llvm-project/llvm/test/CodeGen/PowerPC/stackmap-frame-setup.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

21 lines
894 B
LLVM
Raw Normal View History

; RUN: llc -o - -verify-machineinstrs -mtriple=powerpc64-unknown-gnu-linux -stop-after machine-sink %s | FileCheck %s --check-prefix=ISEL
; RUN: llc -o - -verify-machineinstrs -mtriple=powerpc64-unknown-gnu-linux -fast-isel -fast-isel-abort=1 -stop-after machine-sink %s | FileCheck %s --check-prefix=FAST-ISEL
define void @caller_meta_leaf() {
entry:
%metadata = alloca i64, i32 3, align 8
store i64 11, i64* %metadata
store i64 12, i64* %metadata
store i64 13, i64* %metadata
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
; ISEL: ADJCALLSTACKDOWN 0, 0, implicit-def
; ISEL-NEXT: STACKMAP
; ISEL-NEXT: ADJCALLSTACKUP 0, 0, implicit-def
call void (i64, i32, ...) @llvm.experimental.stackmap(i64 4, i32 0, i64* %metadata)
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
; FAST-ISEL: ADJCALLSTACKDOWN 0, 0, implicit-def
; FAST-ISEL-NEXT: STACKMAP
; FAST-ISEL-NEXT: ADJCALLSTACKUP 0, 0, implicit-def
ret void
}
declare void @llvm.experimental.stackmap(i64, i32, ...)