llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp

1959 lines
73 KiB
C++
Raw Normal View History

//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the new LLVM's Global Value Numbering pass.
/// GVN partitions values computed by a function into congruence classes.
/// Values ending up in the same congruence class are guaranteed to be the same
/// for every execution of the program. In that respect, congruency is a
/// compile-time approximation of equivalence of values at runtime.
/// The algorithm implemented here uses a sparse formulation and it's based
/// on the ideas described in the paper:
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
/// Karthik Gargi.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
using namespace llvm::GVNExpression;
#define DEBUG_TYPE "newgvn"
STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
// Anchor methods.
namespace llvm {
namespace GVNExpression {
Expression::~Expression() = default;
BasicExpression::~BasicExpression() = default;
CallExpression::~CallExpression() = default;
LoadExpression::~LoadExpression() = default;
StoreExpression::~StoreExpression() = default;
AggregateValueExpression::~AggregateValueExpression() = default;
PHIExpression::~PHIExpression() = default;
}
}
// Congruence classes represent the set of expressions/instructions
// that are all the same *during some scope in the function*.
// That is, because of the way we perform equality propagation, and
// because of memory value numbering, it is not correct to assume
// you can willy-nilly replace any member with any other at any
// point in the function.
//
// For any Value in the Member set, it is valid to replace any dominated member
// with that Value.
//
// Every congruence class has a leader, and the leader is used to
// symbolize instructions in a canonical way (IE every operand of an
// instruction that is a member of the same congruence class will
// always be replaced with leader during symbolization).
// To simplify symbolization, we keep the leader as a constant if class can be
// proved to be a constant value.
// Otherwise, the leader is a randomly chosen member of the value set, it does
// not matter which one is chosen.
// Each congruence class also has a defining expression,
// though the expression may be null. If it exists, it can be used for forward
// propagation and reassociation of values.
//
struct CongruenceClass {
typedef SmallPtrSet<Value *, 4> MemberSet;
unsigned ID;
// Representative leader.
Value *RepLeader;
// Defining Expression.
const Expression *DefiningExpr;
// Actual members of this class.
MemberSet Members;
// True if this class has no members left. This is mainly used for assertion
// purposes, and for skipping empty classes.
bool Dead;
explicit CongruenceClass(unsigned ID)
: ID(ID), RepLeader(0), DefiningExpr(0), Dead(false) {}
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
: ID(ID), RepLeader(Leader), DefiningExpr(E), Dead(false) {}
};
namespace llvm {
template <> struct DenseMapInfo<const Expression *> {
static const Expression *getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static const Expression *getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(~1U);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static unsigned getHashValue(const Expression *V) {
return static_cast<unsigned>(V->getHashValue());
}
static bool isEqual(const Expression *LHS, const Expression *RHS) {
if (LHS == RHS)
return true;
if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || RHS == getEmptyKey())
return false;
return *LHS == *RHS;
}
};
} // end namespace llvm
class NewGVN : public FunctionPass {
DominatorTree *DT;
const DataLayout *DL;
const TargetLibraryInfo *TLI;
AssumptionCache *AC;
AliasAnalysis *AA;
MemorySSA *MSSA;
MemorySSAWalker *MSSAWalker;
BumpPtrAllocator ExpressionAllocator;
ArrayRecycler<Value *> ArgRecycler;
// Congruence class info.
CongruenceClass *InitialClass;
std::vector<CongruenceClass *> CongruenceClasses;
unsigned NextCongruenceNum;
// Value Mappings.
DenseMap<Value *, CongruenceClass *> ValueToClass;
DenseMap<Value *, const Expression *> ValueToExpression;
// A table storing which memorydefs/phis represent a memory state provably
// equivalent to another memory state.
// We could use the congruence class machinery, but the MemoryAccess's are
// abstract memory states, so they can only ever be equivalent to each other,
// and not to constants, etc.
DenseMap<MemoryAccess *, MemoryAccess *> MemoryAccessEquiv;
// Expression to class mapping.
typedef DenseMap<const Expression *, CongruenceClass *> ExpressionClassMap;
ExpressionClassMap ExpressionToClass;
// Which values have changed as a result of leader changes.
SmallPtrSet<Value *, 8> ChangedValues;
// Reachability info.
typedef BasicBlockEdge BlockEdge;
DenseSet<BlockEdge> ReachableEdges;
SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
// This is a bitvector because, on larger functions, we may have
// thousands of touched instructions at once (entire blocks,
// instructions with hundreds of uses, etc). Even with optimization
// for when we mark whole blocks as touched, when this was a
// SmallPtrSet or DenseSet, for some functions, we spent >20% of all
// the time in GVN just managing this list. The bitvector, on the
// other hand, efficiently supports test/set/clear of both
// individual and ranges, as well as "find next element" This
// enables us to use it as a worklist with essentially 0 cost.
BitVector TouchedInstructions;
DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>>
DominatedInstRange;
#ifndef NDEBUG
// Debugging for how many times each block and instruction got processed.
DenseMap<const Value *, unsigned> ProcessedCount;
#endif
// DFS info.
DenseMap<const BasicBlock *, std::pair<int, int>> DFSDomMap;
DenseMap<const Value *, unsigned> InstrDFS;
std::vector<Value *> DFSToInstr;
// Deletion info.
SmallPtrSet<Instruction *, 8> InstructionsToErase;
public:
static char ID; // Pass identification, replacement for typeid.
NewGVN() : FunctionPass(ID) {
initializeNewGVNPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *TLI, AliasAnalysis *AA,
MemorySSA *MSSA);
private:
// This transformation requires dominator postdominator info.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
// Expression handling.
const Expression *createExpression(Instruction *, const BasicBlock *);
const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
const BasicBlock *);
PHIExpression *createPHIExpression(Instruction *);
const VariableExpression *createVariableExpression(Value *);
const ConstantExpression *createConstantExpression(Constant *);
const Expression *createVariableOrConstant(Value *V, const BasicBlock *B);
const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *,
const BasicBlock *);
LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
MemoryAccess *, const BasicBlock *);
const CallExpression *createCallExpression(CallInst *, MemoryAccess *,
const BasicBlock *);
const AggregateValueExpression *
createAggregateValueExpression(Instruction *, const BasicBlock *);
bool setBasicExpressionInfo(Instruction *, BasicExpression *,
const BasicBlock *);
// Congruence class handling.
CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
CongruenceClass *result =
new CongruenceClass(NextCongruenceNum++, Leader, E);
CongruenceClasses.emplace_back(result);
return result;
}
CongruenceClass *createSingletonCongruenceClass(Value *Member) {
CongruenceClass *CClass = createCongruenceClass(Member, NULL);
CClass->Members.insert(Member);
ValueToClass[Member] = CClass;
return CClass;
}
void initializeCongruenceClasses(Function &F);
// Value number an Instruction or MemoryPhi.
void valueNumberMemoryPhi(MemoryPhi *);
void valueNumberInstruction(Instruction *);
// Symbolic evaluation.
const Expression *checkSimplificationResults(Expression *, Instruction *,
Value *);
const Expression *performSymbolicEvaluation(Value *, const BasicBlock *);
const Expression *performSymbolicLoadEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicStoreEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicCallEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicPHIEvaluation(Instruction *,
const BasicBlock *);
bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To);
const Expression *performSymbolicAggrValueEvaluation(Instruction *,
const BasicBlock *);
// Congruence finding.
// Templated to allow them to work both on BB's and BB-edges.
template <class T>
Value *lookupOperandLeader(Value *, const User *, const T &) const;
void performCongruenceFinding(Value *, const Expression *);
// Reachability handling.
void updateReachableEdge(BasicBlock *, BasicBlock *);
void processOutgoingEdges(TerminatorInst *, BasicBlock *);
bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const;
Value *findConditionEquivalence(Value *, BasicBlock *) const;
MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const;
// Elimination.
struct ValueDFS;
void convertDenseToDFSOrdered(CongruenceClass::MemberSet &,
std::vector<ValueDFS> &);
bool eliminateInstructions(Function &);
void replaceInstruction(Instruction *, Value *);
void markInstructionForDeletion(Instruction *);
void deleteInstructionsInBlock(BasicBlock *);
// New instruction creation.
void handleNewInstruction(Instruction *){};
void markUsersTouched(Value *);
void markMemoryUsersTouched(MemoryAccess *);
// Utilities.
void cleanupTables();
std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
void updateProcessedCount(Value *V);
};
char NewGVN::ID = 0;
// createGVNPass - The public interface to this file.
FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); }
bool LoadExpression::equals(const Expression &Other) const {
if (!isa<LoadExpression>(Other) && !isa<StoreExpression>(Other))
return false;
if (!this->BasicExpression::equals(Other))
return false;
if (const auto *OtherL = dyn_cast<LoadExpression>(&Other)) {
if (DefiningAccess != OtherL->getDefiningAccess())
return false;
} else if (const auto *OtherS = dyn_cast<StoreExpression>(&Other)) {
if (DefiningAccess != OtherS->getDefiningAccess())
return false;
}
return true;
}
bool StoreExpression::equals(const Expression &Other) const {
if (!isa<LoadExpression>(Other) && !isa<StoreExpression>(Other))
return false;
if (!this->BasicExpression::equals(Other))
return false;
if (const auto *OtherL = dyn_cast<LoadExpression>(&Other)) {
if (DefiningAccess != OtherL->getDefiningAccess())
return false;
} else if (const auto *OtherS = dyn_cast<StoreExpression>(&Other)) {
if (DefiningAccess != OtherS->getDefiningAccess())
return false;
}
return true;
}
#ifndef NDEBUG
static std::string getBlockName(const BasicBlock *B) {
return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, NULL);
}
#endif
INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false)
PHIExpression *NewGVN::createPHIExpression(Instruction *I) {
BasicBlock *PhiBlock = I->getParent();
PHINode *PN = cast<PHINode>(I);
PHIExpression *E = new (ExpressionAllocator)
PHIExpression(PN->getNumOperands(), I->getParent());
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(I->getType());
E->setOpcode(I->getOpcode());
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
BasicBlock *B = PN->getIncomingBlock(i);
if (!ReachableBlocks.count(B)) {
DEBUG(dbgs() << "Skipping unreachable block " << getBlockName(B)
<< " in PHI node " << *PN << "\n");
continue;
}
if (I->getOperand(i) != I) {
const BasicBlockEdge BBE(B, PhiBlock);
E->op_push_back(lookupOperandLeader(I->getOperand(i), I, BBE));
} else {
E->op_push_back(I->getOperand(i));
}
}
return E;
}
// Set basic expression info (Arguments, type, opcode) for Expression
// E from Instruction I in block B.
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E,
const BasicBlock *B) {
bool AllConstant = true;
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
E->setType(GEP->getSourceElementType());
else
E->setType(I->getType());
E->setOpcode(I->getOpcode());
E->allocateOperands(ArgRecycler, ExpressionAllocator);
for (auto &O : I->operands()) {
auto Operand = lookupOperandLeader(O, I, B);
if (!isa<Constant>(Operand))
AllConstant = false;
E->op_push_back(Operand);
}
return AllConstant;
}
const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Value *Arg1, Value *Arg2,
const BasicBlock *B) {
BasicExpression *E = new (ExpressionAllocator) BasicExpression(2);
E->setType(T);
E->setOpcode(Opcode);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
if (Instruction::isCommutative(Opcode)) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
if (Arg1 > Arg2)
std::swap(Arg1, Arg2);
}
E->op_push_back(lookupOperandLeader(Arg1, nullptr, B));
E->op_push_back(lookupOperandLeader(Arg2, nullptr, B));
Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI,
DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
return SimplifiedE;
return E;
}
// Take a Value returned by simplification of Expression E/Instruction
// I, and see if it resulted in a simpler expression. If so, return
// that expression.
// TODO: Once finished, this should not take an Instruction, we only
// use it for printing.
const Expression *NewGVN::checkSimplificationResults(Expression *E,
Instruction *I, Value *V) {
if (!V)
return nullptr;
if (auto *C = dyn_cast<Constant>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " constant " << *C << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(C);
} else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " variable " << *V << "\n");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createVariableExpression(V);
}
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC && CC->DefiningExpr) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " expression " << *V << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return CC->DefiningExpr;
}
return nullptr;
}
const Expression *NewGVN::createExpression(Instruction *I,
const BasicBlock *B) {
BasicExpression *E =
new (ExpressionAllocator) BasicExpression(I->getNumOperands());
bool AllConstant = setBasicExpressionInfo(I, E, B);
if (I->isCommutative()) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
if (E->getOperand(0) > E->getOperand(1))
E->swapOperands(0, 1);
}
// Perform simplificaiton
// TODO: Right now we only check to see if we get a constant result.
// We may get a less than constant, but still better, result for
// some operations.
// IE
// add 0, x -> x
// and x, x -> x
// We should handle this by simply rewriting the expression.
if (auto *CI = dyn_cast<CmpInst>(I)) {
// Sort the operand value numbers so x<y and y>x get the same value
// number.
CmpInst::Predicate Predicate = CI->getPredicate();
if (E->getOperand(0) > E->getOperand(1)) {
E->swapOperands(0, 1);
Predicate = CmpInst::getSwappedPredicate(Predicate);
}
E->setOpcode((CI->getOpcode() << 8) | Predicate);
// TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
// TODO: Since we noop bitcasts, we may need to check types before
// simplifying, so that we don't end up simplifying based on a wrong
// type assumption. We should clean this up so we can use constants of the
// wrong type
assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
"Wrong types on cmp instruction");
if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
E->getOperand(1)->getType() == I->getOperand(1)->getType())) {
Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
} else if (isa<SelectInst>(I)) {
if (isa<Constant>(E->getOperand(0)) ||
(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
E->getOperand(2)->getType() == I->getOperand(2)->getType())) {
Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
E->getOperand(2), *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
} else if (I->isBinaryOp()) {
Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (isa<GetElementPtrInst>(I)) {
Value *V = SimplifyGEPInst(E->getType(),
ArrayRef<Value *>(E->op_begin(), E->op_end()),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (AllConstant) {
// We don't bother trying to simplify unless all of the operands
// were constant.
// TODO: There are a lot of Simplify*'s we could call here, if we
// wanted to. The original motivating case for this code was a
// zext i1 false to i8, which we don't have an interface to
// simplify (IE there is no SimplifyZExt).
SmallVector<Constant *, 8> C;
for (Value *Arg : E->operands())
C.emplace_back(cast<Constant>(Arg));
if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI))
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
return E;
}
const AggregateValueExpression *
NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) {
if (auto *II = dyn_cast<InsertValueInst>(I)) {
AggregateValueExpression *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
setBasicExpressionInfo(I, E, B);
E->allocateIntOperands(ExpressionAllocator);
for (auto &Index : II->indices())
E->int_op_push_back(Index);
return E;
} else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
AggregateValueExpression *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
setBasicExpressionInfo(EI, E, B);
E->allocateIntOperands(ExpressionAllocator);
for (auto &Index : EI->indices())
E->int_op_push_back(Index);
return E;
}
llvm_unreachable("Unhandled type of aggregate value operation");
}
const VariableExpression *
NewGVN::createVariableExpression(Value *V) {
VariableExpression *E = new (ExpressionAllocator) VariableExpression(V);
E->setOpcode(V->getValueID());
return E;
}
const Expression *NewGVN::createVariableOrConstant(Value *V,
const BasicBlock *B) {
auto Leader = lookupOperandLeader(V, nullptr, B);
if (auto *C = dyn_cast<Constant>(Leader))
return createConstantExpression(C);
return createVariableExpression(Leader);
}
const ConstantExpression *
NewGVN::createConstantExpression(Constant *C) {
ConstantExpression *E = new (ExpressionAllocator) ConstantExpression(C);
E->setOpcode(C->getValueID());
return E;
}
const CallExpression *NewGVN::createCallExpression(CallInst *CI,
MemoryAccess *HV,
const BasicBlock *B) {
// FIXME: Add operand bundles for calls.
CallExpression *E =
new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV);
setBasicExpressionInfo(CI, E, B);
return E;
}
// See if we have a congruence class and leader for this operand, and if so,
// return it. Otherwise, return the operand itself.
template <class T>
Value *NewGVN::lookupOperandLeader(Value *V, const User *U,
const T &B) const {
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC && (CC != InitialClass))
return CC->RepLeader;
return V;
}
MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const {
MemoryAccess *Result = MemoryAccessEquiv.lookup(MA);
return Result ? Result : MA;
}
LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
LoadInst *LI, MemoryAccess *DA,
const BasicBlock *B) {
LoadExpression *E = new (ExpressionAllocator) LoadExpression(1, LI, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(LoadType);
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(PointerOp, LI, B));
if (LI)
E->setAlignment(LI->getAlignment());
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI,
MemoryAccess *DA,
const BasicBlock *B) {
StoreExpression *E =
new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(SI->getValueOperand()->getType());
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B));
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I,
const BasicBlock *B) {
StoreInst *SI = cast<StoreInst>(I);
// If this store's memorydef stores the same value as the last store, the
// memory accesses are equivalent.
// Get the expression, if any, for the RHS of the MemoryDef.
MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI);
MemoryAccess *StoreRHS = lookupMemoryAccessEquiv(
cast<MemoryDef>(StoreAccess)->getDefiningAccess());
const Expression *OldStore = createStoreExpression(SI, StoreRHS, B);
// See if this store expression already has a value, and it's the same as our
// current store.
CongruenceClass *CC = ExpressionToClass.lookup(OldStore);
if (CC &&
CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B)) {
setMemoryAccessEquivTo(StoreAccess, StoreRHS);
return OldStore;
}
return createStoreExpression(SI, StoreAccess, B);
}
const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I,
const BasicBlock *B) {
LoadInst *LI = cast<LoadInst>(I);
// We can eliminate in favor of non-simple loads, but we won't be able to
// eliminate them.
if (!LI->isSimple())
return nullptr;
Value *LoadAddressLeader =
lookupOperandLeader(LI->getPointerOperand(), I, B);
// Load of undef is undef.
if (isa<UndefValue>(LoadAddressLeader))
return createConstantExpression(UndefValue::get(LI->getType()));
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
Instruction *DefiningInst = MD->getMemoryInst();
// If the defining instruction is not reachable, replace with undef.
if (!ReachableBlocks.count(DefiningInst->getParent()))
return createConstantExpression(UndefValue::get(LI->getType()));
}
}
const Expression *E =
createLoadExpression(LI->getType(), LI->getPointerOperand(), LI,
lookupMemoryAccessEquiv(DefiningAccess), B);
return E;
}
// Evaluate read only and pure calls, and create an expression result.
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I,
const BasicBlock *B) {
CallInst *CI = cast<CallInst>(I);
if (AA->doesNotAccessMemory(CI))
return createCallExpression(CI, nullptr, B);
else if (AA->onlyReadsMemory(CI))
return createCallExpression(CI, MSSAWalker->getClobberingMemoryAccess(CI),
B);
else
return nullptr;
}
// Update the memory access equivalence table to say that From is equal to To,
// and return true if this is different from what already existed in the table.
bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) {
auto LookupResult = MemoryAccessEquiv.insert({From, nullptr});
bool Changed = false;
// If it's already in the table, see if the value changed.
if (LookupResult.second) {
if (To && LookupResult.first->second != To) {
// It wasn't equivalent before, and now it is.
LookupResult.first->second = To;
Changed = true;
} else if (!To) {
// It used to be equivalent to something, and now it's not.
MemoryAccessEquiv.erase(LookupResult.first);
Changed = true;
}
} else if (To) {
// It wasn't in the table, but is equivalent to something.
LookupResult.first->second = To;
Changed = true;
}
return Changed;
}
// Evaluate PHI nodes symbolically, and create an expression result.
const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I,
const BasicBlock *B) {
PHIExpression *E = cast<PHIExpression>(createPHIExpression(I));
if (E->op_empty()) {
DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(UndefValue::get(I->getType()));
}
Value *AllSameValue = E->getOperand(0);
// See if all arguments are the same, ignoring undef arguments, because we can
// choose a value that is the same for them.
for (const Value *Arg : E->operands())
if (Arg != AllSameValue && !isa<UndefValue>(Arg)) {
AllSameValue = NULL;
break;
}
if (AllSameValue) {
// It's possible to have phi nodes with cycles (IE dependent on
// other phis that are .... dependent on the original phi node),
// especially in weird CFG's where some arguments are unreachable, or
// uninitialized along certain paths.
// This can cause infinite loops during evaluation (even if you disable
// the recursion below, you will simply ping-pong between congruence
// classes). If a phi node symbolically evaluates to another phi node,
// just leave it alone. If they are really the same, we will still
// eliminate them in favor of each other.
if (isa<PHINode>(AllSameValue))
return E;
NumGVNPhisAllSame++;
DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
if (auto *C = dyn_cast<Constant>(AllSameValue))
return createConstantExpression(C);
return createVariableExpression(AllSameValue);
}
return E;
}
const Expression *
NewGVN::performSymbolicAggrValueEvaluation(Instruction *I,
const BasicBlock *B) {
if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
unsigned Opcode = 0;
// EI might be an extract from one of our recognised intrinsics. If it
// is we'll synthesize a semantically equivalent expression instead on
// an extract value expression.
switch (II->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
Opcode = Instruction::Add;
break;
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
Opcode = Instruction::Sub;
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
Opcode = Instruction::Mul;
break;
default:
break;
}
if (Opcode != 0) {
// Intrinsic recognized. Grab its args to finish building the
// expression.
assert(II->getNumArgOperands() == 2 &&
"Expect two args for recognised intrinsics.");
return createBinaryExpression(Opcode, EI->getType(),
II->getArgOperand(0),
II->getArgOperand(1), B);
}
}
}
return createAggregateValueExpression(I, B);
}
// Substitute and symbolize the value before value numbering.
const Expression *NewGVN::performSymbolicEvaluation(Value *V,
const BasicBlock *B) {
const Expression *E = NULL;
if (auto *C = dyn_cast<Constant>(V))
E = createConstantExpression(C);
else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
E = createVariableExpression(V);
} else {
// TODO: memory intrinsics.
// TODO: Some day, we should do the forward propagation and reassociation
// parts of the algorithm.
Instruction *I = cast<Instruction>(V);
switch (I->getOpcode()) {
case Instruction::ExtractValue:
case Instruction::InsertValue:
E = performSymbolicAggrValueEvaluation(I, B);
break;
case Instruction::PHI:
E = performSymbolicPHIEvaluation(I, B);
break;
case Instruction::Call:
E = performSymbolicCallEvaluation(I, B);
break;
case Instruction::Store:
E = performSymbolicStoreEvaluation(I, B);
break;
case Instruction::Load:
E = performSymbolicLoadEvaluation(I, B);
break;
case Instruction::BitCast: {
E = createExpression(I, B);
} break;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::Select:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
case Instruction::GetElementPtr:
E = createExpression(I, B);
break;
default:
return nullptr;
}
}
if (!E)
return nullptr;
return E;
}
// There is an edge from 'Src' to 'Dst'. Return true if every path from
// the entry block to 'Dst' passes via this edge. In particular 'Dst'
// must not be reachable via another edge from 'Src'.
bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const {
// While in theory it is interesting to consider the case in which Dst has
// more than one predecessor, because Dst might be part of a loop which is
// only reachable from Src, in practice it is pointless since at the time
// GVN runs all such loops have preheaders, which means that Dst will have
// been changed to have only one predecessor, namely Src.
const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
const BasicBlock *Src = E.getStart();
assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
(void)Src;
return Pred != nullptr;
}
void NewGVN::markUsersTouched(Value *V) {
// Now mark the users as touched.
for (auto &U : V->uses()) {
auto *User = dyn_cast<Instruction>(U.getUser());
assert(User && "Use of value not within an instruction?");
TouchedInstructions.set(InstrDFS[User]);
}
}
void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) {
for (auto U : MA->users()) {
if (auto *MUD = dyn_cast<MemoryUseOrDef>(U))
TouchedInstructions.set(InstrDFS[MUD->getMemoryInst()]);
else
TouchedInstructions.set(InstrDFS[MA]);
}
}
// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
ValueToExpression[V] = E;
// This is guaranteed to return something, since it will at least find
// INITIAL.
CongruenceClass *VClass = ValueToClass[V];
assert(VClass && "Should have found a vclass");
// Dead classes should have been eliminated from the mapping.
assert(!VClass->Dead && "Found a dead class");
CongruenceClass *EClass;
// Expressions we can't symbolize are always in their own unique
// congruence class.
if (E == NULL) {
// We may have already made a unique class.
if (VClass->Members.size() != 1 || VClass->RepLeader != V) {
CongruenceClass *NewClass = createCongruenceClass(V, NULL);
// We should always be adding the member in the below code.
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *V
<< " due to NULL expression\n");
} else {
EClass = VClass;
}
} else if (const auto *VE = dyn_cast<VariableExpression>(E)) {
EClass = ValueToClass[VE->getVariableValue()];
} else {
auto lookupResult = ExpressionToClass.insert({E, nullptr});
// If it's not in the value table, create a new congruence class.
if (lookupResult.second) {
CongruenceClass *NewClass = createCongruenceClass(NULL, E);
auto place = lookupResult.first;
place->second = NewClass;
// Constants and variables should always be made the leader.
if (const auto *CE = dyn_cast<ConstantExpression>(E))
NewClass->RepLeader = CE->getConstantValue();
else if (const auto *VE = dyn_cast<VariableExpression>(E))
NewClass->RepLeader = VE->getVariableValue();
else if (const auto *SE = dyn_cast<StoreExpression>(E))
NewClass->RepLeader = SE->getStoreInst()->getValueOperand();
else
NewClass->RepLeader = V;
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *V
<< " using expression " << *E << " at " << NewClass->ID
<< "\n");
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
} else {
EClass = lookupResult.first->second;
assert(EClass && "Somehow don't have an eclass");
assert(!EClass->Dead && "We accidentally looked up a dead class");
}
}
bool WasInChanged = ChangedValues.erase(V);
if (VClass != EClass || WasInChanged) {
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
<< "\n");
if (VClass != EClass) {
DEBUG(dbgs() << "New congruence class for " << V << " is " << EClass->ID
<< "\n");
VClass->Members.erase(V);
EClass->Members.insert(V);
ValueToClass[V] = EClass;
// See if we destroyed the class or need to swap leaders.
if (VClass->Members.empty() && VClass != InitialClass) {
if (VClass->DefiningExpr) {
VClass->Dead = true;
DEBUG(dbgs() << "Erasing expression " << *E << " from table\n");
ExpressionToClass.erase(VClass->DefiningExpr);
}
} else if (VClass->RepLeader == V) {
// FIXME: When the leader changes, the value numbering of
// everything may change, so we need to reprocess.
VClass->RepLeader = *(VClass->Members.begin());
for (auto M : VClass->Members) {
if (auto *I = dyn_cast<Instruction>(M))
TouchedInstructions.set(InstrDFS[I]);
ChangedValues.insert(M);
}
}
}
markUsersTouched(V);
if (auto *I = dyn_cast<Instruction>(V))
if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
markMemoryUsersTouched(MA);
}
}
// Process the fact that Edge (from, to) is reachable, including marking
// any newly reachable blocks and instructions for processing.
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
// Check if the Edge was reachable before.
if (ReachableEdges.insert({From, To}).second) {
// If this block wasn't reachable before, all instructions are touched.
if (ReachableBlocks.insert(To).second) {
DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
const auto &InstRange = BlockInstRange.lookup(To);
TouchedInstructions.set(InstRange.first, InstRange.second);
} else {
DEBUG(dbgs() << "Block " << getBlockName(To)
<< " was reachable, but new edge {" << getBlockName(From)
<< "," << getBlockName(To) << "} to it found\n");
// We've made an edge reachable to an existing block, which may
// impact predicates. Otherwise, only mark the phi nodes as touched, as
// they are the only thing that depend on new edges. Anything using their
// values will get propagated to if necessary.
auto BI = To->begin();
while (isa<PHINode>(BI)) {
TouchedInstructions.set(InstrDFS[&*BI]);
++BI;
}
}
}
}
// Given a predicate condition (from a switch, cmp, or whatever) and a block,
// see if we know some constant value for it already.
Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const {
auto Result = lookupOperandLeader(Cond, nullptr, B);
if (isa<Constant>(Result))
return Result;
return nullptr;
}
// Process the outgoing edges of a block for reachability.
void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
// Evaluate reachability of terminator instruction.
BranchInst *BR;
if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
Value *Cond = BR->getCondition();
Value *CondEvaluated = findConditionEquivalence(Cond, B);
if (!CondEvaluated) {
if (auto *I = dyn_cast<Instruction>(Cond)) {
const Expression *E = createExpression(I, B);
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
CondEvaluated = CE->getConstantValue();
}
} else if (isa<ConstantInt>(Cond)) {
CondEvaluated = Cond;
}
}
ConstantInt *CI;
BasicBlock *TrueSucc = BR->getSuccessor(0);
BasicBlock *FalseSucc = BR->getSuccessor(1);
if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
if (CI->isOne()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to true\n");
updateReachableEdge(B, TrueSucc);
} else if (CI->isZero()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to false\n");
updateReachableEdge(B, FalseSucc);
}
} else {
updateReachableEdge(B, TrueSucc);
updateReachableEdge(B, FalseSucc);
}
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
// For switches, propagate the case values into the case
// destinations.
// Remember how many outgoing edges there are to every successor.
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
Value *SwitchCond = SI->getCondition();
Value *CondEvaluated = findConditionEquivalence(SwitchCond, B);
// See if we were able to turn this switch statement into a constant.
if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
ConstantInt *CondVal = cast<ConstantInt>(CondEvaluated);
// We should be able to get case value for this.
auto CaseVal = SI->findCaseValue(CondVal);
if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) {
// We proved the value is outside of the range of the case.
// We can't do anything other than mark the default dest as reachable,
// and go home.
updateReachableEdge(B, SI->getDefaultDest());
return;
}
// Now get where it goes and mark it reachable.
BasicBlock *TargetBlock = CaseVal.getCaseSuccessor();
updateReachableEdge(B, TargetBlock);
} else {
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = SI->getSuccessor(i);
++SwitchEdges[TargetBlock];
updateReachableEdge(B, TargetBlock);
}
}
} else {
// Otherwise this is either unconditional, or a type we have no
// idea about. Just mark successors as reachable.
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = TI->getSuccessor(i);
updateReachableEdge(B, TargetBlock);
}
}
}
// The algorithm initially places the values of the routine in the INITIAL congruence
// class. The leader of INITIAL is the undetermined value `TOP`.
// When the algorithm has finished, values still in INITIAL are unreachable.
void NewGVN::initializeCongruenceClasses(Function &F) {
// FIXME now i can't remember why this is 2
NextCongruenceNum = 2;
// Initialize all other instructions to be in INITIAL class.
CongruenceClass::MemberSet InitialValues;
for (auto &B : F)
for (auto &I : B)
InitialValues.insert(&I);
InitialClass = createCongruenceClass(NULL, NULL);
for (auto L : InitialValues)
ValueToClass[L] = InitialClass;
InitialClass->Members.swap(InitialValues);
// Initialize arguments to be in their own unique congruence classes
for (auto &FA : F.args())
createSingletonCongruenceClass(&FA);
}
void NewGVN::cleanupTables() {
for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has "
<< CongruenceClasses[i]->Members.size() << " members\n");
// Make sure we delete the congruence class (probably worth switching to
// a unique_ptr at some point.
delete CongruenceClasses[i];
CongruenceClasses[i] = NULL;
}
ValueToClass.clear();
ArgRecycler.clear(ExpressionAllocator);
ExpressionAllocator.Reset();
CongruenceClasses.clear();
ExpressionToClass.clear();
ValueToExpression.clear();
ReachableBlocks.clear();
ReachableEdges.clear();
#ifndef NDEBUG
ProcessedCount.clear();
#endif
DFSDomMap.clear();
InstrDFS.clear();
InstructionsToErase.clear();
DFSToInstr.clear();
BlockInstRange.clear();
TouchedInstructions.clear();
DominatedInstRange.clear();
MemoryAccessEquiv.clear();
}
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
unsigned Start) {
unsigned End = Start;
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
InstrDFS[MemPhi] = End++;
DFSToInstr.emplace_back(MemPhi);
}
for (auto &I : *B) {
InstrDFS[&I] = End++;
DFSToInstr.emplace_back(&I);
}
// All of the range functions taken half-open ranges (open on the end side).
// So we do not subtract one from count, because at this point it is one
// greater than the last instruction.
return std::make_pair(Start, End);
}
void NewGVN::updateProcessedCount(Value *V) {
#ifndef NDEBUG
if (ProcessedCount.count(V) == 0) {
ProcessedCount.insert({V, 1});
} else {
ProcessedCount[V] += 1;
assert(ProcessedCount[V] < 100 &&
"Seem to have processed the same Value a lot\n");
}
#endif
}
// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
// If all the arguments are the same, the MemoryPhi has the same value as the
// argument.
// Filter out unreachable blocks from our operands.
auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
return ReachableBlocks.count(MP->getIncomingBlock(U));
});
assert(Filtered.begin() != Filtered.end() &&
"We should not be processing a MemoryPhi in a completely "
"unreachable block");
// Transform the remaining operands into operand leaders.
// FIXME: mapped_iterator should have a range version.
auto LookupFunc = [&](const Use &U) {
return lookupMemoryAccessEquiv(cast<MemoryAccess>(U));
};
auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
// and now check if all the elements are equal.
// Sadly, we can't use std::equals since these are random access iterators.
MemoryAccess *AllSameValue = *MappedBegin;
++MappedBegin;
bool AllEqual = std::all_of(
MappedBegin, MappedEnd,
[&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
if (AllEqual)
DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
else
DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr))
markMemoryUsersTouched(MP);
}
// Value number a single instruction, symbolically evaluating, performing
// congruence finding, and updating mappings.
void NewGVN::valueNumberInstruction(Instruction *I) {
DEBUG(dbgs() << "Processing instruction " << *I << "\n");
if (I->use_empty() && !I->getType()->isVoidTy()) {
DEBUG(dbgs() << "Skipping unused instruction\n");
if (isInstructionTriviallyDead(I, TLI))
markInstructionForDeletion(I);
return;
}
if (!I->isTerminator()) {
const Expression *Symbolized = performSymbolicEvaluation(I, I->getParent());
performCongruenceFinding(I, Symbolized);
} else {
processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
}
}
// This is the main transformation entry point.
bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC,
TargetLibraryInfo *_TLI, AliasAnalysis *_AA,
MemorySSA *_MSSA) {
bool Changed = false;
DT = _DT;
AC = _AC;
TLI = _TLI;
AA = _AA;
MSSA = _MSSA;
DL = &F.getParent()->getDataLayout();
MSSAWalker = MSSA->getWalker();
// Count number of instructions for sizing of hash tables, and come
// up with a global dfs numbering for instructions.
unsigned ICount = 0;
SmallPtrSet<BasicBlock *, 16> VisitedBlocks;
// Note: We want RPO traversal of the blocks, which is not quite the same as
// dominator tree order, particularly with regard whether backedges get
// visited first or second, given a block with multiple successors.
// If we visit in the wrong order, we will end up performing N times as many
// iterations.
ReversePostOrderTraversal<Function *> RPOT(&F);
for (auto &B : RPOT) {
VisitedBlocks.insert(B);
const auto &BlockRange = assignDFSNumbers(B, ICount);
BlockInstRange.insert({B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
// Handle forward unreachable blocks and figure out which blocks
// have single preds.
for (auto &B : F) {
// Assign numbers to unreachable blocks.
if (!VisitedBlocks.count(&B)) {
const auto &BlockRange = assignDFSNumbers(&B, ICount);
BlockInstRange.insert({&B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
}
TouchedInstructions.resize(ICount + 1);
DominatedInstRange.reserve(F.size());
// Ensure we don't end up resizing the expressionToClass map, as
// that can be quite expensive. At most, we have one expression per
// instruction.
ExpressionToClass.reserve(ICount + 1);
// Initialize the touched instructions to include the entry block.
const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
TouchedInstructions.set(InstRange.first, InstRange.second);
ReachableBlocks.insert(&F.getEntryBlock());
initializeCongruenceClasses(F);
// We start out in the entry block.
BasicBlock *LastBlock = &F.getEntryBlock();
while (TouchedInstructions.any()) {
// Walk through all the instructions in all the blocks in RPO.
for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
InstrNum = TouchedInstructions.find_next(InstrNum)) {
Value *V = DFSToInstr[InstrNum];
BasicBlock *CurrBlock = nullptr;
if (Instruction *I = dyn_cast<Instruction>(V))
CurrBlock = I->getParent();
else if (MemoryPhi *MP = dyn_cast<MemoryPhi>(V))
CurrBlock = MP->getBlock();
else
llvm_unreachable("DFSToInstr gave us an unknown type of instruction");
// If we hit a new block, do reachability processing.
if (CurrBlock != LastBlock) {
LastBlock = CurrBlock;
bool BlockReachable = ReachableBlocks.count(CurrBlock);
const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
// If it's not reachable, erase any touched instructions and move on.
if (!BlockReachable) {
TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
DEBUG(dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock)
<< " because it is unreachable\n");
continue;
}
updateProcessedCount(CurrBlock);
}
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(V)) {
DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
valueNumberMemoryPhi(MP);
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
valueNumberInstruction(I);
} else {
llvm_unreachable("Should have been a MemoryPhi or Instruction");
}
updateProcessedCount(V);
// Reset after processing (because we may mark ourselves as touched when
// we propagate equalities).
TouchedInstructions.reset(InstrNum);
}
}
Changed |= eliminateInstructions(F);
// Delete all instructions marked for deletion.
for (Instruction *ToErase : InstructionsToErase) {
if (!ToErase->use_empty())
ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
ToErase->eraseFromParent();
}
// Delete all unreachable blocks.
for (auto &B : F) {
BasicBlock *BB = &B;
if (!ReachableBlocks.count(BB)) {
DEBUG(dbgs() << "We believe block " << getBlockName(BB)
<< " is unreachable\n");
deleteInstructionsInBlock(BB);
Changed = true;
}
}
cleanupTables();
return Changed;
}
bool NewGVN::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
&getAnalysis<MemorySSAWrapperPass>().getMSSA());
}
PreservedAnalyses NewGVNPass::run(Function &F,
AnalysisManager<Function> &AM) {
NewGVN Impl;
// Apparently the order in which we get these results matter for
// the old GVN (see Chandler's comment in GVN.cpp). I'll keep
// the same order here, just in case.
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<GlobalsAA>();
return PA;
}
// Return true if V is a value that will always be available (IE can
// be placed anywhere) in the function. We don't do globals here
// because they are often worse to put in place.
// TODO: Separate cost from availability
static bool alwaysAvailable(Value *V) {
return isa<Constant>(V) || isa<Argument>(V);
}
// Get the basic block from an instruction/value.
static BasicBlock *getBlockForValue(Value *V) {
if (auto *I = dyn_cast<Instruction>(V))
return I->getParent();
return nullptr;
}
struct NewGVN::ValueDFS {
int DFSIn;
int DFSOut;
int LocalNum;
// Only one of these will be set.
Value *Val;
Use *U;
ValueDFS()
: DFSIn(0), DFSOut(0), LocalNum(0), Val(nullptr), U(nullptr) {}
bool operator<(const ValueDFS &Other) const {
// It's not enough that any given field be less than - we have sets
// of fields that need to be evaluated together to give a proper ordering.
// For example, if you have;
// DFS (1, 3)
// Val 0
// DFS (1, 2)
// Val 50
// We want the second to be less than the first, but if we just go field
// by field, we will get to Val 0 < Val 50 and say the first is less than
// the second. We only want it to be less than if the DFS orders are equal.
//
// Each LLVM instruction only produces one value, and thus the lowest-level
// differentiator that really matters for the stack (and what we use as as a
// replacement) is the local dfs number.
// Everything else in the structure is instruction level, and only affects the
// order in which we will replace operands of a given instruction.
//
// For a given instruction (IE things with equal dfsin, dfsout, localnum),
// the order of replacement of uses does not matter.
// IE given,
// a = 5
// b = a + a
// When you hit b, you will have two valuedfs with the same dfsin, out, and localnum.
// The .val will be the same as well.
// The .u's will be different.
// You will replace both, and it does not matter what order you replace them in
// (IE whether you replace operand 2, then operand 1, or operand 1, then operand 2).
// Similarly for the case of same dfsin, dfsout, localnum, but different .val's
// a = 5
// b = 6
// c = a + b
// in c, we will a valuedfs for a, and one for b,with everything the same but
// .val and .u.
// It does not matter what order we replace these operands in.
// You will always end up with the same IR, and this is guaranteed.
return std::tie(DFSIn, DFSOut, LocalNum, Val, U) <
std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val,
Other.U);
}
};
void NewGVN::convertDenseToDFSOrdered(CongruenceClass::MemberSet &Dense,
std::vector<ValueDFS> &DFSOrderedSet) {
for (auto D : Dense) {
// First add the value.
BasicBlock *BB = getBlockForValue(D);
// Constants are handled prior to ever calling this function, so
// we should only be left with instructions as members.
assert(BB && "Should have figured out a basic block for value");
ValueDFS VD;
std::pair<int, int> DFSPair = DFSDomMap[BB];
assert(DFSPair.first != -1 && DFSPair.second != -1 && "Invalid DFS Pair");
VD.DFSIn = DFSPair.first;
VD.DFSOut = DFSPair.second;
VD.Val = D;
// If it's an instruction, use the real local dfs number.
if (auto *I = dyn_cast<Instruction>(D))
VD.LocalNum = InstrDFS[I];
else
llvm_unreachable("Should have been an instruction");
DFSOrderedSet.emplace_back(VD);
// Now add the users.
for (auto &U : D->uses()) {
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
ValueDFS VD;
// Put the phi node uses in the incoming block.
BasicBlock *IBlock;
if (auto *P = dyn_cast<PHINode>(I)) {
IBlock = P->getIncomingBlock(U);
// Make phi node users appear last in the incoming block
// they are from.
VD.LocalNum = InstrDFS.size() + 1;
} else {
IBlock = I->getParent();
VD.LocalNum = InstrDFS[I];
}
std::pair<int, int> DFSPair = DFSDomMap[IBlock];
VD.DFSIn = DFSPair.first;
VD.DFSOut = DFSPair.second;
VD.U = &U;
DFSOrderedSet.emplace_back(VD);
}
}
}
}
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
// Patch the replacement so that it is not more restrictive than the value
// being replaced.
auto *Op = dyn_cast<BinaryOperator>(I);
auto *ReplOp = dyn_cast<BinaryOperator>(Repl);
if (Op && ReplOp)
ReplOp->andIRFlags(Op);
if (auto *ReplInst = dyn_cast<Instruction>(Repl)) {
// FIXME: If both the original and replacement value are part of the
// same control-flow region (meaning that the execution of one
// guarentees the executation of the other), then we can combine the
// noalias scopes here and do better than the general conservative
// answer used in combineMetadata().
// In general, GVN unifies expressions over different control-flow
// regions, and so we need a conservative combination of the noalias
// scopes.
unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_range,
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
LLVMContext::MD_invariant_group};
combineMetadata(ReplInst, I, KnownIDs);
}
}
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
patchReplacementInstruction(I, Repl);
I->replaceAllUsesWith(Repl);
}
void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
++NumGVNBlocksDeleted;
// Check to see if there are non-terminating instructions to delete.
if (isa<TerminatorInst>(BB->begin()))
return;
// Delete the instructions backwards, as it has a reduced likelihood of having
// to update as many def-use and use-def chains. Start after the terminator.
auto StartPoint = BB->rbegin();
++StartPoint;
// Note that we explicitly recalculate BB->rend() on each iteration,
// as it may change when we remove the first instruction.
for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
Instruction &Inst = *I++;
if (!Inst.use_empty())
Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
if (isa<LandingPadInst>(Inst))
continue;
Inst.eraseFromParent();
++NumGVNInstrDeleted;
}
}
void NewGVN::markInstructionForDeletion(Instruction *I) {
DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
InstructionsToErase.insert(I);
}
void NewGVN::replaceInstruction(Instruction *I, Value *V) {
DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
patchAndReplaceAllUsesWith(I, V);
// We save the actual erasing to avoid invalidating memory
// dependencies until we are done with everything.
markInstructionForDeletion(I);
}
namespace {
// This is a stack that contains both the value and dfs info of where
// that value is valid.
class ValueDFSStack {
public:
Value *back() const { return ValueStack.back(); }
std::pair<int, int> dfs_back() const { return DFSStack.back(); }
void push_back(Value *V, int DFSIn, int DFSOut) {
ValueStack.emplace_back(V);
DFSStack.emplace_back(DFSIn, DFSOut);
}
bool empty() const { return DFSStack.empty(); }
bool isInScope(int DFSIn, int DFSOut) const {
if (empty())
return false;
return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
}
void popUntilDFSScope(int DFSIn, int DFSOut) {
// These two should always be in sync at this point.
assert(ValueStack.size() == DFSStack.size() &&
"Mismatch between ValueStack and DFSStack");
while (
!DFSStack.empty() &&
!(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
DFSStack.pop_back();
ValueStack.pop_back();
}
}
private:
SmallVector<Value *, 8> ValueStack;
SmallVector<std::pair<int, int>, 8> DFSStack;
};
}
bool NewGVN::eliminateInstructions(Function &F) {
// This is a non-standard eliminator. The normal way to eliminate is
// to walk the dominator tree in order, keeping track of available
// values, and eliminating them. However, this is mildly
// pointless. It requires doing lookups on every instruction,
// regardless of whether we will ever eliminate it. For
// instructions part of most singleton congruence class, we know we
// will never eliminate it.
// Instead, this eliminator looks at the congruence classes directly, sorts
// them into a DFS ordering of the dominator tree, and then we just
// perform eliminate straight on the sets by walking the congruence
// class member uses in order, and eliminate the ones dominated by the
// last member. This is technically O(N log N) where N = number of
// instructions (since in theory all instructions may be in the same
// congruence class).
// When we find something not dominated, it becomes the new leader
// for elimination purposes
bool AnythingReplaced = false;
// Since we are going to walk the domtree anyway, and we can't guarantee the
// DFS numbers are updated, we compute some ourselves.
DT->updateDFSNumbers();
for (auto &B : F) {
if (!ReachableBlocks.count(&B)) {
for (const auto S : successors(&B)) {
for (auto II = S->begin(); isa<PHINode>(II); ++II) {
PHINode &Phi = cast<PHINode>(*II);
DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
<< getBlockName(&B)
<< " with undef due to it being unreachable\n");
for (auto &Operand : Phi.incoming_values())
if (Phi.getIncomingBlock(Operand) == &B)
Operand.set(UndefValue::get(Phi.getType()));
}
}
}
DomTreeNode *Node = DT->getNode(&B);
if (Node)
DFSDomMap[&B] = {Node->getDFSNumIn(), Node->getDFSNumOut()};
}
for (CongruenceClass *CC : CongruenceClasses) {
// FIXME: We should eventually be able to replace everything still
// in the initial class with undef, as they should be unreachable.
// Right now, initial still contains some things we skip value
// numbering of (UNREACHABLE's, for example).
if (CC == InitialClass || CC->Dead)
continue;
assert(CC->RepLeader && "We should have had a leader");
// If this is a leader that is always available, and it's a
// constant or has no equivalences, just replace everything with
// it. We then update the congruence class with whatever members
// are left.
if (alwaysAvailable(CC->RepLeader)) {
SmallPtrSet<Value *, 4> MembersLeft;
for (auto M : CC->Members) {
Value *Member = M;
// Void things have no uses we can replace.
if (Member == CC->RepLeader || Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for "
<< *Member << "\n");
// Due to equality propagation, these may not always be
// instructions, they may be real values. We don't really
// care about trying to replace the non-instructions.
if (auto *I = dyn_cast<Instruction>(Member)) {
assert(CC->RepLeader != I &&
"About to accidentally remove our leader");
replaceInstruction(I, CC->RepLeader);
AnythingReplaced = true;
continue;
} else {
MembersLeft.insert(I);
}
}
CC->Members.swap(MembersLeft);
} else {
DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n");
// If this is a singleton, we can skip it.
if (CC->Members.size() != 1) {
// This is a stack because equality replacement/etc may place
// constants in the middle of the member list, and we want to use
// those constant values in preference to the current leader, over
// the scope of those constants.
ValueDFSStack EliminationStack;
// Convert the members to DFS ordered sets and then merge them.
std::vector<ValueDFS> DFSOrderedSet;
convertDenseToDFSOrdered(CC->Members, DFSOrderedSet);
// Sort the whole thing.
sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
for (auto &C : DFSOrderedSet) {
int MemberDFSIn = C.DFSIn;
int MemberDFSOut = C.DFSOut;
Value *Member = C.Val;
Use *MemberUse = C.U;
// We ignore void things because we can't get a value from them.
if (Member && Member->getType()->isVoidTy())
continue;
if (EliminationStack.empty()) {
DEBUG(dbgs() << "Elimination Stack is empty\n");
} else {
DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << ","
<< EliminationStack.dfs_back().second << ")\n");
}
if (Member && isa<Constant>(Member))
assert(isa<Constant>(CC->RepLeader));
DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
<< MemberDFSOut << ")\n");
// First, we see if we are out of scope or empty. If so,
// and there equivalences, we try to replace the top of
// stack with equivalences (if it's on the stack, it must
// not have been eliminated yet).
// Then we synchronize to our current scope, by
// popping until we are back within a DFS scope that
// dominates the current member.
// Then, what happens depends on a few factors
// If the stack is now empty, we need to push
// If we have a constant or a local equivalence we want to
// start using, we also push.
// Otherwise, we walk along, processing members who are
// dominated by this scope, and eliminate them.
bool ShouldPush =
Member && (EliminationStack.empty() || isa<Constant>(Member));
bool OutOfScope =
!EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
if (OutOfScope || ShouldPush) {
// Sync to our current scope.
EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
ShouldPush |= Member && EliminationStack.empty();
if (ShouldPush) {
EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
}
}
// If we get to this point, and the stack is empty we must have a use
// with nothing we can use to eliminate it, just skip it.
if (EliminationStack.empty())
continue;
// Skip the Value's, we only want to eliminate on their uses.
if (Member)
continue;
Value *Result = EliminationStack.back();
// Don't replace our existing users with ourselves.
if (MemberUse->get() == Result)
continue;
DEBUG(dbgs() << "Found replacement " << *Result << " for "
<< *MemberUse->get() << " in " << *(MemberUse->getUser())
<< "\n");
// If we replaced something in an instruction, handle the patching of
// metadata.
if (auto *ReplacedInst =
dyn_cast<Instruction>(MemberUse->get()))
patchReplacementInstruction(ReplacedInst, Result);
assert(isa<Instruction>(MemberUse->getUser()));
MemberUse->set(Result);
AnythingReplaced = true;
}
}
}
// Cleanup the congruence class.
SmallPtrSet<Value *, 4> MembersLeft;
for (auto MI = CC->Members.begin(), ME = CC->Members.end(); MI != ME;) {
auto CurrIter = MI;
++MI;
Value *Member = *CurrIter;
if (Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
if (auto *MemberInst = dyn_cast<Instruction>(Member)) {
if (isInstructionTriviallyDead(MemberInst)) {
// TODO: Don't mark loads of undefs.
markInstructionForDeletion(MemberInst);
continue;
}
}
MembersLeft.insert(Member);
}
CC->Members.swap(MembersLeft);
}
return AnythingReplaced;
}