llvm-project/lldb/source/Utility/Environment.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

50 lines
1.4 KiB
C++
Raw Normal View History

//===-- Environment.cpp ---------------------------------------------------===//
Add Utility/Environment class for handling... environments Summary: There was some confusion in the code about how to represent process environment. Most of the code (ab)used the Args class for this purpose, but some of it used a more basic StringList class instead. In either case, the fact that the underlying abstraction did not provide primitive operations for the typical environment operations meant that even a simple operation like checking for an environment variable value was several lines of code. This patch adds a separate Environment class, which is essentialy a llvm::StringMap<std::string> in disguise. To standard StringMap functionality, it adds a couple of new functions, which are specific to the environment use case: - (most important) envp conversion for passing into execve() and likes. Instead of trying to maintain a constantly up-to-date envp view, it provides a function which creates a envp view on demand, with the expectation that this will be called as the very last thing before handing the value to the system function. - insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value) pair and inserts it into the environment map. - compose(value_type KeyValue) - takes a map entry and converts in back into "KEY=VALUE" representation. With this interface most of the environment-manipulating code becomes one-liners. The only tricky part was maintaining compatibility in SBLaunchInfo, which expects that the environment entries are accessible by index and that the returned const char* is backed by the launch info object (random access into maps is hard and the map stores the entry in a deconstructed form, so we cannot just return a .c_str() value). To solve this, I have the SBLaunchInfo convert the environment into the "envp" form, and use it to answer the environment queries. Extra code is added to make sure the envp version is always in sync. (This also improves the layering situation as Args was in the Interpreter module whereas Environment is in Utility.) Reviewers: zturner, davide, jingham, clayborg Subscribers: emaste, lldb-commits, mgorny Differential Revision: https://reviews.llvm.org/D41359 llvm-svn: 322174
2018-01-10 19:57:31 +08:00
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Add Utility/Environment class for handling... environments Summary: There was some confusion in the code about how to represent process environment. Most of the code (ab)used the Args class for this purpose, but some of it used a more basic StringList class instead. In either case, the fact that the underlying abstraction did not provide primitive operations for the typical environment operations meant that even a simple operation like checking for an environment variable value was several lines of code. This patch adds a separate Environment class, which is essentialy a llvm::StringMap<std::string> in disguise. To standard StringMap functionality, it adds a couple of new functions, which are specific to the environment use case: - (most important) envp conversion for passing into execve() and likes. Instead of trying to maintain a constantly up-to-date envp view, it provides a function which creates a envp view on demand, with the expectation that this will be called as the very last thing before handing the value to the system function. - insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value) pair and inserts it into the environment map. - compose(value_type KeyValue) - takes a map entry and converts in back into "KEY=VALUE" representation. With this interface most of the environment-manipulating code becomes one-liners. The only tricky part was maintaining compatibility in SBLaunchInfo, which expects that the environment entries are accessible by index and that the returned const char* is backed by the launch info object (random access into maps is hard and the map stores the entry in a deconstructed form, so we cannot just return a .c_str() value). To solve this, I have the SBLaunchInfo convert the environment into the "envp" form, and use it to answer the environment queries. Extra code is added to make sure the envp version is always in sync. (This also improves the layering situation as Args was in the Interpreter module whereas Environment is in Utility.) Reviewers: zturner, davide, jingham, clayborg Subscribers: emaste, lldb-commits, mgorny Differential Revision: https://reviews.llvm.org/D41359 llvm-svn: 322174
2018-01-10 19:57:31 +08:00
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/Environment.h"
using namespace lldb_private;
char *Environment::Envp::make_entry(llvm::StringRef Key,
llvm::StringRef Value) {
const size_t size = Key.size() + 1 /*=*/ + Value.size() + 1 /*\0*/;
char *Result = static_cast<char *>(
Add Utility/Environment class for handling... environments Summary: There was some confusion in the code about how to represent process environment. Most of the code (ab)used the Args class for this purpose, but some of it used a more basic StringList class instead. In either case, the fact that the underlying abstraction did not provide primitive operations for the typical environment operations meant that even a simple operation like checking for an environment variable value was several lines of code. This patch adds a separate Environment class, which is essentialy a llvm::StringMap<std::string> in disguise. To standard StringMap functionality, it adds a couple of new functions, which are specific to the environment use case: - (most important) envp conversion for passing into execve() and likes. Instead of trying to maintain a constantly up-to-date envp view, it provides a function which creates a envp view on demand, with the expectation that this will be called as the very last thing before handing the value to the system function. - insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value) pair and inserts it into the environment map. - compose(value_type KeyValue) - takes a map entry and converts in back into "KEY=VALUE" representation. With this interface most of the environment-manipulating code becomes one-liners. The only tricky part was maintaining compatibility in SBLaunchInfo, which expects that the environment entries are accessible by index and that the returned const char* is backed by the launch info object (random access into maps is hard and the map stores the entry in a deconstructed form, so we cannot just return a .c_str() value). To solve this, I have the SBLaunchInfo convert the environment into the "envp" form, and use it to answer the environment queries. Extra code is added to make sure the envp version is always in sync. (This also improves the layering situation as Args was in the Interpreter module whereas Environment is in Utility.) Reviewers: zturner, davide, jingham, clayborg Subscribers: emaste, lldb-commits, mgorny Differential Revision: https://reviews.llvm.org/D41359 llvm-svn: 322174
2018-01-10 19:57:31 +08:00
Allocator.Allocate(sizeof(char) * size, alignof(char)));
char *Next = Result;
Next = std::copy(Key.begin(), Key.end(), Next);
*Next++ = '=';
Next = std::copy(Value.begin(), Value.end(), Next);
*Next++ = '\0';
return Result;
}
Environment::Envp::Envp(const Environment &Env) {
Data = static_cast<char **>(
Add Utility/Environment class for handling... environments Summary: There was some confusion in the code about how to represent process environment. Most of the code (ab)used the Args class for this purpose, but some of it used a more basic StringList class instead. In either case, the fact that the underlying abstraction did not provide primitive operations for the typical environment operations meant that even a simple operation like checking for an environment variable value was several lines of code. This patch adds a separate Environment class, which is essentialy a llvm::StringMap<std::string> in disguise. To standard StringMap functionality, it adds a couple of new functions, which are specific to the environment use case: - (most important) envp conversion for passing into execve() and likes. Instead of trying to maintain a constantly up-to-date envp view, it provides a function which creates a envp view on demand, with the expectation that this will be called as the very last thing before handing the value to the system function. - insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value) pair and inserts it into the environment map. - compose(value_type KeyValue) - takes a map entry and converts in back into "KEY=VALUE" representation. With this interface most of the environment-manipulating code becomes one-liners. The only tricky part was maintaining compatibility in SBLaunchInfo, which expects that the environment entries are accessible by index and that the returned const char* is backed by the launch info object (random access into maps is hard and the map stores the entry in a deconstructed form, so we cannot just return a .c_str() value). To solve this, I have the SBLaunchInfo convert the environment into the "envp" form, and use it to answer the environment queries. Extra code is added to make sure the envp version is always in sync. (This also improves the layering situation as Args was in the Interpreter module whereas Environment is in Utility.) Reviewers: zturner, davide, jingham, clayborg Subscribers: emaste, lldb-commits, mgorny Differential Revision: https://reviews.llvm.org/D41359 llvm-svn: 322174
2018-01-10 19:57:31 +08:00
Allocator.Allocate(sizeof(char *) * (Env.size() + 1), alignof(char *)));
char **Next = Data;
for (const auto &KV : Env)
*Next++ = make_entry(KV.first(), KV.second);
*Next++ = nullptr;
}
Environment::Environment(const char *const *Env) {
if (!Env)
return;
while (*Env)
insert(*Env++);
}
void Environment::insert(const_iterator first, const_iterator last) {
while (first != last) {
try_emplace(first->first(), first->second);
++first;
}
}