llvm-project/llvm/lib/Target/X86/X86SchedHaswell.td

818 lines
22 KiB
TableGen
Raw Normal View History

//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Haswell to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
def HaswellModel : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and HW can decode 4
// instructions per cycle.
let IssueWidth = 4;
let MicroOpBufferSize = 192; // Based on the reorder buffer.
let LoadLatency = 4;
let MispredictPenalty = 16;
// Based on the LSD (loop-stream detector) queue size and benchmarking data.
let LoopMicroOpBufferSize = 50;
// FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = HaswellModel in {
// Haswell can issue micro-ops to 8 different ports in one cycle.
// Ports 0, 1, 5, and 6 handle all computation.
// Port 4 gets the data half of stores. Store data can be available later than
// the store address, but since we don't model the latency of stores, we can
// ignore that.
// Ports 2 and 3 are identical. They handle loads and the address half of
// stores. Port 7 can handle address calculations.
def HWPort0 : ProcResource<1>;
def HWPort1 : ProcResource<1>;
def HWPort2 : ProcResource<1>;
def HWPort3 : ProcResource<1>;
def HWPort4 : ProcResource<1>;
def HWPort5 : ProcResource<1>;
def HWPort6 : ProcResource<1>;
def HWPort7 : ProcResource<1>;
// Many micro-ops are capable of issuing on multiple ports.
def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>;
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
def HWPort056: ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
// 60 Entry Unified Scheduler
def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
HWPort5, HWPort6, HWPort7]> {
let BufferSize=60;
}
// Integer division issued on port 0.
def HWDivider : ProcResource<1>;
// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 4>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when queued in the reservation station.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
ProcResourceKind ExePort,
int Lat> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
// Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
let Latency = !add(Lat, 4);
}
}
// A folded store needs a cycle on port 4 for the store data, but it does not
// need an extra port 2/3 cycle to recompute the address.
def : WriteRes<WriteRMW, [HWPort4]>;
// Store_addr on 237.
// Store_data on 4.
def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
def : WriteRes<WriteMove, [HWPort0156]>;
def : WriteRes<WriteZero, []>;
defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
def : WriteRes<WriteIMulH, []> { let Latency = 3; }
defm : HWWriteResPair<WriteShift, HWPort06, 1>;
defm : HWWriteResPair<WriteJump, HWPort06, 1>;
// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
def : WriteRes<WriteLEA, [HWPort15]>;
// This is quite rough, latency depends on the dividend.
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
let Latency = 29;
let ResourceCycles = [1, 1, 10];
}
// Scalar and vector floating point.
defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
defm : HWWriteResPair<WriteFShuffle, HWPort5, 1>;
defm : HWWriteResPair<WriteFBlend, HWPort015, 1>;
defm : HWWriteResPair<WriteFShuffle256, HWPort5, 3>;
def : WriteRes<WriteFVarBlend, [HWPort5]> {
let Latency = 2;
let ResourceCycles = [2];
}
def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
let Latency = 6;
let ResourceCycles = [2, 1];
}
// Vector integer operations.
defm : HWWriteResPair<WriteVecShift, HWPort0, 1>;
defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
defm : HWWriteResPair<WriteShuffle, HWPort5, 1>;
defm : HWWriteResPair<WriteBlend, HWPort15, 1>;
defm : HWWriteResPair<WriteShuffle256, HWPort5, 3>;
def : WriteRes<WriteVarBlend, [HWPort5]> {
let Latency = 2;
let ResourceCycles = [2];
}
def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
let Latency = 6;
let ResourceCycles = [2, 1];
}
def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
let Latency = 2;
let ResourceCycles = [2, 1];
}
def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
let Latency = 6;
let ResourceCycles = [2, 1, 1];
}
def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
let Latency = 6;
let ResourceCycles = [1, 2];
}
def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
let Latency = 6;
let ResourceCycles = [1, 1, 2];
}
// String instructions.
// Packed Compare Implicit Length Strings, Return Mask
def : WriteRes<WritePCmpIStrM, [HWPort0]> {
let Latency = 10;
let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
let Latency = 10;
let ResourceCycles = [3, 1];
}
// Packed Compare Explicit Length Strings, Return Mask
def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
let Latency = 10;
let ResourceCycles = [3, 2, 4];
}
def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
let Latency = 10;
let ResourceCycles = [6, 2, 1];
}
// Packed Compare Implicit Length Strings, Return Index
def : WriteRes<WritePCmpIStrI, [HWPort0]> {
let Latency = 11;
let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
let Latency = 11;
let ResourceCycles = [3, 1];
}
// Packed Compare Explicit Length Strings, Return Index
def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
let Latency = 11;
let ResourceCycles = [6, 2];
}
def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
let Latency = 11;
let ResourceCycles = [3, 2, 2, 1];
}
// AES Instructions.
def : WriteRes<WriteAESDecEnc, [HWPort5]> {
let Latency = 7;
let ResourceCycles = [1];
}
def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
let Latency = 7;
let ResourceCycles = [1, 1];
}
def : WriteRes<WriteAESIMC, [HWPort5]> {
let Latency = 14;
let ResourceCycles = [2];
}
def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
let Latency = 14;
let ResourceCycles = [2, 1];
}
def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
let Latency = 10;
let ResourceCycles = [2, 8];
}
def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
let Latency = 10;
let ResourceCycles = [2, 7, 1];
}
// Carry-less multiplication instructions.
def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
let Latency = 7;
let ResourceCycles = [2, 1];
}
def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
let Latency = 7;
let ResourceCycles = [2, 1, 1];
}
def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteFence, [HWPort23, HWPort4]>;
def : WriteRes<WriteNop, []>;
//================ Exceptions ================//
//-- Specific Scheduling Models --//
def WriteP1_Lat3 : SchedWriteRes<[HWPort1]> {
let Latency = 3;
}
def WriteP1_Lat3Ld : SchedWriteRes<[HWPort1, HWPort23]> {
let Latency = 7;
}
def Write2P0156_Lat2 : SchedWriteRes<[HWPort0156]> {
let Latency = 2;
let ResourceCycles = [2];
}
def Write2P0156_Lat2Ld : SchedWriteRes<[HWPort0156, HWPort23]> {
let Latency = 6;
let ResourceCycles = [2, 1];
}
def Write2P237_P4 : SchedWriteRes<[HWPort237, HWPort4]> {
let Latency = 1;
let ResourceCycles = [2, 1];
}
def WriteP06 : SchedWriteRes<[HWPort06]>;
def Write2P06 : SchedWriteRes<[HWPort06]> {
let Latency = 1;
let NumMicroOps = 2;
let ResourceCycles = [2];
}
def WriteP15 : SchedWriteRes<[HWPort15]>;
def WriteP15Ld : SchedWriteRes<[HWPort15, HWPort23]> {
let Latency = 4;
}
def Write3P06_Lat2 : SchedWriteRes<[HWPort06]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [3];
}
def WriteP0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
let Latency = 1;
let ResourceCycles = [1, 2, 1];
}
def Write2P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
let Latency = 1;
let ResourceCycles = [2, 2, 1];
}
def Write3P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
let Latency = 1;
let ResourceCycles = [3, 2, 1];
}
// Notation:
// - r: register.
// - mm: 64 bit mmx register.
// - x = 128 bit xmm register.
// - (x)mm = mmx or xmm register.
// - y = 256 bit ymm register.
// - v = any vector register.
// - m = memory.
//=== Integer Instructions ===//
//-- Move instructions --//
// MOV.
// r16,m.
def : InstRW<[WriteALULd], (instregex "MOV16rm")>;
// MOVSX, MOVZX.
// r,m.
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
// CMOVcc.
// r,r.
def : InstRW<[Write2P0156_Lat2],
(instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>;
// r,m.
def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd],
(instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>;
// XCHG.
// r,r.
def WriteXCHG : SchedWriteRes<[HWPort0156]> {
let Latency = 2;
let ResourceCycles = [3];
}
def : InstRW<[WriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>;
// r,m.
def WriteXCHGrm : SchedWriteRes<[]> {
let Latency = 21;
let NumMicroOps = 8;
}
def : InstRW<[WriteXCHGrm], (instregex "XCHG(8|16|32|64)rm")>;
// XLAT.
def WriteXLAT : SchedWriteRes<[]> {
let Latency = 7;
let NumMicroOps = 3;
}
def : InstRW<[WriteXLAT], (instregex "XLAT")>;
// PUSH.
// m.
def : InstRW<[Write2P237_P4], (instregex "PUSH(16|32)rmm")>;
// PUSHF.
def WritePushF : SchedWriteRes<[HWPort1, HWPort4, HWPort237, HWPort06]> {
let NumMicroOps = 4;
}
def : InstRW<[WritePushF], (instregex "PUSHF(16|32)")>;
// PUSHA.
def WritePushA : SchedWriteRes<[]> {
let NumMicroOps = 19;
}
def : InstRW<[WritePushA], (instregex "PUSHA(16|32)")>;
// POP.
// m.
def : InstRW<[Write2P237_P4], (instregex "POP(16|32)rmm")>;
// POPF.
def WritePopF : SchedWriteRes<[]> {
let NumMicroOps = 9;
}
def : InstRW<[WritePopF], (instregex "POPF(16|32)")>;
// POPA.
def WritePopA : SchedWriteRes<[]> {
let NumMicroOps = 18;
}
def : InstRW<[WritePopA], (instregex "POPA(16|32)")>;
// LAHF SAHF.
def : InstRW<[WriteP06], (instregex "(S|L)AHF")>;
// BSWAP.
// r32.
def WriteBSwap32 : SchedWriteRes<[HWPort15]>;
def : InstRW<[WriteBSwap32], (instregex "BSWAP32r")>;
// r64.
def WriteBSwap64 : SchedWriteRes<[HWPort06, HWPort15]> {
let NumMicroOps = 2;
}
def : InstRW<[WriteBSwap64], (instregex "BSWAP64r")>;
// MOVBE.
// r16,m16 / r64,m64.
def : InstRW<[Write2P0156_Lat2Ld], (instregex "MOVBE(16|64)rm")>;
// r32, m32.
def WriteMoveBE32rm : SchedWriteRes<[HWPort15, HWPort23]> {
let NumMicroOps = 2;
}
def : InstRW<[WriteMoveBE32rm], (instregex "MOVBE32rm")>;
// m16,r16.
def WriteMoveBE16mr : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
let NumMicroOps = 3;
}
def : InstRW<[WriteMoveBE16mr], (instregex "MOVBE16mr")>;
// m32,r32.
def WriteMoveBE32mr : SchedWriteRes<[HWPort15, HWPort237, HWPort4]> {
let NumMicroOps = 3;
}
def : InstRW<[WriteMoveBE32mr], (instregex "MOVBE32mr")>;
// m64,r64.
def WriteMoveBE64mr : SchedWriteRes<[HWPort06, HWPort15, HWPort237, HWPort4]> {
let NumMicroOps = 4;
}
def : InstRW<[WriteMoveBE64mr], (instregex "MOVBE64mr")>;
//-- Arithmetic instructions --//
// ADD SUB.
// m,r/i.
def : InstRW<[Write2P0156_2P237_P4],
(instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
"(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>;
// ADC SBB.
// r,r/i.
def : InstRW<[Write2P0156_Lat2], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)",
"(ADC|SBB)(16|32|64)ri8",
"(ADC|SBB)64ri32",
"(ADC|SBB)(8|16|32|64)rr_REV")>;
// r,m.
def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd], (instregex "(ADC|SBB)(8|16|32|64)rm")>;
// m,r/i.
def : InstRW<[Write3P0156_2P237_P4],
(instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
"(ADC|SBB)(16|32|64)mi8",
"(ADC|SBB)64mi32")>;
// INC DEC NOT NEG.
// m.
def : InstRW<[WriteP0156_2P237_P4],
(instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m",
"(INC|DEC)64(16|32)m")>;
// MUL IMUL.
// r16.
def WriteMul16 : SchedWriteRes<[HWPort1, HWPort0156]> {
let Latency = 4;
let NumMicroOps = 4;
}
def : InstRW<[WriteMul16], (instregex "IMUL16r", "MUL16r")>;
// m16.
def WriteMul16Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
let Latency = 8;
let NumMicroOps = 5;
}
def : InstRW<[WriteMul16Ld], (instregex "IMUL16m", "MUL16m")>;
// r32.
def WriteMul32 : SchedWriteRes<[HWPort1, HWPort0156]> {
let Latency = 4;
let NumMicroOps = 3;
}
def : InstRW<[WriteMul32], (instregex "IMUL32r", "MUL32r")>;
// m32.
def WriteMul32Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
let Latency = 8;
let NumMicroOps = 4;
}
def : InstRW<[WriteMul32Ld], (instregex "IMUL32m", "MUL32m")>;
// r64.
def WriteMul64 : SchedWriteRes<[HWPort1, HWPort6]> {
let Latency = 3;
let NumMicroOps = 2;
}
def : InstRW<[WriteMul64], (instregex "IMUL64r", "MUL64r")>;
// m64.
def WriteMul64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
let Latency = 7;
let NumMicroOps = 3;
}
def : InstRW<[WriteMul64Ld], (instregex "IMUL64m", "MUL64m")>;
// r16,r16.
def WriteMul16rri : SchedWriteRes<[HWPort1, HWPort0156]> {
let Latency = 4;
let NumMicroOps = 2;
}
def : InstRW<[WriteMul16rri], (instregex "IMUL16rri", "IMUL16rri8")>;
// r16,m16.
def WriteMul16rmi : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
let Latency = 8;
let NumMicroOps = 3;
}
def : InstRW<[WriteMul16rmi], (instregex "IMUL16rmi", "IMUL16rmi8")>;
// MULX.
// r32,r32,r32.
def WriteMulX32 : SchedWriteRes<[HWPort1, HWPort056]> {
let Latency = 4;
let NumMicroOps = 3;
let ResourceCycles = [1, 2];
}
def : InstRW<[WriteMulX32], (instregex "MULX32rr")>;
// r32,r32,m32.
def WriteMulX32Ld : SchedWriteRes<[HWPort1, HWPort056, HWPort23]> {
let Latency = 8;
let NumMicroOps = 4;
let ResourceCycles = [1, 2, 1];
}
def : InstRW<[WriteMulX32Ld], (instregex "MULX32rm")>;
// r64,r64,r64.
def WriteMulX64 : SchedWriteRes<[HWPort1, HWPort6]> {
let Latency = 4;
let NumMicroOps = 2;
}
def : InstRW<[WriteMulX64], (instregex "MULX64rr")>;
// r64,r64,m64.
def WriteMulX64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
let Latency = 8;
let NumMicroOps = 3;
}
def : InstRW<[WriteMulX64Ld], (instregex "MULX64rm")>;
// DIV.
// r8.
def WriteDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 22;
let NumMicroOps = 9;
}
def : InstRW<[WriteDiv8], (instregex "DIV8r")>;
// r16.
def WriteDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 23;
let NumMicroOps = 10;
}
def : InstRW<[WriteDiv16], (instregex "DIV16r")>;
// r32.
def WriteDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 22;
let NumMicroOps = 10;
}
def : InstRW<[WriteDiv32], (instregex "DIV32r")>;
// r64.
def WriteDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 32;
let NumMicroOps = 36;
}
def : InstRW<[WriteDiv64], (instregex "DIV64r")>;
// IDIV.
// r8.
def WriteIDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 23;
let NumMicroOps = 9;
}
def : InstRW<[WriteIDiv8], (instregex "IDIV8r")>;
// r16.
def WriteIDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 23;
let NumMicroOps = 10;
}
def : InstRW<[WriteIDiv16], (instregex "IDIV16r")>;
// r32.
def WriteIDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 22;
let NumMicroOps = 9;
}
def : InstRW<[WriteIDiv32], (instregex "IDIV32r")>;
// r64.
def WriteIDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
let Latency = 39;
let NumMicroOps = 59;
}
def : InstRW<[WriteIDiv64], (instregex "IDIV64r")>;
//-- Logic instructions --//
// AND OR XOR.
// m,r/i.
def : InstRW<[Write2P0156_2P237_P4],
(instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
"(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
// SHR SHL SAR.
// m,i.
def WriteShiftRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
let NumMicroOps = 4;
let ResourceCycles = [2, 1, 1];
}
def : InstRW<[WriteShiftRMW], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;
// r,cl.
def : InstRW<[Write3P06_Lat2], (instregex "S(A|H)(R|L)(8|16|32|64)rCL")>;
// m,cl.
def WriteShiftClLdRMW : SchedWriteRes<[HWPort06, HWPort23, HWPort4]> {
let NumMicroOps = 6;
let ResourceCycles = [3, 2, 1];
}
def : InstRW<[WriteShiftClLdRMW], (instregex "S(A|H)(R|L)(8|16|32|64)mCL")>;
// ROR ROL.
// r,1.
def : InstRW<[Write2P06], (instregex "RO(R|L)(8|16|32|64)r1")>;
// m,i.
def WriteRotateRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
let NumMicroOps = 5;
let ResourceCycles = [2, 2, 1];
}
def : InstRW<[WriteRotateRMW], (instregex "RO(R|L)(8|16|32|64)mi")>;
// r,cl.
def : InstRW<[Write3P06_Lat2], (instregex "RO(R|L)(8|16|32|64)rCL")>;
// m,cl.
def WriteRotateRMWCL : SchedWriteRes<[]> {
let NumMicroOps = 6;
}
def : InstRW<[WriteRotateRMWCL], (instregex "RO(R|L)(8|16|32|64)mCL")>;
// RCR RCL.
// r,1.
def WriteRCr1 : SchedWriteRes<[HWPort06, HWPort0156]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [2, 1];
}
def : InstRW<[WriteRCr1], (instregex "RC(R|L)(8|16|32|64)r1")>;
// m,1.
def WriteRCm1 : SchedWriteRes<[]> {
let NumMicroOps = 6;
}
def : InstRW<[WriteRCm1], (instregex "RC(R|L)(8|16|32|64)m1")>;
// r,i.
def WriteRCri : SchedWriteRes<[HWPort0156]> {
let Latency = 6;
let NumMicroOps = 8;
}
def : InstRW<[WriteRCri], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>;
// m,i.
def WriteRCmi : SchedWriteRes<[]> {
let NumMicroOps = 11;
}
def : InstRW<[WriteRCmi], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>;
// SHRD SHLD.
// r,r,i.
def WriteShDrr : SchedWriteRes<[HWPort1]> {
let Latency = 3;
}
def : InstRW<[WriteShDrr], (instregex "SH(R|L)D(16|32|64)rri8")>;
// m,r,i.
def WriteShDmr : SchedWriteRes<[]> {
let NumMicroOps = 5;
}
def : InstRW<[WriteShDmr], (instregex "SH(R|L)D(16|32|64)mri8")>;
// r,r,cl.
def WriteShlDCL : SchedWriteRes<[HWPort0156]> {
let Latency = 3;
let NumMicroOps = 4;
}
def : InstRW<[WriteShlDCL], (instregex "SHLD(16|32|64)rrCL")>;
// r,r,cl.
def WriteShrDCL : SchedWriteRes<[HWPort0156]> {
let Latency = 4;
let NumMicroOps = 4;
}
def : InstRW<[WriteShrDCL], (instregex "SHRD(16|32|64)rrCL")>;
// m,r,cl.
def WriteShDmrCL : SchedWriteRes<[]> {
let NumMicroOps = 7;
}
def : InstRW<[WriteShDmrCL], (instregex "SH(R|L)D(16|32|64)mrCL")>;
// BT.
// r,r/i.
def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>;
// m,r.
def WriteBTmr : SchedWriteRes<[]> {
let NumMicroOps = 10;
}
def : InstRW<[WriteBTmr], (instregex "BT(16|32|64)mr")>;
// m,i.
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;
// BTR BTS BTC.
// r,r,i.
def : InstRW<[WriteShift], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;
// m,r.
def WriteBTRSCmr : SchedWriteRes<[]> {
let NumMicroOps = 11;
}
def : InstRW<[WriteBTRSCmr], (instregex "BT(R|S|C)(16|32|64)mr")>;
// m,i.
def : InstRW<[WriteShiftLd], (instregex "BT(R|S|C)(16|32|64)mi8")>;
// BSF BSR.
// r,r.
def : InstRW<[WriteP1_Lat3], (instregex "BS(R|F)(16|32|64)rr")>;
// r,m.
def : InstRW<[WriteP1_Lat3Ld], (instregex "BS(R|F)(16|32|64)rm")>;
// SETcc.
// r.
def : InstRW<[WriteShift],
(instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>;
// m.
def WriteSetCCm : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
let NumMicroOps = 3;
}
def : InstRW<[WriteSetCCm],
(instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>;
// CLD STD.
def WriteCldStd : SchedWriteRes<[HWPort15, HWPort6]> {
let NumMicroOps = 3;
}
def : InstRW<[WriteCldStd], (instregex "STD", "CLD")>;
// LZCNT TZCNT.
// r,r.
def : InstRW<[WriteP1_Lat3], (instregex "(L|TZCNT)(16|32|64)rr")>;
// r,m.
def : InstRW<[WriteP1_Lat3Ld], (instregex "(L|TZCNT)(16|32|64)rm")>;
// ANDN.
// r,r.
def : InstRW<[WriteP15], (instregex "ANDN(32|64)rr")>;
// r,m.
def : InstRW<[WriteP15Ld], (instregex "ANDN(32|64)rm")>;
// BLSI BLSMSK BLSR.
// r,r.
def : InstRW<[WriteP15], (instregex "BLS(I|MSK|R)(32|64)rr")>;
// r,m.
def : InstRW<[WriteP15Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;
// BEXTR.
// r,r,r.
def : InstRW<[Write2P0156_Lat2], (instregex "BEXTR(32|64)rr")>;
// r,m,r.
def : InstRW<[Write2P0156_Lat2Ld], (instregex "BEXTR(32|64)rm")>;
// BZHI.
// r,r,r.
def : InstRW<[WriteP15], (instregex "BZHI(32|64)rr")>;
// r,m,r.
def : InstRW<[WriteP15Ld], (instregex "BZHI(32|64)rm")>;
// PDEP PEXT.
// r,r,r.
def : InstRW<[WriteP1_Lat3], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
// r,m,r.
def : InstRW<[WriteP1_Lat3Ld], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;
} // SchedModel