2016-10-19 01:31:07 +08:00
|
|
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
|
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefix=SSE
|
|
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx2 | FileCheck %s --check-prefix=AVX
|
|
|
|
|
|
|
|
; fold (sra 0, x) -> 0
|
|
|
|
define <4 x i32> @combine_vec_ashr_zero(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_zero:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_zero:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> zeroinitializer, %x
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra -1, x) -> -1
|
|
|
|
define <4 x i32> @combine_vec_ashr_allones(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_allones:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: pcmpeqd %xmm0, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_allones:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>, %x
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra x, c >= size(x)) -> undef
|
|
|
|
define <4 x i32> @combine_vec_ashr_outofrange0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_outofrange0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_outofrange0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, <i32 33, i32 33, i32 33, i32 33>
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_ashr_outofrange1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_outofrange1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: psrad $31, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_outofrange1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, <i32 33, i32 34, i32 35, i32 36>
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra x, 0) -> x
|
|
|
|
define <4 x i32> @combine_vec_ashr_by_zero(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_by_zero:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_by_zero:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, zeroinitializer
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
|
|
|
|
define <4 x i32> @combine_vec_ashr_ashr0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_ashr0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: psrad $6, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_ashr0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrad $6, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, <i32 2, i32 2, i32 2, i32 2>
|
|
|
|
%2 = ashr <4 x i32> %1, <i32 4, i32 4, i32 4, i32 4>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_ashr_ashr1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_ashr1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $2, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: psrad $3, %xmm0
|
|
|
|
; SSE-NEXT: psrad $1, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: psrad $7, %xmm0
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrad $5, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: psrad $6, %xmm0
|
|
|
|
; SSE-NEXT: psrad $4, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_ashr1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, <i32 0, i32 1, i32 2, i32 3>
|
|
|
|
%2 = ashr <4 x i32> %1, <i32 4, i32 5, i32 6, i32 7>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_ashr_ashr2(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_ashr2:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $20, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrad $18, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $19, %xmm1
|
|
|
|
; SSE-NEXT: psrad $17, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $28, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrad $26, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $27, %xmm1
|
|
|
|
; SSE-NEXT: psrad $25, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_ashr2:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, <i32 17, i32 18, i32 19, i32 20>
|
|
|
|
%2 = ashr <4 x i32> %1, <i32 25, i32 26, i32 27, i32 28>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
|
|
|
|
define <4 x i32> @combine_vec_ashr_trunc_and(<4 x i32> %x, <4 x i64> %y) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_trunc_and:
|
|
|
|
; SSE: # BB#0:
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm1 = xmm1[0,2],xmm2[0,2]
|
|
|
|
; SSE-NEXT: andps {{.*}}(%rip), %xmm1
|
|
|
|
; SSE-NEXT: movaps %xmm1, %xmm2
|
2016-10-19 01:31:07 +08:00
|
|
|
; SSE-NEXT: psrldq {{.*#+}} xmm2 = xmm2[12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm3
|
|
|
|
; SSE-NEXT: psrad %xmm2, %xmm3
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: movaps %xmm1, %xmm2
|
2016-10-19 01:31:07 +08:00
|
|
|
; SSE-NEXT: psrlq $32, %xmm2
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm4
|
|
|
|
; SSE-NEXT: psrad %xmm2, %xmm4
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm4 = xmm4[0,1,2,3],xmm3[4,5,6,7]
|
|
|
|
; SSE-NEXT: pxor %xmm2, %xmm2
|
|
|
|
; SSE-NEXT: pmovzxdq {{.*#+}} xmm3 = xmm1[0],zero,xmm1[1],zero
|
|
|
|
; SSE-NEXT: punpckhdq {{.*#+}} xmm1 = xmm1[2],xmm2[2],xmm1[3],xmm2[3]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrad %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrad %xmm3, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm4[2,3],xmm0[4,5],xmm4[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_trunc_and:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm1 = ymm1[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm1 = ymm1[0,2,2,3]
|
2016-10-19 16:57:37 +08:00
|
|
|
; AVX-NEXT: vpand {{.*}}(%rip), %xmm1, %xmm1
|
2016-10-19 01:31:07 +08:00
|
|
|
; AVX-NEXT: vpsravd %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i64> %y, <i64 15, i64 255, i64 4095, i64 65535>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = ashr <4 x i32> %x, %2
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
|
|
|
|
; if c1 is equal to the number of bits the trunc removes
|
|
|
|
define <4 x i32> @combine_vec_ashr_trunc_lshr(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_trunc_lshr:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: psrlq $32, %xmm1
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: psrlq $32, %xmm0
|
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $2, %xmm1
|
|
|
|
; SSE-NEXT: blendpd {{.*#+}} xmm1 = xmm0[0],xmm1[1]
|
|
|
|
; SSE-NEXT: psrad $3, %xmm0
|
|
|
|
; SSE-NEXT: psrad $1, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
2016-10-19 01:31:07 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_trunc_lshr:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlq $32, %ymm0, %ymm0
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm0 = ymm0[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm0 = ymm0[0,2,2,3]
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i64> %x, <i64 32, i64 32, i64 32, i64 32>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = ashr <4 x i32> %2, <i32 0, i32 1, i32 2, i32 3>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
|
|
|
|
; if c1 is equal to the number of bits the trunc removes
|
|
|
|
define <4 x i32> @combine_vec_ashr_trunc_ashr(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_trunc_ashr:
|
|
|
|
; SSE: # BB#0:
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: pshufd {{.*#+}} xmm2 = xmm1[1,1,3,3]
|
|
|
|
; SSE-NEXT: psrad $31, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm2[0,1],xmm1[2,3],xmm2[4,5],xmm1[6,7]
|
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[1,3],xmm1[0,2]
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrad $2, %xmm1
|
|
|
|
; SSE-NEXT: blendpd {{.*#+}} xmm1 = xmm0[0],xmm1[1]
|
|
|
|
; SSE-NEXT: psrad $3, %xmm0
|
2016-10-19 01:31:07 +08:00
|
|
|
; SSE-NEXT: psrad $1, %xmm2
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
2016-10-19 01:31:07 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_trunc_ashr:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm0 = ymm0[1,3,2,3,5,7,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm0 = ymm0[0,2,2,3]
|
|
|
|
; AVX-NEXT: vpsravd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i64> %x, <i64 32, i64 32, i64 32, i64 32>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = ashr <4 x i32> %2, <i32 0, i32 1, i32 2, i32 3>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
; If the sign bit is known to be zero, switch this to a SRL.
|
|
|
|
define <4 x i32> @combine_vec_ashr_positive(<4 x i32> %x, <4 x i32> %y) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_positive:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: pand {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrldq {{.*#+}} xmm2 = xmm2[12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm3
|
|
|
|
; SSE-NEXT: psrld %xmm2, %xmm3
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $32, %xmm2
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm4
|
|
|
|
; SSE-NEXT: psrld %xmm2, %xmm4
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm4 = xmm4[0,1,2,3],xmm3[4,5,6,7]
|
|
|
|
; SSE-NEXT: pxor %xmm2, %xmm2
|
|
|
|
; SSE-NEXT: pmovzxdq {{.*#+}} xmm3 = xmm1[0],zero,xmm1[1],zero
|
|
|
|
; SSE-NEXT: punpckhdq {{.*#+}} xmm1 = xmm1[2],xmm2[2],xmm1[3],xmm2[3]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrld %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrld %xmm3, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm4[2,3],xmm0[4,5],xmm4[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_positive:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpand {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrlvd %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 15, i32 255, i32 4095, i32 65535>
|
|
|
|
%2 = ashr <4 x i32> %1, %y
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
2016-10-22 07:02:31 +08:00
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_ashr_positive_splat(<4 x i32> %x, <4 x i32> %y) {
|
|
|
|
; SSE-LABEL: combine_vec_ashr_positive_splat:
|
|
|
|
; SSE: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
2016-10-22 07:02:31 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_ashr_positive_splat:
|
|
|
|
; AVX: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
2016-10-22 07:02:31 +08:00
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 1023, i32 1023, i32 1023, i32 1023>
|
|
|
|
%2 = ashr <4 x i32> %1, <i32 10, i32 10, i32 10, i32 10>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|