
<< " SID: " << SectionID << " Offset: "
<< format("%p", (uintptr_t)SectOffset)
<< " flags: " << Flags << "\n");
JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
if (Flags & SymbolRef::SF_Weak)
RTDyldSymFlags |= JITSymbolFlags::Weak;
if (Flags & SymbolRef::SF_Exported)
RTDyldSymFlags |= JITSymbolFlags::Exported;
GlobalSymbolTable[Name] =
SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
}
}
}
// Allocate common symbols
emitCommonSymbols(Obj, CommonSymbols);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
unsigned SectionID = 0;
StubMap Stubs;
section_iterator RelocatedSection = SI->getRelocatedSection();
if (RelocatedSection == SE)
continue;
relocation_iterator I = SI->relocation_begin();
relocation_iterator E = SI->relocation_end();
if (I == E && !ProcessAllSections)
continue;
bool IsCode = RelocatedSection->isText();
SectionID =
findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
for (; I != E;)
I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
// If there is an attached checker, notify it about the stubs for this
// section so that they can be verified.
if (Checker)
Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
}
// Give the subclasses a chance to tie-up any loose ends.
finalizeLoad(Obj, LocalSections);
unsigned SectionsAddedEndIdx = Sections.size();
return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
}
// A helper method for computeTotalAllocSize.
// Computes the memory size required to allocate sections with the given sizes,
// assuming that all sections are allocated with the given alignment
static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
uint64_t Alignment) {
uint64_t TotalSize = 0;
for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
uint64_t AlignedSize =
(SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
TotalSize += AlignedSize;
}
return TotalSize;
}
static bool isRequiredForExecution(const SectionRef Section) {
const ObjectFile *Obj = Section.getObject();
if (isa<object::ELFObjectFileBase>(Obj))
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
// Avoid loading zero-sized COFF sections.
// In PE files, VirtualSize gives the section size, and SizeOfRawData
// may be zero for sections with content. In Obj files, SizeOfRawData
// gives the section size, and VirtualSize is always zero. Hence
// the need to check for both cases below.
bool HasContent = (CoffSection->VirtualSize > 0)
|| (CoffSection->SizeOfRawData > 0);
bool IsDiscardable = CoffSection->Characteristics &
(COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
return HasContent && !IsDiscardable;
}
assert(isa<MachOObjectFile>(Obj));
return true;
}
static bool isReadOnlyData(const SectionRef Section) {
const ObjectFile *Obj = Section.getObject();
if (isa<object::ELFObjectFileBase>(Obj))
return !(ELFSectionRef(Section).getFlags() &
(ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
return ((COFFObj->getCOFFSection(Section)->Characteristics &
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ
| COFF::IMAGE_SCN_MEM_WRITE))
==
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ));
assert(isa<MachOObjectFile>(Obj));
return false;
}
static bool isZeroInit(const SectionRef Section) {
const ObjectFile *Obj = Section.getObject();
if (isa<object::ELFObjectFileBase>(Obj))
return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
return COFFObj->getCOFFSection(Section)->Characteristics &
COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
auto *MachO = cast<MachOObjectFile>(Obj);
unsigned SectionType = MachO->getSectionType(Section);
return SectionType == MachO::S_ZEROFILL ||
SectionType == MachO::S_GB_ZEROFILL;
}
// Compute an upper bound of the memory size that is required to load all
// sections
void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
uint64_t &CodeSize,
uint64_t &DataSizeRO,
uint64_t &DataSizeRW) {
// Compute the size of all sections required for execution
std::vector<uint64_t> CodeSectionSizes;
std::vector<uint64_t> ROSectionSizes;
std::vector<uint64_t> RWSectionSizes;
uint64_t MaxAlignment = sizeof(void *);
// Collect sizes of all sections to be loaded;
// also determine the max alignment of all sections
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
bool IsRequired = isRequiredForExecution(Section);
// Consider only the sections that are required to be loaded for execution
if (IsRequired) {
StringRef Name;
uint64_t DataSize = Section.getSize();
uint64_t Alignment64 = Section.getAlignment();
bool IsCode = Section.isText();
bool IsReadOnly = isReadOnlyData(Section);
Check(Section.getName(Name));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
uint64_t SectionSize = DataSize + StubBufSize;
// The .eh_frame section (at least on Linux) needs an extra four bytes
// padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO
// objects.
if (Name == ".eh_frame")
SectionSize += 4;
if (!SectionSize)
SectionSize = 1;
if (IsCode) {
CodeSectionSizes.push_back(SectionSize);
} else if (IsReadOnly) {
ROSectionSizes.push_back(SectionSize);
} else {
RWSectionSizes.push_back(SectionSize);
}
// update the max alignment
if (Alignment > MaxAlignment) {
MaxAlignment = Alignment;
}
}
}
// Compute the size of all common symbols
uint64_t CommonSize = 0;
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
uint32_t Flags = I->getFlags();
if (Flags & SymbolRef::SF_Common) {
// Add the common symbols to a list. We'll allocate them all below.
uint64_t Size = I->getCommonSize();
CommonSize += Size;
}
}
if (CommonSize != 0) {
RWSectionSizes.push_back(CommonSize);
}
// Compute the required allocation space for each different type of sections
// (code, read-only data, read-write data) assuming that all sections are
// allocated with the max alignment. Note that we cannot compute with the
// individual alignments of the sections, because then the required size
// depends on the order, in which the sections are allocated.
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
}
// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section) {
unsigned StubSize = getMaxStubSize();
if (StubSize == 0) {
return 0;
}
// FIXME: this is an inefficient way to handle this. We should computed the
// necessary section allocation size in loadObject by walking all the sections
// once.
unsigned StubBufSize = 0;
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
section_iterator RelSecI = SI->getRelocatedSection();
if (!(RelSecI == Section))
continue;
for (const RelocationRef &Reloc : SI->relocations()) {
(void)Reloc;
StubBufSize += StubSize;
}
}
// Get section data size and alignment
uint64_t DataSize = Section.getSize();
uint64_t Alignment64 = Section.getAlignment();
// Add stubbuf size alignment
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
unsigned StubAlignment = getStubAlignment();
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
if (StubAlignment > EndAlignment)
StubBufSize += StubAlignment - EndAlignment;
return StubBufSize;
}
uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
unsigned Size) const {
uint64_t Result = 0;
if (IsTargetLittleEndian) {
Src += Size - 1;
while (Size--)
Result = (Result << 8) | *Src--;
} else
while (Size--)
Result = (Result << 8) | *Src++;
return Result;
}
void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
unsigned Size) const {
if (IsTargetLittleEndian) {
while (Size--) {
*Dst++ = Value & 0xFF;
Value >>= 8;
}
} else {
Dst += Size - 1;
while (Size--) {
*Dst-- = Value & 0xFF;
Value >>= 8;
}
}
}
void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
CommonSymbolList &CommonSymbols) {
if (CommonSymbols.empty())
return;
uint64_t CommonSize = 0;
CommonSymbolList SymbolsToAllocate;
DEBUG(dbgs() << "Processing common symbols...\n");
for (const auto &Sym : CommonSymbols) {
ErrorOr<StringRef> NameOrErr = Sym.getName();
Check(NameOrErr.getError());
StringRef Name = *NameOrErr;
// Skip common symbols already elsewhere.
if (GlobalSymbolTable.count(Name) ||
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
Resolver.findSymbolInLogicalDylib(Name)) {
DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
<< "'\n");
continue;
}
uint32_t Align = Sym.getAlignment();
uint64_t Size = Sym.getCommonSize();
CommonSize += Align + Size;
SymbolsToAllocate.push_back(Sym);
}
// Allocate memory for the section
unsigned SectionID = Sections.size();
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
SectionID, StringRef(), false);
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
memset(Addr, 0, CommonSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
<< format("%p", Addr) << " DataSize: " << CommonSize << "\n");
// Assign the address of each symbol
for (auto &Sym : SymbolsToAllocate) {
uint32_t Align = Sym.getAlignment();
uint64_t Size = Sym.getCommonSize();
ErrorOr<StringRef> NameOrErr = Sym.getName();
Check(NameOrErr.getError());
StringRef Name = *NameOrErr;
if (Align) {
// This symbol has an alignment requirement.
uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
Addr += AlignOffset;
Offset += AlignOffset;
}
uint32_t Flags = Sym.getFlags();
JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
if (Flags & SymbolRef::SF_Weak)
RTDyldSymFlags |= JITSymbolFlags::Weak;
if (Flags & SymbolRef::SF_Exported)
RTDyldSymFlags |= JITSymbolFlags::Exported;
DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
<< format("%p", Addr) << "\n");
GlobalSymbolTable[Name] =
SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
Offset += Size;
Addr += Size;
}
}
unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
const SectionRef &Section, bool IsCode) {
StringRef data;
uint64_t Alignment64 = Section.getAlignment();
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
unsigned PaddingSize = 0;
unsigned StubBufSize = 0;
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll llvm-svn: 166678
2012-10-25 21:13:48 +08:00
StringRef Name;
bool IsRequired = isRequiredForExecution(Section);
bool IsVirtual = Section.isVirtual();
bool IsZeroInit = isZeroInit(Section);
bool IsReadOnly = isReadOnlyData(Section);
uint64_t DataSize = Section.getSize();
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll llvm-svn: 166678
2012-10-25 21:13:48 +08:00
Check(Section.getName(Name));
StubBufSize = computeSectionStubBufSize(Obj, Section);
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO objects.
if (Name == ".eh_frame")
PaddingSize = 4;
uintptr_t Allocate;
unsigned SectionID = Sections.size();
uint8_t *Addr;
2014-04-24 14:44:33 +08:00
const char *pData = nullptr;
Reapply [RuntimeDyldELF] Fold Placeholder into Addend This reapplies r235060 and 235070, which were reverted because of test failures in LLDB. The failure was caused because at moment RuntimeDyld is processing relocations for all sections, irrespective of whether we actually load them into memory or not, but RuntimeDyld was not actually remembering where in memory the unrelocated section is. This commit includes a fix for that issue by remembering that pointer, though the longer term fix should be to stop processing unneeded sections. Original Summary: This allows us to get rid of the original unrelocated object file after we're done processing relocations (but before applying them). MachO and COFF already do not require this (currently we have temporary hacks to prevent ownership from being released, but those are brittle and should be removed soon). The placeholder mechanism allowed the relocation resolver to look at original object file to obtain more information that are required to apply the relocations. This is usually necessary in two cases: - For relocations targetting sub-word memory locations, there may be pieces of the instruction at the target address which we should not override. - Some relocations on some platforms allow an extra addend to be encoded in their immediate fields. The problem is that in the second case the information cannot be recovered after the relocations have been applied once because they will have been overridden. In the first case we also need to be careful to not use any bits that aren't fixed and may have been overriden by applying a first relocation. In the past both have been fixed by just looking at original object file. This patch attempts to recover the information from the first by looking at the relocated object file, while the extra addend in the second case is read upon relocation processing and addend to the regular addend. I have tested this on X86. Other platforms represent my best understanding of how those relocations should work, but I may have missed something because I do not have access to those platforms. We will keep the ugly workarounds in place for a couple of days, so this commit can be reverted if it breaks the bots. Differential Revision: http://reviews.llvm.org/D9028 llvm-svn: 236341
2015-05-02 04:21:45 +08:00
// In either case, set the location of the unrelocated section in memory,
// since we still process relocations for it even if we're not applying them.
Check(Section.getContents(data));
// Virtual sections have no data in the object image, so leave pData = 0
if (!IsVirtual)
pData = data.data();
// Some sections, such as debug info, don't need to be loaded for execution.
// Leave those where they are.
if (IsRequired) {
Allocate = DataSize + PaddingSize + StubBufSize;
if (!Allocate)
Allocate = 1;
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
Name)
: MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
Name, IsReadOnly);
if (!Addr)
report_fatal_error("Unable to allocate section memory!");
// Zero-initialize or copy the data from the image
if (IsZeroInit || IsVirtual)
memset(Addr, 0, DataSize);
else
memcpy(Addr, pData, DataSize);
// Fill in any extra bytes we allocated for padding
if (PaddingSize != 0) {
memset(Addr + DataSize, 0, PaddingSize);
// Update the DataSize variable so that the stub offset is set correctly.
DataSize += PaddingSize;
}
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
} else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
// with these sections).
Allocate = 0;
2014-04-24 14:44:33 +08:00
Addr = nullptr;
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
<< " obj addr: " << format("%p", data.data()) << " new addr: 0"
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
}
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
if (Checker)
Checker->registerSection(Obj.getFileName(), SectionID);
return SectionID;
}
unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
unsigned SectionID = 0;
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
if (i != LocalSections.end())
SectionID = i->second;
else {
SectionID = emitSection(Obj, Section, IsCode);
LocalSections[Section] = SectionID;
}
return SectionID;
}
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
unsigned SectionID) {
Relocations[SectionID].push_back(RE);
}
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
StringRef SymbolName) {
// Relocation by symbol. If the symbol is found in the global symbol table,
// create an appropriate section relocation. Otherwise, add it to
// ExternalSymbolRelocations.
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
if (Loc == GlobalSymbolTable.end()) {
ExternalSymbolRelocations[SymbolName].push_back(RE);
} else {
// Copy the RE since we want to modify its addend.
RelocationEntry RECopy = RE;
const auto &SymInfo = Loc->second;
RECopy.Addend += SymInfo.getOffset();
Relocations[SymInfo.getSectionID()].push_back(RECopy);
}
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
unsigned AbiVariant) {
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
// This stub has to be able to access the full address space,
// since symbol lookup won't necessarily find a handy, in-range,
// PLT stub for functions which could be anywhere.
// Stub can use ip0 (== x16) to calculate address
writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
return Addr;
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
return Addr + 4;
} else if (IsMipsO32ABI) {
// 0: 3c190000 lui t9,%hi(addr).
// 4: 27390000 addiu t9,t9,%lo(addr).
// 8: 03200008 jr t9.
// c: 00000000 nop.
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
writeBytesUnaligned(LuiT9Instr, Addr, 4);
writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
writeBytesUnaligned(JrT9Instr, Addr+8, 4);
writeBytesUnaligned(NopInstr, Addr+12, 4);
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll llvm-svn: 166678
2012-10-25 21:13:48 +08:00
return Addr;
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
// Depending on which version of the ELF ABI is in use, we need to
// generate one of two variants of the stub. They both start with
// the same sequence to load the target address into r12.
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll llvm-svn: 166678
2012-10-25 21:13:48 +08:00
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
if (AbiVariant == 2) {
// PowerPC64 stub ELFv2 ABI: The address points to the function itself.
// The address is already in r12 as required by the ABI. Branch to it.
writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
writeInt32BE(Addr+28, 0x4E800420); // bctr
} else {
// PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
// Load the function address on r11 and sets it to control register. Also
// loads the function TOC in r2 and environment pointer to r11.
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
writeInt32BE(Addr+40, 0x4E800420); // bctr
}
return Addr;
} else if (Arch == Triple::systemz) {
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
writeInt16BE(Addr+2, 0x0000);
writeInt16BE(Addr+4, 0x0004);
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
// 8-byte address stored at Addr + 8
return Addr;
} else if (Arch == Triple::x86_64) {
*Addr = 0xFF; // jmp
*(Addr+1) = 0x25; // rip
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
} else if (Arch == Triple::x86) {
*Addr = 0xE9; // 32-bit pc-relative jump.
}
return Addr;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Relocations can't
// be applied until all the sections have been moved. The client must
// trigger this with a call to MCJIT::finalize() or
// RuntimeDyld::resolveRelocations().
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
DEBUG(dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID].Name << "): "
<< format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
<< format("0x%016" PRIx64, Addr) << "\n");
Sections[SectionID].LoadAddress = Addr;
}
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const RelocationEntry &RE = Relocs[i];
// Ignore relocations for sections that were not loaded
2014-04-24 14:44:33 +08:00
if (Sections[RE.SectionID].Address == nullptr)
continue;
resolveRelocation(RE, Value);
}
}
void RuntimeDyldImpl::resolveExternalSymbols() {
while (!ExternalSymbolRelocations.empty()) {
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
StringRef Name = i->first();
if (Name.size() == 0) {
// This is an absolute symbol, use an address of zero.
DEBUG(dbgs() << "Resolving absolute relocations."
<< "\n");
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, 0);
} else {
uint64_t Addr = 0;
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
if (Loc == GlobalSymbolTable.end()) {
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
// This is an external symbol, try to get its address from the symbol
// resolver.
Addr = Resolver.findSymbol(Name.data()).getAddress();
// The call to getSymbolAddress may have caused additional modules to
// be loaded, which may have added new entries to the
// ExternalSymbolRelocations map. Consquently, we need to update our
// iterator. This is also why retrieval of the relocation list
// associated with this symbol is deferred until below this point.
// New entries may have been added to the relocation list.
i = ExternalSymbolRelocations.find(Name);
2013-02-21 02:24:34 +08:00
} else {
// We found the symbol in our global table. It was probably in a
// Module that we loaded previously.
const auto &SymInfo = Loc->second;
Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
SymInfo.getOffset();
}
// FIXME: Implement error handling that doesn't kill the host program!
if (!Addr)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
// If Resolver returned UINT64_MAX, the client wants to handle this symbol
// manually and we shouldn't resolve its relocations.
if (Addr != UINT64_MAX) {
DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
<< format("0x%lx", Addr) << "\n");
// This list may have been updated when we called getSymbolAddress, so
// don't change this code to get the list earlier.
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, Addr);
}
}
ExternalSymbolRelocations.erase(i);
}
}
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
StringRef SectionName) const {
for (unsigned I = BeginIdx; I != EndIdx; ++I)
if (RTDyld.Sections[I].Name == SectionName)
return RTDyld.Sections[I].LoadAddress;
return 0;
}
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
void RuntimeDyld::MemoryManager::anchor() {}
void RuntimeDyld::SymbolResolver::anchor() {}
RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
RuntimeDyld::SymbolResolver &Resolver)
: MemMgr(MemMgr), Resolver(Resolver) {
// FIXME: There's a potential issue lurking here if a single instance of
// RuntimeDyld is used to load multiple objects. The current implementation
// associates a single memory manager with a RuntimeDyld instance. Even
// though the public class spawns a new 'impl' instance for each load,
// they share a single memory manager. This can become a problem when page
// permissions are applied.
2014-04-24 14:44:33 +08:00
Dyld = nullptr;
ProcessAllSections = false;
Checker = nullptr;
}
RuntimeDyld::~RuntimeDyld() {}
static std::unique_ptr<RuntimeDyldCOFF>
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
RuntimeDyld::SymbolResolver &Resolver,
bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
std::unique_ptr<RuntimeDyldCOFF> Dyld =
RuntimeDyldCOFF::create(Arch, MM, Resolver);
Dyld->setProcessAllSections(ProcessAllSections);
Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
static std::unique_ptr<RuntimeDyldELF>
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
RuntimeDyld::SymbolResolver &Resolver,
bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
Dyld->setProcessAllSections(ProcessAllSections);
Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
static std::unique_ptr<RuntimeDyldMachO>
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
RuntimeDyld::SymbolResolver &Resolver,
bool ProcessAllSections,
RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldMachO> Dyld =
RuntimeDyldMachO::create(Arch, MM, Resolver);
Dyld->setProcessAllSections(ProcessAllSections);
Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyld::loadObject(const ObjectFile &Obj) {
if (!Dyld) {
if (Obj.isELF())
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
else if (Obj.isMachO())
Dyld = createRuntimeDyldMachO(
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
ProcessAllSections, Checker);
else if (Obj.isCOFF())
Dyld = createRuntimeDyldCOFF(
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
ProcessAllSections, Checker);
else
report_fatal_error("Incompatible object format!");
}
if (!Dyld->isCompatibleFile(Obj))
report_fatal_error("Incompatible object format!");
return Dyld->loadObject(Obj);
}
void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
if (!Dyld)
2014-04-24 14:44:33 +08:00
return nullptr;
return Dyld->getSymbolLocalAddress(Name);
}
RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
if (!Dyld)
return nullptr;
return Dyld->getSymbol(Name);
}
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ llvm-svn: 129388
2011-04-13 05:20:41 +08:00
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
Dyld->reassignSectionAddress(SectionID, Addr);
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ llvm-svn: 129388
2011-04-13 05:20:41 +08:00
}
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
void RuntimeDyld::registerEHFrames() {
if (Dyld)
Dyld->registerEHFrames();
}
void RuntimeDyld::deregisterEHFrames() {
if (Dyld)
Dyld->deregisterEHFrames();
}
} // end namespace llvm