Introduce type nullability specifiers for C/C++.
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
2015-06-20 01:51:05 +08:00
|
|
|
// RUN: %clang_cc1 -fsyntax-only -std=c99 -Wno-nullability-declspec -pedantic %s -verify
|
|
|
|
|
2015-06-25 06:02:08 +08:00
|
|
|
_Nonnull int *ptr; // expected-warning{{type nullability specifier '_Nonnull' is a Clang extension}}
|
Introduce type nullability specifiers for C/C++.
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
2015-06-20 01:51:05 +08:00
|
|
|
|
|
|
|
#pragma clang diagnostic push
|
|
|
|
#pragma clang diagnostic ignored "-Wnullability-extension"
|
2015-06-25 06:02:08 +08:00
|
|
|
_Nonnull int *ptr2; // no-warning
|
Introduce type nullability specifiers for C/C++.
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
2015-06-20 01:51:05 +08:00
|
|
|
#pragma clang diagnostic pop
|
|
|
|
|
2015-06-30 02:15:31 +08:00
|
|
|
#if !__has_feature(nullability)
|
|
|
|
# error Nullability should always be supported
|
Introduce type nullability specifiers for C/C++.
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
2015-06-20 01:51:05 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !__has_extension(nullability)
|
|
|
|
# error Nullability should always be supported as an extension
|
|
|
|
#endif
|