2002-11-20 06:04:49 +08:00
|
|
|
//===- CloneFunction.cpp - Clone a function into another function ---------===//
|
2005-04-22 07:48:37 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 04:36:04 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2005-04-22 07:48:37 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2002-11-20 06:04:49 +08:00
|
|
|
//
|
|
|
|
// This file implements the CloneFunctionInto interface, which is used as the
|
|
|
|
// low-level function cloner. This is used by the CloneFunction and function
|
|
|
|
// inliner to do the dirty work of copying the body of a function around.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2002-03-30 03:03:54 +08:00
|
|
|
|
2002-11-20 04:59:41 +08:00
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
2015-07-11 02:55:09 +08:00
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
2014-03-04 19:45:46 +08:00
|
|
|
#include "llvm/IR/CFG.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Constants.h"
|
2014-03-06 08:46:21 +08:00
|
|
|
#include "llvm/IR/DebugInfo.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/IR/LLVMContext.h"
|
|
|
|
#include "llvm/IR/Metadata.h"
|
2014-03-12 22:42:51 +08:00
|
|
|
#include "llvm/IR/Module.h"
|
2012-03-28 16:38:27 +08:00
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
2010-08-25 02:50:07 +08:00
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
2007-02-03 08:08:31 +08:00
|
|
|
#include <map>
|
2004-01-09 14:12:26 +08:00
|
|
|
using namespace llvm;
|
2003-11-12 06:41:34 +08:00
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// See comments in Cloning.h.
|
2004-01-09 14:12:26 +08:00
|
|
|
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
|
2010-06-24 08:00:42 +08:00
|
|
|
ValueToValueMapTy &VMap,
|
2010-01-28 03:58:47 +08:00
|
|
|
const Twine &NameSuffix, Function *F,
|
2006-01-14 02:39:17 +08:00
|
|
|
ClonedCodeInfo *CodeInfo) {
|
2009-08-14 05:58:54 +08:00
|
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
|
2003-04-18 11:50:09 +08:00
|
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
|
2006-01-14 02:39:17 +08:00
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
|
|
|
|
|
|
|
// Loop over all instructions, and copy them over.
|
2003-04-18 11:50:09 +08:00
|
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
|
|
|
II != IE; ++II) {
|
2009-09-27 15:38:41 +08:00
|
|
|
Instruction *NewInst = II->clone();
|
2003-04-18 11:50:09 +08:00
|
|
|
if (II->hasName())
|
|
|
|
NewInst->setName(II->getName()+NameSuffix);
|
|
|
|
NewBB->getInstList().push_back(NewInst);
|
2015-10-13 10:39:05 +08:00
|
|
|
VMap[&*II] = NewInst; // Add instruction map to value.
|
|
|
|
|
2009-03-11 06:20:02 +08:00
|
|
|
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
|
2006-01-14 02:39:17 +08:00
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
|
|
hasStaticAllocas = true;
|
|
|
|
else
|
|
|
|
hasDynamicAllocas = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CodeInfo) {
|
|
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
2007-03-23 00:38:57 +08:00
|
|
|
BB != &BB->getParent()->getEntryBlock();
|
2003-04-18 11:50:09 +08:00
|
|
|
}
|
|
|
|
return NewBB;
|
|
|
|
}
|
|
|
|
|
2002-03-30 03:03:54 +08:00
|
|
|
// Clone OldFunc into NewFunc, transforming the old arguments into references to
|
2010-08-26 23:41:53 +08:00
|
|
|
// VMap values.
|
2002-03-30 03:03:54 +08:00
|
|
|
//
|
2004-01-09 14:12:26 +08:00
|
|
|
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
2010-06-24 08:00:42 +08:00
|
|
|
ValueToValueMapTy &VMap,
|
2010-08-26 23:41:53 +08:00
|
|
|
bool ModuleLevelChanges,
|
2009-08-27 12:02:30 +08:00
|
|
|
SmallVectorImpl<ReturnInst*> &Returns,
|
2011-12-23 10:18:32 +08:00
|
|
|
const char *NameSuffix, ClonedCodeInfo *CodeInfo,
|
2013-05-28 23:17:05 +08:00
|
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
|
|
ValueMaterializer *Materializer) {
|
2002-11-20 05:54:07 +08:00
|
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2002-11-20 06:54:01 +08:00
|
|
|
#ifndef NDEBUG
|
2015-10-13 10:39:05 +08:00
|
|
|
for (const Argument &I : OldFunc->args())
|
|
|
|
assert(VMap.count(&I) && "No mapping from source argument specified!");
|
2002-11-20 06:54:01 +08:00
|
|
|
#endif
|
2002-03-30 03:03:54 +08:00
|
|
|
|
2014-03-27 06:26:35 +08:00
|
|
|
// Copy all attributes other than those stored in the AttributeSet. We need
|
|
|
|
// to remap the parameter indices of the AttributeSet.
|
|
|
|
AttributeSet NewAttrs = NewFunc->getAttributes();
|
|
|
|
NewFunc->copyAttributesFrom(OldFunc);
|
|
|
|
NewFunc->setAttributes(NewAttrs);
|
|
|
|
|
2015-11-16 13:13:30 +08:00
|
|
|
// Fix up the personality function that got copied over.
|
|
|
|
if (OldFunc->hasPersonalityFn())
|
|
|
|
NewFunc->setPersonalityFn(
|
|
|
|
MapValue(OldFunc->getPersonalityFn(), VMap,
|
|
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
|
|
|
|
TypeMapper, Materializer));
|
|
|
|
|
2013-04-10 18:37:38 +08:00
|
|
|
AttributeSet OldAttrs = OldFunc->getAttributes();
|
|
|
|
// Clone any argument attributes that are present in the VMap.
|
2014-03-27 06:26:35 +08:00
|
|
|
for (const Argument &OldArg : OldFunc->args())
|
|
|
|
if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
|
2013-04-10 18:37:38 +08:00
|
|
|
AttributeSet attrs =
|
2014-03-27 06:26:35 +08:00
|
|
|
OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
|
2013-04-10 18:37:38 +08:00
|
|
|
if (attrs.getNumSlots() > 0)
|
2014-03-27 06:26:35 +08:00
|
|
|
NewArg->addAttr(attrs);
|
2013-04-10 18:37:38 +08:00
|
|
|
}
|
2008-10-08 02:08:38 +08:00
|
|
|
|
2014-03-27 06:26:35 +08:00
|
|
|
NewFunc->setAttributes(
|
|
|
|
NewFunc->getAttributes()
|
|
|
|
.addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
|
|
|
|
OldAttrs.getRetAttributes())
|
|
|
|
.addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
|
|
|
|
OldAttrs.getFnAttributes()));
|
2008-03-24 00:03:00 +08:00
|
|
|
|
2002-03-30 03:03:54 +08:00
|
|
|
// Loop over all of the basic blocks in the function, cloning them as
|
2002-11-20 05:54:07 +08:00
|
|
|
// appropriate. Note that we save BE this way in order to handle cloning of
|
|
|
|
// recursive functions into themselves.
|
2002-03-30 03:03:54 +08:00
|
|
|
//
|
|
|
|
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
|
|
|
BI != BE; ++BI) {
|
2002-06-26 00:12:52 +08:00
|
|
|
const BasicBlock &BB = *BI;
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2003-04-18 11:50:09 +08:00
|
|
|
// Create a new basic block and copy instructions into it!
|
2011-01-08 16:15:20 +08:00
|
|
|
BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
|
2002-03-30 03:03:54 +08:00
|
|
|
|
2011-10-22 04:45:19 +08:00
|
|
|
// Add basic block mapping.
|
|
|
|
VMap[&BB] = CBB;
|
|
|
|
|
|
|
|
// It is only legal to clone a function if a block address within that
|
|
|
|
// function is never referenced outside of the function. Given that, we
|
|
|
|
// want to map block addresses from the old function to block addresses in
|
|
|
|
// the clone. (This is different from the generic ValueMapper
|
|
|
|
// implementation, which generates an invalid blockaddress when
|
|
|
|
// cloning a function.)
|
|
|
|
if (BB.hasAddressTaken()) {
|
|
|
|
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
|
|
|
|
const_cast<BasicBlock*>(&BB));
|
|
|
|
VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note return instructions for the caller.
|
2002-11-20 05:54:07 +08:00
|
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
|
|
|
|
Returns.push_back(RI);
|
2002-03-30 03:03:54 +08:00
|
|
|
}
|
|
|
|
|
2005-04-22 07:48:37 +08:00
|
|
|
// Loop over all of the instructions in the function, fixing up operand
|
2010-06-24 07:55:51 +08:00
|
|
|
// references as we go. This uses VMap to do all the hard work.
|
2015-10-13 10:39:05 +08:00
|
|
|
for (Function::iterator BB =
|
|
|
|
cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
|
|
|
|
BE = NewFunc->end();
|
|
|
|
BB != BE; ++BB)
|
2002-03-30 03:03:54 +08:00
|
|
|
// Loop over all instructions, fixing each one as we find it...
|
2015-10-13 10:39:05 +08:00
|
|
|
for (Instruction &II : *BB)
|
|
|
|
RemapInstruction(&II, VMap,
|
2011-12-23 10:18:32 +08:00
|
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
|
2013-05-28 23:17:05 +08:00
|
|
|
TypeMapper, Materializer);
|
2002-03-30 03:03:54 +08:00
|
|
|
}
|
2002-11-20 07:12:22 +08:00
|
|
|
|
2015-04-21 06:10:08 +08:00
|
|
|
// Find the MDNode which corresponds to the subprogram data that described F.
|
2015-04-30 00:38:44 +08:00
|
|
|
static DISubprogram *FindSubprogram(const Function *F,
|
2015-04-21 06:10:08 +08:00
|
|
|
DebugInfoFinder &Finder) {
|
2015-04-30 00:38:44 +08:00
|
|
|
for (DISubprogram *Subprogram : Finder.subprograms()) {
|
2015-04-14 11:40:37 +08:00
|
|
|
if (Subprogram->describes(F))
|
|
|
|
return Subprogram;
|
2014-03-12 22:42:51 +08:00
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-03-12 22:42:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Add an operand to an existing MDNode. The new operand will be added at the
|
|
|
|
// back of the operand list.
|
2015-04-30 00:38:44 +08:00
|
|
|
static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
|
2015-04-21 06:10:08 +08:00
|
|
|
Metadata *NewSP) {
|
IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
2014-12-10 02:38:53 +08:00
|
|
|
SmallVector<Metadata *, 16> NewSPs;
|
2015-04-07 12:14:33 +08:00
|
|
|
NewSPs.reserve(SPs.size() + 1);
|
|
|
|
for (auto *SP : SPs)
|
|
|
|
NewSPs.push_back(SP);
|
2014-12-06 08:48:17 +08:00
|
|
|
NewSPs.push_back(NewSP);
|
2015-04-16 07:19:27 +08:00
|
|
|
CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
|
2014-03-12 22:42:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Clone the module-level debug info associated with OldFunc. The cloned data
|
|
|
|
// will point to NewFunc instead.
|
|
|
|
static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
|
|
|
|
ValueToValueMapTy &VMap) {
|
|
|
|
DebugInfoFinder Finder;
|
|
|
|
Finder.processModule(*OldFunc->getParent());
|
|
|
|
|
2015-04-30 00:38:44 +08:00
|
|
|
const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
|
2014-03-12 22:42:51 +08:00
|
|
|
if (!OldSubprogramMDNode) return;
|
|
|
|
|
2015-04-21 06:10:08 +08:00
|
|
|
auto *NewSubprogram =
|
2015-04-30 00:38:44 +08:00
|
|
|
cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
|
2015-11-06 06:03:56 +08:00
|
|
|
NewFunc->setSubprogram(NewSubprogram);
|
2014-03-12 22:42:51 +08:00
|
|
|
|
2015-04-21 06:10:08 +08:00
|
|
|
for (auto *CU : Finder.compile_units()) {
|
2015-04-07 12:14:33 +08:00
|
|
|
auto Subprograms = CU->getSubprograms();
|
2014-03-12 22:42:51 +08:00
|
|
|
// If the compile unit's function list contains the old function, it should
|
|
|
|
// also contain the new one.
|
2015-04-07 12:14:33 +08:00
|
|
|
for (auto *SP : Subprograms) {
|
|
|
|
if (SP == OldSubprogramMDNode) {
|
2014-12-06 08:48:13 +08:00
|
|
|
AddOperand(CU, Subprograms, NewSubprogram);
|
|
|
|
break;
|
2014-03-12 22:42:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// Return a copy of the specified function, but without
|
2002-11-20 07:12:22 +08:00
|
|
|
/// embedding the function into another module. Also, any references specified
|
2010-06-24 07:55:51 +08:00
|
|
|
/// in the VMap are changed to refer to their mapped value instead of the
|
|
|
|
/// original one. If any of the arguments to the function are in the VMap,
|
|
|
|
/// the arguments are deleted from the resultant function. The VMap is
|
2002-11-20 07:12:22 +08:00
|
|
|
/// updated to include mappings from all of the instructions and basicblocks in
|
|
|
|
/// the function from their old to new values.
|
|
|
|
///
|
2011-01-08 16:15:20 +08:00
|
|
|
Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
|
2010-08-26 23:41:53 +08:00
|
|
|
bool ModuleLevelChanges,
|
2006-01-14 02:39:17 +08:00
|
|
|
ClonedCodeInfo *CodeInfo) {
|
2011-07-12 22:06:48 +08:00
|
|
|
std::vector<Type*> ArgTypes;
|
2002-11-20 07:12:22 +08:00
|
|
|
|
|
|
|
// The user might be deleting arguments to the function by specifying them in
|
2010-06-24 07:55:51 +08:00
|
|
|
// the VMap. If so, we need to not add the arguments to the arg ty vector
|
2002-11-20 07:12:22 +08:00
|
|
|
//
|
2015-10-13 10:39:05 +08:00
|
|
|
for (const Argument &I : F->args())
|
|
|
|
if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
|
|
|
|
ArgTypes.push_back(I.getType());
|
2002-11-20 07:12:22 +08:00
|
|
|
|
|
|
|
// Create a new function type...
|
2009-07-30 06:17:13 +08:00
|
|
|
FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
|
2002-11-20 07:12:22 +08:00
|
|
|
ArgTypes, F->getFunctionType()->isVarArg());
|
|
|
|
|
|
|
|
// Create the new function...
|
2008-04-07 04:25:17 +08:00
|
|
|
Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2002-11-20 07:12:22 +08:00
|
|
|
// Loop over the arguments, copying the names of the mapped arguments over...
|
2005-03-15 12:54:21 +08:00
|
|
|
Function::arg_iterator DestI = NewF->arg_begin();
|
2015-10-13 10:39:05 +08:00
|
|
|
for (const Argument & I : F->args())
|
|
|
|
if (VMap.count(&I) == 0) { // Is this argument preserved?
|
|
|
|
DestI->setName(I.getName()); // Copy the name over...
|
|
|
|
VMap[&I] = &*DestI++; // Add mapping to VMap
|
2002-11-20 07:12:22 +08:00
|
|
|
}
|
|
|
|
|
2014-03-12 22:42:51 +08:00
|
|
|
if (ModuleLevelChanges)
|
|
|
|
CloneDebugInfoMetadata(NewF, F, VMap);
|
|
|
|
|
2009-08-27 12:02:30 +08:00
|
|
|
SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
|
2010-08-26 23:41:53 +08:00
|
|
|
CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
|
2005-04-22 07:48:37 +08:00
|
|
|
return NewF;
|
2002-11-20 07:12:22 +08:00
|
|
|
}
|
2003-11-12 06:41:34 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
2015-03-11 02:41:22 +08:00
|
|
|
/// This is a private class used to implement CloneAndPruneFunctionInto.
|
2009-10-25 14:33:48 +08:00
|
|
|
struct PruningFunctionCloner {
|
2006-05-27 09:22:24 +08:00
|
|
|
Function *NewFunc;
|
|
|
|
const Function *OldFunc;
|
2010-06-24 08:00:42 +08:00
|
|
|
ValueToValueMapTy &VMap;
|
2010-08-26 23:41:53 +08:00
|
|
|
bool ModuleLevelChanges;
|
2006-05-27 09:22:24 +08:00
|
|
|
const char *NameSuffix;
|
|
|
|
ClonedCodeInfo *CodeInfo;
|
2015-02-19 02:31:51 +08:00
|
|
|
CloningDirector *Director;
|
2015-02-24 04:01:56 +08:00
|
|
|
ValueMapTypeRemapper *TypeMapper;
|
|
|
|
ValueMaterializer *Materializer;
|
2015-02-19 02:31:51 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
public:
|
|
|
|
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
|
2015-03-10 10:37:25 +08:00
|
|
|
ValueToValueMapTy &valueMap, bool moduleLevelChanges,
|
|
|
|
const char *nameSuffix, ClonedCodeInfo *codeInfo,
|
2015-02-19 02:31:51 +08:00
|
|
|
CloningDirector *Director)
|
2015-03-10 10:37:25 +08:00
|
|
|
: NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
|
|
|
|
ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
|
|
|
|
CodeInfo(codeInfo), Director(Director) {
|
2015-02-24 04:01:56 +08:00
|
|
|
// These are optional components. The Director may return null.
|
|
|
|
if (Director) {
|
|
|
|
TypeMapper = Director->getTypeRemapper();
|
|
|
|
Materializer = Director->getValueMaterializer();
|
|
|
|
} else {
|
|
|
|
TypeMapper = nullptr;
|
|
|
|
Materializer = nullptr;
|
|
|
|
}
|
2006-05-27 09:22:24 +08:00
|
|
|
}
|
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// The specified block is found to be reachable, clone it and
|
2014-05-20 00:04:10 +08:00
|
|
|
/// anything that it can reach.
|
2015-02-19 02:31:51 +08:00
|
|
|
void CloneBlock(const BasicBlock *BB,
|
|
|
|
BasicBlock::const_iterator StartingInst,
|
2014-05-20 00:04:10 +08:00
|
|
|
std::vector<const BasicBlock*> &ToClone);
|
2006-05-27 09:22:24 +08:00
|
|
|
};
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2006-05-27 09:22:24 +08:00
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// The specified block is found to be reachable, clone it and
|
2014-05-20 00:04:10 +08:00
|
|
|
/// anything that it can reach.
|
2007-03-02 11:11:20 +08:00
|
|
|
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
|
2015-02-19 02:31:51 +08:00
|
|
|
BasicBlock::const_iterator StartingInst,
|
2014-05-20 00:04:10 +08:00
|
|
|
std::vector<const BasicBlock*> &ToClone){
|
|
|
|
WeakVH &BBEntry = VMap[BB];
|
2014-04-26 13:43:41 +08:00
|
|
|
|
2014-05-20 00:04:10 +08:00
|
|
|
// Have we already cloned this block?
|
|
|
|
if (BBEntry) return;
|
|
|
|
|
2014-05-01 06:05:02 +08:00
|
|
|
// Nope, clone it now.
|
2014-05-20 00:04:10 +08:00
|
|
|
BasicBlock *NewBB;
|
|
|
|
BBEntry = NewBB = BasicBlock::Create(BB->getContext());
|
|
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
|
|
|
|
// It is only legal to clone a function if a block address within that
|
|
|
|
// function is never referenced outside of the function. Given that, we
|
|
|
|
// want to map block addresses from the old function to block addresses in
|
|
|
|
// the clone. (This is different from the generic ValueMapper
|
|
|
|
// implementation, which generates an invalid blockaddress when
|
|
|
|
// cloning a function.)
|
|
|
|
//
|
|
|
|
// Note that we don't need to fix the mapping for unreachable blocks;
|
|
|
|
// the default mapping there is safe.
|
|
|
|
if (BB->hasAddressTaken()) {
|
|
|
|
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
|
|
|
|
const_cast<BasicBlock*>(BB));
|
|
|
|
VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
|
|
|
|
}
|
2011-10-22 04:45:19 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
2015-02-19 02:31:51 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
// Loop over all instructions, and copy them over, DCE'ing as we go. This
|
|
|
|
// loop doesn't include the terminator.
|
2015-02-19 02:31:51 +08:00
|
|
|
for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
|
2006-05-27 09:22:24 +08:00
|
|
|
II != IE; ++II) {
|
2015-02-19 02:31:51 +08:00
|
|
|
// If the "Director" remaps the instruction, don't clone it.
|
|
|
|
if (Director) {
|
2015-10-13 10:39:05 +08:00
|
|
|
CloningDirector::CloningAction Action =
|
|
|
|
Director->handleInstruction(VMap, &*II, NewBB);
|
2015-02-19 02:31:51 +08:00
|
|
|
// If the cloning director says stop, we want to stop everything, not
|
|
|
|
// just break out of the loop (which would cause the terminator to be
|
|
|
|
// cloned). The cloning director is responsible for inserting a proper
|
|
|
|
// terminator into the new basic block in this case.
|
|
|
|
if (Action == CloningDirector::StopCloningBB)
|
|
|
|
return;
|
|
|
|
// If the cloning director says skip, continue to the next instruction.
|
|
|
|
// In this case, the cloning director is responsible for mapping the
|
|
|
|
// skipped instruction to some value that is defined in the new
|
|
|
|
// basic block.
|
|
|
|
if (Action == CloningDirector::SkipInstruction)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2012-03-25 12:03:40 +08:00
|
|
|
Instruction *NewInst = II->clone();
|
|
|
|
|
|
|
|
// Eagerly remap operands to the newly cloned instruction, except for PHI
|
|
|
|
// nodes for which we defer processing until we update the CFG.
|
|
|
|
if (!isa<PHINode>(NewInst)) {
|
|
|
|
RemapInstruction(NewInst, VMap,
|
2015-02-24 04:01:56 +08:00
|
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
|
|
|
|
TypeMapper, Materializer);
|
2012-03-25 12:03:40 +08:00
|
|
|
|
|
|
|
// If we can simplify this instruction to some other value, simply add
|
|
|
|
// a mapping to that value rather than inserting a new instruction into
|
|
|
|
// the basic block.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (Value *V =
|
|
|
|
SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
|
2012-03-25 12:03:40 +08:00
|
|
|
// On the off-chance that this simplifies to an instruction in the old
|
|
|
|
// function, map it back into the new function.
|
|
|
|
if (Value *MappedV = VMap.lookup(V))
|
|
|
|
V = MappedV;
|
|
|
|
|
2015-10-13 10:39:05 +08:00
|
|
|
VMap[&*II] = V;
|
2012-03-25 12:03:40 +08:00
|
|
|
delete NewInst;
|
|
|
|
continue;
|
|
|
|
}
|
2006-05-27 09:22:24 +08:00
|
|
|
}
|
2009-02-10 15:48:18 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
if (II->hasName())
|
|
|
|
NewInst->setName(II->getName()+NameSuffix);
|
2015-10-13 10:39:05 +08:00
|
|
|
VMap[&*II] = NewInst; // Add instruction map to value.
|
2012-03-25 12:03:40 +08:00
|
|
|
NewBB->getInstList().push_back(NewInst);
|
2009-03-11 06:20:02 +08:00
|
|
|
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
|
2015-11-18 14:23:38 +08:00
|
|
|
|
|
|
|
if (CodeInfo)
|
|
|
|
if (auto CS = ImmutableCallSite(&*II))
|
|
|
|
if (CS.hasOperandBundles())
|
|
|
|
CodeInfo->OperandBundleCallSites.push_back(NewInst);
|
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
|
|
hasStaticAllocas = true;
|
|
|
|
else
|
|
|
|
hasDynamicAllocas = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-06-02 03:19:23 +08:00
|
|
|
// Finally, clone over the terminator.
|
|
|
|
const TerminatorInst *OldTI = BB->getTerminator();
|
|
|
|
bool TerminatorDone = false;
|
2015-02-19 02:31:51 +08:00
|
|
|
if (Director) {
|
|
|
|
CloningDirector::CloningAction Action
|
|
|
|
= Director->handleInstruction(VMap, OldTI, NewBB);
|
|
|
|
// If the cloning director says stop, we want to stop everything, not
|
|
|
|
// just break out of the loop (which would cause the terminator to be
|
|
|
|
// cloned). The cloning director is responsible for inserting a proper
|
|
|
|
// terminator into the new basic block in this case.
|
|
|
|
if (Action == CloningDirector::StopCloningBB)
|
|
|
|
return;
|
2015-03-12 07:22:06 +08:00
|
|
|
if (Action == CloningDirector::CloneSuccessors) {
|
|
|
|
// If the director says to skip with a terminate instruction, we still
|
|
|
|
// need to clone this block's successors.
|
2015-04-11 00:26:42 +08:00
|
|
|
const TerminatorInst *TI = NewBB->getTerminator();
|
2015-08-07 04:22:46 +08:00
|
|
|
for (const BasicBlock *Succ : TI->successors())
|
|
|
|
ToClone.push_back(Succ);
|
2015-03-12 07:22:06 +08:00
|
|
|
return;
|
|
|
|
}
|
2015-02-19 02:31:51 +08:00
|
|
|
assert(Action != CloningDirector::SkipInstruction &&
|
|
|
|
"SkipInstruction is not valid for terminators.");
|
|
|
|
}
|
2006-06-02 03:19:23 +08:00
|
|
|
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
|
|
|
|
if (BI->isConditional()) {
|
|
|
|
// If the condition was a known constant in the callee...
|
2007-01-11 20:24:14 +08:00
|
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
|
|
// Or is a known constant in the caller...
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Cond) {
|
2010-10-13 10:08:17 +08:00
|
|
|
Value *V = VMap[BI->getCondition()];
|
|
|
|
Cond = dyn_cast_or_null<ConstantInt>(V);
|
|
|
|
}
|
2007-01-11 20:24:14 +08:00
|
|
|
|
|
|
|
// Constant fold to uncond branch!
|
|
|
|
if (Cond) {
|
2007-01-12 12:24:46 +08:00
|
|
|
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
|
2010-06-24 07:55:51 +08:00
|
|
|
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
2007-03-02 11:11:20 +08:00
|
|
|
ToClone.push_back(Dest);
|
2006-06-02 03:19:23 +08:00
|
|
|
TerminatorDone = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
|
|
|
|
// If switching on a value known constant in the caller.
|
|
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Cond) { // Or known constant after constant prop in the callee...
|
2010-10-13 10:08:17 +08:00
|
|
|
Value *V = VMap[SI->getCondition()];
|
|
|
|
Cond = dyn_cast_or_null<ConstantInt>(V);
|
|
|
|
}
|
2006-06-02 03:19:23 +08:00
|
|
|
if (Cond) { // Constant fold to uncond branch!
|
2012-03-08 15:06:20 +08:00
|
|
|
SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
|
|
|
|
BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
|
2010-06-24 07:55:51 +08:00
|
|
|
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
2007-03-02 11:11:20 +08:00
|
|
|
ToClone.push_back(Dest);
|
2006-06-02 03:19:23 +08:00
|
|
|
TerminatorDone = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TerminatorDone) {
|
2009-09-27 15:38:41 +08:00
|
|
|
Instruction *NewInst = OldTI->clone();
|
2006-06-02 03:19:23 +08:00
|
|
|
if (OldTI->hasName())
|
|
|
|
NewInst->setName(OldTI->getName()+NameSuffix);
|
|
|
|
NewBB->getInstList().push_back(NewInst);
|
2010-06-24 07:55:51 +08:00
|
|
|
VMap[OldTI] = NewInst; // Add instruction map to value.
|
2015-11-18 14:23:38 +08:00
|
|
|
|
|
|
|
if (CodeInfo)
|
|
|
|
if (auto CS = ImmutableCallSite(OldTI))
|
|
|
|
if (CS.hasOperandBundles())
|
|
|
|
CodeInfo->OperandBundleCallSites.push_back(NewInst);
|
|
|
|
|
2006-06-02 03:19:23 +08:00
|
|
|
// Recursively clone any reachable successor blocks.
|
|
|
|
const TerminatorInst *TI = BB->getTerminator();
|
2015-08-07 04:22:46 +08:00
|
|
|
for (const BasicBlock *Succ : TI->successors())
|
|
|
|
ToClone.push_back(Succ);
|
2006-06-02 03:19:23 +08:00
|
|
|
}
|
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
if (CodeInfo) {
|
|
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
|
|
|
BB != &BB->getParent()->front();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// This works like CloneAndPruneFunctionInto, except that it does not clone the
|
|
|
|
/// entire function. Instead it starts at an instruction provided by the caller
|
|
|
|
/// and copies (and prunes) only the code reachable from that instruction.
|
2015-02-19 02:31:51 +08:00
|
|
|
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
|
|
|
|
const Instruction *StartingInst,
|
2010-06-24 08:00:42 +08:00
|
|
|
ValueToValueMapTy &VMap,
|
2010-08-26 23:41:53 +08:00
|
|
|
bool ModuleLevelChanges,
|
2015-02-19 02:31:51 +08:00
|
|
|
SmallVectorImpl<ReturnInst *> &Returns,
|
2006-05-27 09:22:24 +08:00
|
|
|
const char *NameSuffix,
|
2007-01-31 07:22:39 +08:00
|
|
|
ClonedCodeInfo *CodeInfo,
|
2015-02-19 02:31:51 +08:00
|
|
|
CloningDirector *Director) {
|
2006-05-27 09:22:24 +08:00
|
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
2015-02-19 02:31:51 +08:00
|
|
|
|
2015-02-24 04:01:56 +08:00
|
|
|
ValueMapTypeRemapper *TypeMapper = nullptr;
|
|
|
|
ValueMaterializer *Materializer = nullptr;
|
|
|
|
|
|
|
|
if (Director) {
|
|
|
|
TypeMapper = Director->getTypeRemapper();
|
|
|
|
Materializer = Director->getValueMaterializer();
|
|
|
|
}
|
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
#ifndef NDEBUG
|
2015-08-09 02:27:36 +08:00
|
|
|
// If the cloning starts at the beginning of the function, verify that
|
2015-02-19 02:31:51 +08:00
|
|
|
// the function arguments are mapped.
|
|
|
|
if (!StartingInst)
|
2015-10-13 10:39:05 +08:00
|
|
|
for (const Argument &II : OldFunc->args())
|
|
|
|
assert(VMap.count(&II) && "No mapping from source argument specified!");
|
2006-05-27 09:22:24 +08:00
|
|
|
#endif
|
2008-05-27 03:58:59 +08:00
|
|
|
|
2010-08-26 23:41:53 +08:00
|
|
|
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
|
2015-03-10 10:37:25 +08:00
|
|
|
NameSuffix, CodeInfo, Director);
|
2015-02-19 02:31:51 +08:00
|
|
|
const BasicBlock *StartingBB;
|
|
|
|
if (StartingInst)
|
|
|
|
StartingBB = StartingInst->getParent();
|
|
|
|
else {
|
|
|
|
StartingBB = &OldFunc->getEntryBlock();
|
2015-10-13 10:39:05 +08:00
|
|
|
StartingInst = &StartingBB->front();
|
2015-02-19 02:31:51 +08:00
|
|
|
}
|
2006-05-27 09:22:24 +08:00
|
|
|
|
2014-05-20 00:04:10 +08:00
|
|
|
// Clone the entry block, and anything recursively reachable from it.
|
2007-03-02 11:11:20 +08:00
|
|
|
std::vector<const BasicBlock*> CloneWorklist;
|
2015-10-13 10:39:05 +08:00
|
|
|
PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
|
2007-03-02 11:11:20 +08:00
|
|
|
while (!CloneWorklist.empty()) {
|
|
|
|
const BasicBlock *BB = CloneWorklist.back();
|
|
|
|
CloneWorklist.pop_back();
|
2015-02-19 02:31:51 +08:00
|
|
|
PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
|
2007-03-02 11:11:20 +08:00
|
|
|
}
|
2014-05-20 00:04:10 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
// Loop over all of the basic blocks in the old function. If the block was
|
|
|
|
// reachable, we have cloned it and the old block is now in the value map:
|
|
|
|
// insert it into the new function in the right order. If not, ignore it.
|
|
|
|
//
|
2006-06-02 03:19:23 +08:00
|
|
|
// Defer PHI resolution until rest of function is resolved.
|
2009-08-27 12:02:30 +08:00
|
|
|
SmallVector<const PHINode*, 16> PHIToResolve;
|
2015-10-13 10:39:05 +08:00
|
|
|
for (const BasicBlock &BI : *OldFunc) {
|
|
|
|
Value *V = VMap[&BI];
|
2010-10-13 10:08:17 +08:00
|
|
|
BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
|
2014-05-20 00:04:10 +08:00
|
|
|
if (!NewBB) continue; // Dead block.
|
2006-06-02 03:19:23 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
// Add the new block to the new function.
|
|
|
|
NewFunc->getBasicBlockList().push_back(NewBB);
|
2009-11-11 07:06:00 +08:00
|
|
|
|
2006-05-27 09:22:24 +08:00
|
|
|
// Handle PHI nodes specially, as we have to remove references to dead
|
|
|
|
// blocks.
|
2015-10-13 10:39:05 +08:00
|
|
|
for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
|
2015-03-21 05:42:54 +08:00
|
|
|
// PHI nodes may have been remapped to non-PHI nodes by the caller or
|
|
|
|
// during the cloning process.
|
|
|
|
if (const PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
|
|
if (isa<PHINode>(VMap[PN]))
|
|
|
|
PHIToResolve.push_back(PN);
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
} else {
|
2012-03-25 12:03:40 +08:00
|
|
|
break;
|
2015-03-21 05:42:54 +08:00
|
|
|
}
|
|
|
|
}
|
2012-03-25 12:03:40 +08:00
|
|
|
|
|
|
|
// Finally, remap the terminator instructions, as those can't be remapped
|
|
|
|
// until all BBs are mapped.
|
|
|
|
RemapInstruction(NewBB->getTerminator(), VMap,
|
2015-02-24 04:01:56 +08:00
|
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
|
|
|
|
TypeMapper, Materializer);
|
2006-05-27 09:22:24 +08:00
|
|
|
}
|
2006-06-02 03:19:23 +08:00
|
|
|
|
|
|
|
// Defer PHI resolution until rest of function is resolved, PHI resolution
|
|
|
|
// requires the CFG to be up-to-date.
|
|
|
|
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
|
|
|
|
const PHINode *OPN = PHIToResolve[phino];
|
|
|
|
unsigned NumPreds = OPN->getNumIncomingValues();
|
|
|
|
const BasicBlock *OldBB = OPN->getParent();
|
2010-06-24 07:55:51 +08:00
|
|
|
BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
|
2006-06-02 03:19:23 +08:00
|
|
|
|
|
|
|
// Map operands for blocks that are live and remove operands for blocks
|
|
|
|
// that are dead.
|
|
|
|
for (; phino != PHIToResolve.size() &&
|
|
|
|
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
|
|
|
|
OPN = PHIToResolve[phino];
|
2010-06-24 07:55:51 +08:00
|
|
|
PHINode *PN = cast<PHINode>(VMap[OPN]);
|
2006-06-02 03:19:23 +08:00
|
|
|
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
|
2010-10-13 10:08:17 +08:00
|
|
|
Value *V = VMap[PN->getIncomingBlock(pred)];
|
2011-01-08 16:15:20 +08:00
|
|
|
if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
|
2009-07-06 06:41:43 +08:00
|
|
|
Value *InVal = MapValue(PN->getIncomingValue(pred),
|
2011-01-08 16:15:20 +08:00
|
|
|
VMap,
|
|
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
|
2006-06-02 03:19:23 +08:00
|
|
|
assert(InVal && "Unknown input value?");
|
|
|
|
PN->setIncomingValue(pred, InVal);
|
|
|
|
PN->setIncomingBlock(pred, MappedBlock);
|
|
|
|
} else {
|
|
|
|
PN->removeIncomingValue(pred, false);
|
|
|
|
--pred, --e; // Revisit the next entry.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The loop above has removed PHI entries for those blocks that are dead
|
|
|
|
// and has updated others. However, if a block is live (i.e. copied over)
|
|
|
|
// but its terminator has been changed to not go to this block, then our
|
|
|
|
// phi nodes will have invalid entries. Update the PHI nodes in this
|
|
|
|
// case.
|
|
|
|
PHINode *PN = cast<PHINode>(NewBB->begin());
|
|
|
|
NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
|
|
|
|
if (NumPreds != PN->getNumIncomingValues()) {
|
|
|
|
assert(NumPreds < PN->getNumIncomingValues());
|
|
|
|
// Count how many times each predecessor comes to this block.
|
|
|
|
std::map<BasicBlock*, unsigned> PredCount;
|
2014-07-22 01:06:51 +08:00
|
|
|
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
|
|
|
|
PI != E; ++PI)
|
|
|
|
--PredCount[*PI];
|
2006-06-02 03:19:23 +08:00
|
|
|
|
|
|
|
// Figure out how many entries to remove from each PHI.
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
|
|
++PredCount[PN->getIncomingBlock(i)];
|
|
|
|
|
|
|
|
// At this point, the excess predecessor entries are positive in the
|
|
|
|
// map. Loop over all of the PHIs and remove excess predecessor
|
|
|
|
// entries.
|
|
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
|
|
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
|
|
|
|
for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
|
|
|
|
E = PredCount.end(); PCI != E; ++PCI) {
|
|
|
|
BasicBlock *Pred = PCI->first;
|
|
|
|
for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
|
|
|
|
PN->removeIncomingValue(Pred, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the loops above have made these phi nodes have 0 or 1 operand,
|
|
|
|
// replace them with undef or the input value. We must do this for
|
|
|
|
// correctness, because 0-operand phis are not valid.
|
|
|
|
PN = cast<PHINode>(NewBB->begin());
|
|
|
|
if (PN->getNumIncomingValues() == 0) {
|
|
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
|
|
BasicBlock::const_iterator OldI = OldBB->begin();
|
|
|
|
while ((PN = dyn_cast<PHINode>(I++))) {
|
2009-07-31 07:03:37 +08:00
|
|
|
Value *NV = UndefValue::get(PN->getType());
|
2006-06-02 03:19:23 +08:00
|
|
|
PN->replaceAllUsesWith(NV);
|
2015-10-13 10:39:05 +08:00
|
|
|
assert(VMap[&*OldI] == PN && "VMap mismatch");
|
|
|
|
VMap[&*OldI] = NV;
|
2006-06-02 03:19:23 +08:00
|
|
|
PN->eraseFromParent();
|
|
|
|
++OldI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2012-03-25 18:34:54 +08:00
|
|
|
|
|
|
|
// Make a second pass over the PHINodes now that all of them have been
|
|
|
|
// remapped into the new function, simplifying the PHINode and performing any
|
|
|
|
// recursive simplifications exposed. This will transparently update the
|
2012-03-28 16:38:27 +08:00
|
|
|
// WeakVH in the VMap. Notably, we rely on that so that if we coalesce
|
2012-03-25 18:34:54 +08:00
|
|
|
// two PHINodes, the iteration over the old PHIs remains valid, and the
|
|
|
|
// mapping will just map us to the new node (which may not even be a PHI
|
|
|
|
// node).
|
|
|
|
for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
|
2015-03-10 10:37:25 +08:00
|
|
|
recursivelySimplifyInstruction(PN);
|
2012-03-25 18:34:54 +08:00
|
|
|
|
2006-09-14 05:27:00 +08:00
|
|
|
// Now that the inlined function body has been fully constructed, go through
|
2015-03-11 02:37:05 +08:00
|
|
|
// and zap unconditional fall-through branches. This happens all the time when
|
2006-09-14 05:27:00 +08:00
|
|
|
// specializing code: code specialization turns conditional branches into
|
|
|
|
// uncond branches, and this code folds them.
|
2015-10-13 10:39:05 +08:00
|
|
|
Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
|
2012-03-28 16:38:27 +08:00
|
|
|
Function::iterator I = Begin;
|
2006-09-14 05:27:00 +08:00
|
|
|
while (I != NewFunc->end()) {
|
2012-03-28 16:38:27 +08:00
|
|
|
// Check if this block has become dead during inlining or other
|
|
|
|
// simplifications. Note that the first block will appear dead, as it has
|
|
|
|
// not yet been wired up properly.
|
2015-10-13 10:39:05 +08:00
|
|
|
if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
|
|
|
|
I->getSinglePredecessor() == &*I)) {
|
|
|
|
BasicBlock *DeadBB = &*I++;
|
2012-03-28 16:38:27 +08:00
|
|
|
DeleteDeadBlock(DeadBB);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We need to simplify conditional branches and switches with a constant
|
|
|
|
// operand. We try to prune these out when cloning, but if the
|
|
|
|
// simplification required looking through PHI nodes, those are only
|
|
|
|
// available after forming the full basic block. That may leave some here,
|
|
|
|
// and we still want to prune the dead code as early as possible.
|
2015-10-13 10:39:05 +08:00
|
|
|
ConstantFoldTerminator(&*I);
|
2012-03-28 16:38:27 +08:00
|
|
|
|
2006-09-14 05:27:00 +08:00
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
|
|
|
|
if (!BI || BI->isConditional()) { ++I; continue; }
|
|
|
|
|
|
|
|
BasicBlock *Dest = BI->getSuccessor(0);
|
2012-03-25 18:34:54 +08:00
|
|
|
if (!Dest->getSinglePredecessor()) {
|
2007-02-02 02:48:38 +08:00
|
|
|
++I; continue;
|
|
|
|
}
|
2012-03-25 18:34:54 +08:00
|
|
|
|
|
|
|
// We shouldn't be able to get single-entry PHI nodes here, as instsimplify
|
|
|
|
// above should have zapped all of them..
|
|
|
|
assert(!isa<PHINode>(Dest->begin()));
|
|
|
|
|
2006-09-14 05:27:00 +08:00
|
|
|
// We know all single-entry PHI nodes in the inlined function have been
|
|
|
|
// removed, so we just need to splice the blocks.
|
|
|
|
BI->eraseFromParent();
|
|
|
|
|
2011-06-23 14:24:52 +08:00
|
|
|
// Make all PHI nodes that referred to Dest now refer to I as their source.
|
2015-10-13 10:39:05 +08:00
|
|
|
Dest->replaceAllUsesWith(&*I);
|
2011-06-23 14:24:52 +08:00
|
|
|
|
2011-06-23 17:09:15 +08:00
|
|
|
// Move all the instructions in the succ to the pred.
|
|
|
|
I->getInstList().splice(I->end(), Dest->getInstList());
|
|
|
|
|
2006-09-14 05:27:00 +08:00
|
|
|
// Remove the dest block.
|
|
|
|
Dest->eraseFromParent();
|
|
|
|
|
|
|
|
// Do not increment I, iteratively merge all things this block branches to.
|
|
|
|
}
|
2012-04-07 01:21:31 +08:00
|
|
|
|
2015-03-11 02:37:05 +08:00
|
|
|
// Make a final pass over the basic blocks from the old function to gather
|
2012-04-07 01:21:31 +08:00
|
|
|
// any return instructions which survived folding. We have to do this here
|
|
|
|
// because we can iteratively remove and merge returns above.
|
2015-10-13 10:39:05 +08:00
|
|
|
for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
|
2012-04-07 01:21:31 +08:00
|
|
|
E = NewFunc->end();
|
|
|
|
I != E; ++I)
|
|
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
|
|
|
|
Returns.push_back(RI);
|
2006-09-14 05:27:00 +08:00
|
|
|
}
|
2015-02-19 02:31:51 +08:00
|
|
|
|
|
|
|
|
2015-03-11 02:41:22 +08:00
|
|
|
/// This works exactly like CloneFunctionInto,
|
2015-02-19 02:31:51 +08:00
|
|
|
/// except that it does some simple constant prop and DCE on the fly. The
|
|
|
|
/// effect of this is to copy significantly less code in cases where (for
|
|
|
|
/// example) a function call with constant arguments is inlined, and those
|
|
|
|
/// constant arguments cause a significant amount of code in the callee to be
|
|
|
|
/// dead. Since this doesn't produce an exact copy of the input, it can't be
|
|
|
|
/// used for things like CloneFunction or CloneModule.
|
|
|
|
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|
|
|
ValueToValueMapTy &VMap,
|
|
|
|
bool ModuleLevelChanges,
|
|
|
|
SmallVectorImpl<ReturnInst*> &Returns,
|
|
|
|
const char *NameSuffix,
|
|
|
|
ClonedCodeInfo *CodeInfo,
|
|
|
|
Instruction *TheCall) {
|
2015-10-13 10:39:05 +08:00
|
|
|
CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
|
2015-03-10 10:37:25 +08:00
|
|
|
ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
|
|
|
|
nullptr);
|
2015-02-19 02:31:51 +08:00
|
|
|
}
|
2015-07-11 02:55:09 +08:00
|
|
|
|
|
|
|
/// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
|
|
|
|
void llvm::remapInstructionsInBlocks(
|
|
|
|
const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
|
|
|
|
// Rewrite the code to refer to itself.
|
|
|
|
for (auto *BB : Blocks)
|
|
|
|
for (auto &Inst : *BB)
|
|
|
|
RemapInstruction(&Inst, VMap,
|
|
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
|
|
|
|
/// Blocks.
|
|
|
|
///
|
|
|
|
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
|
|
|
|
/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
|
|
|
|
Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
|
|
|
|
Loop *OrigLoop, ValueToValueMapTy &VMap,
|
|
|
|
const Twine &NameSuffix, LoopInfo *LI,
|
|
|
|
DominatorTree *DT,
|
|
|
|
SmallVectorImpl<BasicBlock *> &Blocks) {
|
|
|
|
Function *F = OrigLoop->getHeader()->getParent();
|
|
|
|
Loop *ParentLoop = OrigLoop->getParentLoop();
|
|
|
|
|
|
|
|
Loop *NewLoop = new Loop();
|
|
|
|
if (ParentLoop)
|
|
|
|
ParentLoop->addChildLoop(NewLoop);
|
|
|
|
else
|
|
|
|
LI->addTopLevelLoop(NewLoop);
|
|
|
|
|
|
|
|
BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
|
|
|
|
assert(OrigPH && "No preheader");
|
|
|
|
BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
|
|
|
|
// To rename the loop PHIs.
|
|
|
|
VMap[OrigPH] = NewPH;
|
|
|
|
Blocks.push_back(NewPH);
|
|
|
|
|
|
|
|
// Update LoopInfo.
|
|
|
|
if (ParentLoop)
|
|
|
|
ParentLoop->addBasicBlockToLoop(NewPH, *LI);
|
|
|
|
|
|
|
|
// Update DominatorTree.
|
|
|
|
DT->addNewBlock(NewPH, LoopDomBB);
|
|
|
|
|
|
|
|
for (BasicBlock *BB : OrigLoop->getBlocks()) {
|
|
|
|
BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
|
|
|
|
VMap[BB] = NewBB;
|
|
|
|
|
|
|
|
// Update LoopInfo.
|
|
|
|
NewLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
|
|
|
|
|
|
// Update DominatorTree.
|
|
|
|
BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
|
|
|
|
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
|
|
|
|
|
|
|
|
Blocks.push_back(NewBB);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Move them physically from the end of the block list.
|
2015-10-13 10:39:05 +08:00
|
|
|
F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
|
|
|
|
NewPH);
|
|
|
|
F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
|
|
|
|
NewLoop->getHeader()->getIterator(), F->end());
|
2015-07-11 02:55:09 +08:00
|
|
|
|
|
|
|
return NewLoop;
|
|
|
|
}
|