llvm-project/llvm/tools/opt/AnalysisWrappers.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

73 lines
2.5 KiB
C++
Raw Normal View History

//===- AnalysisWrappers.cpp - Wrappers around non-pass analyses -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines pass wrappers around LLVM analyses that don't make sense to
// be passes. It provides a nice standard pass interface to these classes so
// that they can be printed out by analyze.
//
// These classes are separated out of analyze.cpp so that it is more clear which
// code is the integral part of the analyze tool, and which part of the code is
// just making it so more passes are available.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
2004-05-27 14:13:36 +08:00
namespace {
/// ExternalFunctionsPassedConstants - This pass prints out call sites to
/// external functions that are called with constant arguments. This can be
/// useful when looking for standard library functions we should constant fold
/// or handle in alias analyses.
struct ExternalFunctionsPassedConstants : public ModulePass {
2007-05-03 09:11:54 +08:00
static char ID; // Pass ID, replacement for typeid
ExternalFunctionsPassedConstants() : ModulePass(ID) {}
bool runOnModule(Module &M) override {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (!I->isDeclaration()) continue;
2014-01-20 23:47:15 +08:00
bool PrintedFn = false;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
for (User *U : I->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI) continue;
2014-01-20 23:47:15 +08:00
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
CallSite CS(cast<Value>(UI));
if (!CS) continue;
2014-01-20 23:47:15 +08:00
for (CallSite::arg_iterator AI = CS.arg_begin(),
E = CS.arg_end(); AI != E; ++AI) {
if (!isa<Constant>(*AI)) continue;
if (!PrintedFn) {
errs() << "Function '" << I->getName() << "':\n";
PrintedFn = true;
2004-05-27 14:13:36 +08:00
}
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
errs() << *UI;
break;
}
2004-05-27 14:13:36 +08:00
}
}
2004-05-27 14:13:36 +08:00
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
2004-05-27 14:13:36 +08:00
AU.setPreservesAll();
}
};
}
2004-05-27 14:13:36 +08:00
char ExternalFunctionsPassedConstants::ID = 0;
static RegisterPass<ExternalFunctionsPassedConstants>
P1("print-externalfnconstants",
"Print external fn callsites passed constants");