llvm-project/polly/lib/Transform/ScheduleOptimizer.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1681 lines
69 KiB
C++
Raw Normal View History

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
AST Generation Paper published in TOPLAS The July issue of TOPLAS contains a 50 page discussion of the AST generation techniques used in Polly. This discussion gives not only an in-depth description of how we (re)generate an imperative AST from our polyhedral based mathematical program description, but also gives interesting insights about: - Schedule trees: A tree-based mathematical program description that enables us to perform loop transformations on an abstract level, while issues like the generation of the correct loop structure and loop bounds will be taken care of by our AST generator. - Polyhedral unrolling: We discuss techniques that allow the unrolling of non-trivial loops in the context of parameteric loop bounds, complex tile shapes and conditionally executed statements. Such unrolling support enables the generation of predicated code e.g. in the context of GPGPU computing. - Isolation for full/partial tile separation: We discuss native support for handling full/partial tile separation and -- in general -- native support for isolation of boundary cases to enable smooth code generation for core computations. - AST generation with modulo constraints: We discuss how modulo mappings are lowered to efficient C/LLVM code. - User-defined constraint sets for run-time checks We discuss how arbitrary sets of constraints can be used to automatically create run-time checks that ensure a set of constrainst actually hold. This feature is very useful to verify at run-time various assumptions that have been taken program optimization. Polyhedral AST generation is more than scanning polyhedra Tobias Grosser, Sven Verdoolaege, Albert Cohen ACM Transations on Programming Languages and Systems (TOPLAS), 37(4), July 2015 llvm-svn: 245157
2015-08-15 17:34:33 +08:00
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
AST Generation Paper published in TOPLAS The July issue of TOPLAS contains a 50 page discussion of the AST generation techniques used in Polly. This discussion gives not only an in-depth description of how we (re)generate an imperative AST from our polyhedral based mathematical program description, but also gives interesting insights about: - Schedule trees: A tree-based mathematical program description that enables us to perform loop transformations on an abstract level, while issues like the generation of the correct loop structure and loop bounds will be taken care of by our AST generator. - Polyhedral unrolling: We discuss techniques that allow the unrolling of non-trivial loops in the context of parameteric loop bounds, complex tile shapes and conditionally executed statements. Such unrolling support enables the generation of predicated code e.g. in the context of GPGPU computing. - Isolation for full/partial tile separation: We discuss native support for handling full/partial tile separation and -- in general -- native support for isolation of boundary cases to enable smooth code generation for core computations. - AST generation with modulo constraints: We discuss how modulo mappings are lowered to efficient C/LLVM code. - User-defined constraint sets for run-time checks We discuss how arbitrary sets of constraints can be used to automatically create run-time checks that ensure a set of constrainst actually hold. This feature is very useful to verify at run-time various assumptions that have been taken program optimization. Polyhedral AST generation is more than scanning polyhedra Tobias Grosser, Sven Verdoolaege, Albert Cohen ACM Transations on Programming Languages and Systems (TOPLAS), 37(4), July 2015 llvm-svn: 245157
2015-08-15 17:34:33 +08:00
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
AST Generation Paper published in TOPLAS The July issue of TOPLAS contains a 50 page discussion of the AST generation techniques used in Polly. This discussion gives not only an in-depth description of how we (re)generate an imperative AST from our polyhedral based mathematical program description, but also gives interesting insights about: - Schedule trees: A tree-based mathematical program description that enables us to perform loop transformations on an abstract level, while issues like the generation of the correct loop structure and loop bounds will be taken care of by our AST generator. - Polyhedral unrolling: We discuss techniques that allow the unrolling of non-trivial loops in the context of parameteric loop bounds, complex tile shapes and conditionally executed statements. Such unrolling support enables the generation of predicated code e.g. in the context of GPGPU computing. - Isolation for full/partial tile separation: We discuss native support for handling full/partial tile separation and -- in general -- native support for isolation of boundary cases to enable smooth code generation for core computations. - AST generation with modulo constraints: We discuss how modulo mappings are lowered to efficient C/LLVM code. - User-defined constraint sets for run-time checks We discuss how arbitrary sets of constraints can be used to automatically create run-time checks that ensure a set of constrainst actually hold. This feature is very useful to verify at run-time various assumptions that have been taken program optimization. Polyhedral AST generation is more than scanning polyhedra Tobias Grosser, Sven Verdoolaege, Albert Cohen ACM Transations on Programming Languages and Systems (TOPLAS), 37(4), July 2015 llvm-svn: 245157
2015-08-15 17:34:33 +08:00
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Simplify.h"
#include "polly/Support/ISLOStream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> LatencyVectorFma(
"polly-target-latency-vector-fma",
cl::desc("The minimal number of cycles between issuing two "
"dependent consecutive vector fused multiply-add "
"instructions."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> ThroughputVectorFma(
"polly-target-throughput-vector-fma",
cl::desc("A throughput of the processor floating-point arithmetic units "
"expressed in the number of vector fused multiply-add "
"instructions per clock cycle."),
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified or not provided by the
// TargetTransformInfo.
static cl::opt<int> FirstCacheLevelAssociativity(
"polly-target-1st-cache-level-associativity",
cl::desc("The associativity of the first cache level."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultAssociativity(
"polly-target-1st-cache-level-default-associativity",
cl::desc("The default associativity of the first cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelAssociativity(
"polly-target-2nd-cache-level-associativity",
cl::desc("The associativity of the second cache level."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultAssociativity(
"polly-target-2nd-cache-level-default-associativity",
cl::desc("The default associativity of the second cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelSize(
"polly-target-1st-cache-level-size",
cl::desc("The size of the first cache level specified in bytes."),
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultSize(
"polly-target-1st-cache-level-default-size",
cl::desc("The default size of the first cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelSize(
"polly-target-2nd-cache-level-size",
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultSize(
"polly-target-2nd-cache-level-default-size",
cl::desc("The default size of the second cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> VectorRegisterBitwidth(
"polly-target-vector-register-bitwidth",
cl::desc("The size in bits of a vector register (if not set, this "
"information is taken from LLVM's target information."),
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PollyPatternMatchingNcQuotient(
"polly-pattern-matching-nc-quotient",
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
"macro-kernel, by Nr, the parameter of the micro-kernel"),
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
#define THREE_STATISTICS(VARNAME, DESC) \
static Statistic VARNAME[3] = { \
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
"Number of matrix multiplication patterns detected and optimized");
/// Create an isl::union_set, which describes the isolate option based on
/// IsolateDomain.
///
/// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
/// belong to the current band node.
/// @param OutDimsNum A number of dimensions that should belong to
/// the current band node.
static isl::union_set getIsolateOptions(isl::set IsolateDomain,
unsigned OutDimsNum) {
unsigned Dims = IsolateDomain.dim(isl::dim::set);
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
assert(OutDimsNum <= Dims &&
"The isl::set IsolateDomain is used to describe the range of schedule "
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
"dimensions values, which should be isolated. Consequently, the "
"number of its dimensions should be greater than or equal to the "
"number of the schedule dimensions.");
isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
Dims - OutDimsNum, OutDimsNum);
isl::set IsolateOption = IsolateRelation.wrap();
isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
IsolateOption = IsolateOption.set_tuple_id(Id);
return isl::union_set(IsolateOption);
}
namespace {
/// Create an isl::union_set, which describes the specified option for the
/// dimension of the current node.
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
/// @param Option The name of the option.
isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
isl::space Space(Ctx, 0, 1);
auto DimOption = isl::set::universe(Space);
auto Id = isl::id::alloc(Ctx, Option, nullptr);
DimOption = DimOption.set_tuple_id(Id);
return isl::union_set(DimOption);
}
} // namespace
/// Create an isl::union_set, which describes the option of the form
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
isl::space Space = isl::space(Ctx, 0, 0, 1);
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
return UnrollIsolatedSetOption.wrap();
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
}
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
///
/// @param Set A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
unsigned Dims = Set.dim(isl::dim::set);
isl::space Space = Set.get_space();
isl::local_space LocalSpace = isl::local_space(Space);
isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(0);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
Set = Set.add_constraint(ExtConstr);
ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
return Set.add_constraint(ExtConstr);
}
isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
unsigned Dims = ScheduleRange.dim(isl::dim::set);
isl::set LoopPrefixes =
ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
return LoopPrefixes.subtract(BadPrefixes);
}
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
isl::set ScheduleRange = ScheduleRelation.range();
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
Node = Node.band_set_ast_build_options(Options);
return Node;
}
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto ScheduleDimensions = Space.dim(isl::dim::set);
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl::manage(
isl_schedule_node_band_split(Node.release(), DimToVectorize));
Node = Node.child(0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Sizes = isl::multi_val::zero(Space);
Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = Node.child(0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = Node.band_set_ast_build_options(
isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
Node = Node.child(0);
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
Node = Node.parent();
auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
PrevectOpts++;
return Node.insert_mark(LoopMarker);
}
isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
const char *Identifier,
ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
auto Sizes = isl::multi_val::zero(Space);
std::string IdentifierString(Identifier);
for (unsigned i = 0; i < Dims; i++) {
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
}
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
auto TileLoopMarker =
isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
Node = Node.insert_mark(TileLoopMarker);
Node = Node.child(0);
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = Node.child(0);
auto PointLoopMarkerStr = IdentifierString + " - Points";
auto PointLoopMarker =
isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
Node = Node.insert_mark(PointLoopMarker);
return Node.child(0);
}
isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
auto Ctx = Node.get_ctx();
return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
}
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.get()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).get()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node.get()) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node.get()))
return false;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
if (Dims <= 1)
return false;
return isSimpleInnermostBand(Node);
}
__isl_give isl::schedule_node
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
if (FirstLevelTiling) {
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
FirstLevelTileOpts++;
}
if (SecondLevelTiling) {
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
SecondLevelTileOpts++;
}
if (RegisterTiling) {
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
RegisterTileOpts++;
}
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Node;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
for (int i = Dims - 1; i >= 0; i--)
if (Node.band_member_get_coincident(i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos The first dimension.
/// @param SrcPos The second dimension.
/// @return The modified map.
isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
unsigned SrcPos) {
assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
if (DstPos == SrcPos)
return Map;
isl::id DimId;
if (Map.has_tuple_id(DimType))
DimId = Map.get_tuple_id(DimType);
auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
isl::id FreeDimId;
if (Map.has_tuple_id(FreeDim))
FreeDimId = Map.get_tuple_id(FreeDim);
auto MaxDim = std::max(DstPos, SrcPos);
auto MinDim = std::min(DstPos, SrcPos);
Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
if (DimId)
Map = Map.set_tuple_id(DimType, DimId);
if (FreeDimId)
Map = Map.set_tuple_id(FreeDim, FreeDimId);
return Map;
}
/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap The access relation to be checked.
/// @param FirstPos The index of the input dimension that is mapped to
/// the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
/// second output dimension.
/// @return True in case @p AccMap has the expected form and false,
/// otherwise.
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
int &SecondPos) {
isl::space Space = AccMap.get_space();
isl::map Universe = isl::map::universe(Space);
if (Space.dim(isl::dim::out) != 2)
return false;
// MatMul has the form:
// for (i = 0; i < N; i++)
// for (j = 0; j < M; j++)
// for (k = 0; k < P; k++)
// C[i, j] += A[i, k] * B[k, j]
//
// Permutation of three outer loops: 3! = 6 possibilities.
int FirstDims[] = {0, 0, 1, 1, 2, 2};
int SecondDims[] = {1, 2, 2, 0, 0, 1};
for (int i = 0; i < 6; i += 1) {
auto PossibleMatMul =
Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
.equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
AccMap = AccMap.intersect_domain(Domain);
PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
// If AccMap spans entire domain (Non-partial write),
// compute FirstPos and SecondPos.
// If AccMap != PossibleMatMul here (the two maps have been gisted at
// this point), it means that the writes are not complete, or in other
// words, it is a Partial write and Partial writes must be rejected.
if (AccMap.is_equal(PossibleMatMul)) {
if (FirstPos != -1 && FirstPos != FirstDims[i])
continue;
FirstPos = FirstDims[i];
if (SecondPos != -1 && SecondPos != SecondDims[i])
continue;
SecondPos = SecondDims[i];
return true;
}
}
return false;
}
/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the memory access represents the read access
/// to a non-scalar operand of the matrix multiplication and
/// false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
MatMulInfoTy &MMI) {
if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
return false;
auto AccMap = MemAccess->getLatestAccessRelation();
isl::set StmtDomain = MemAccess->getStatement()->getDomain();
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
MMI.ReadFromC = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
MMI.A = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
MMI.B = MemAccess;
return true;
}
return false;
}
/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param PartialSchedule The partial schedule of the SCoP statement.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the corresponding SCoP statement
/// represents matrix multiplication and false,
/// otherwise.
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
MatMulInfoTy &MMI) {
auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
auto MapI =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
auto MapJ =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
auto MapK =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
auto *MemAccessPtr = *MemA;
if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
!(MemAccessPtr->isStrideZero(MapI)) &&
MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
return false;
}
return true;
}
/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param Schedule The schedule of the SCoP statement.
/// @param D The SCoP dependencies.
/// @param Pos The parameter to describe an acceptable true dependence.
/// In case it has a negative value, try to determine its
/// acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
/// and false, otherwise.
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
int &Pos) {
isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
if (Red)
Dep = Dep.unite(Red);
auto DomainSpace = Schedule.get_space().domain();
auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
auto Deltas = Dep.extract_map(Space).deltas();
int DeltasDimNum = Deltas.dim(isl::dim::set);
for (int i = 0; i < DeltasDimNum; i++) {
auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
Pos = Pos < 0 && Val.is_one() ? i : Pos;
if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
return false;
}
if (DeltasDimNum == 0 || Pos < 0)
return false;
return true;
}
/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
/// under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
/// loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
/// and all memory accesses of the SCoP that are different from MA1, MA2,
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
/// of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
/// @D The SCoP dependencies.
/// @MMI Parameters of the matrix multiplication operands.
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
MatMulInfoTy &MMI) {
auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
if (Stmt->size() <= 1)
return false;
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
auto *MemAccessPtr = *MemA;
if (!MemAccessPtr->isLatestArrayKind())
continue;
if (!MemAccessPtr->isWrite())
return false;
auto AccMap = MemAccessPtr->getLatestAccessRelation();
if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
return false;
MMI.WriteToC = MemAccessPtr;
break;
}
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
return false;
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
return false;
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
return false;
return true;
}
/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
unsigned FirstDim,
unsigned SecondDim) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
(unsigned)isl_schedule_node_band_n_member(Node.get()) >
std::max(FirstDim, SecondDim));
auto PartialSchedule =
isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
Node = isl::manage(isl_schedule_node_delete(Node.release()));
return Node.insert_partial_schedule(PartialSchedule);
}
isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
1);
Node = Node.parent().parent();
return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
}
isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
MacroKernelParams.Kc == 1)
return Node;
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
std::vector<int> TileSizes(DimOutNum, 1);
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
Node = Node.parent().parent();
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
// Mark the outermost loop as parallelizable.
Node = Node.band_member_set_coincident(0, true);
return Node.child(0).child(0);
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static struct MicroKernelParamsTy
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
assert(TTI && "The target transform info should be provided.");
// Nvec - Number of double-precision floating-point numbers that can be hold
// by a vector register. Use 2 by default.
long RegisterBitwidth = VectorRegisterBitwidth;
if (RegisterBitwidth == -1)
RegisterBitwidth = TTI->getRegisterBitWidth(true);
auto ElementSize = getMatMulTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
auto Nvec = RegisterBitwidth / ElementSize;
if (Nvec == 0)
Nvec = 2;
[Polly] Fix lib/Transform/ScheduleOptimizer.cpp compilation on Solaris lib/Transform/ScheduleOptimizer.cpp fails to compile on Solaris, both on the 9.x branch (first noticed when running test-release.sh without -no-polly) and on trunk: /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp: In function ‘MicroKernelParamsTy getMicroKernelParams(const llvm::TargetTransformInfo*, polly::MatMulInfoTy)’: /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:914:62: error: call of overloaded ‘sqrt(long unsigned int)’ is ambiguous 914 | ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec; | ^ In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24, from /usr/gcc/9/include/c++/9.1.0/cmath:45, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48: /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:220:21: note: candidate: ‘long double std::sqrt(long double)’ 220 | inline long double sqrt(long double __X) { return __sqrtl(__X); } | ^~~~ /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:186:15: note: candidate: ‘float std::sqrt(float)’ 186 | inline float sqrt(float __X) { return __sqrtf(__X); } | ^~~~ /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:74:15: note: candidate: ‘double std::sqrt(double)’ 74 | extern double sqrt __P((double)); | ^~~~ /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:915:67: error: call of overloaded ‘ceil(long unsigned int)’ is ambiguous 915 | int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr); | ^ In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24, from /usr/gcc/9/include/c++/9.1.0/cmath:45, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12, from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48: /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:196:21: note: candidate: ‘long double std::ceil(long double)’ 196 | inline long double ceil(long double __X) { return __ceill(__X); } | ^~~~ /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:160:15: note: candidate: ‘float std::ceil(float)’ 160 | inline float ceil(float __X) { return __ceilf(__X); } | ^~~~ /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:76:15: note: candidate: ‘double std::ceil(double)’ 76 | extern double ceil __P((double)); | ^~~~ Fixed by adding casts to disambiguate, checked that it now compiles on both amd64-pc-solaris2.11 and sparcv9-sun-solaris2.11 and on x86_64-pc-linux-gnu. Differential Revision: https://reviews.llvm.org/D67442 llvm-svn: 371825
2019-09-13 16:45:06 +08:00
int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
Nvec) *
Nvec;
int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
return {Mr, Nr};
}
namespace {
/// Determine parameters of the target cache.
///
/// @param TTI Target Transform Info.
void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
if (FirstCacheLevelSize == -1) {
if (TTI->getCacheSize(L1DCache).hasValue())
FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
else
FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
}
if (SecondCacheLevelSize == -1) {
if (TTI->getCacheSize(L2DCache).hasValue())
SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
else
SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
}
if (FirstCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L1DCache).hasValue())
FirstCacheLevelAssociativity =
TTI->getCacheAssociativity(L1DCache).getValue();
else
FirstCacheLevelAssociativity =
static_cast<int>(FirstCacheLevelDefaultAssociativity);
}
if (SecondCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L2DCache).hasValue())
SecondCacheLevelAssociativity =
TTI->getCacheAssociativity(L2DCache).getValue();
else
SecondCacheLevelAssociativity =
static_cast<int>(SecondCacheLevelDefaultAssociativity);
}
}
} // namespace
/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param TTI Target Transform Info.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static struct MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
const MicroKernelParamsTy &MicroKernelParams,
MatMulInfoTy MMI) {
getTargetCacheParameters(TTI);
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
// it requires information about the first two levels of a cache to determine
// all the parameters of a macro-kernel. It also checks that an associativity
// degree of a cache level is greater than two. Otherwise, another algorithm
// for determination of the parameters should be used.
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
return {1, 1, 1};
// The quotient should be greater than zero.
if (PollyPatternMatchingNcQuotient <= 0)
return {1, 1, 1};
int Car = floor(
(FirstCacheLevelAssociativity - 1) /
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
// Car can be computed to be zero since it is floor to int.
// On Mac OS, division by 0 does not raise a signal. This causes negative
// tile sizes to be computed. Prevent division by Cac==0 by early returning
// if this happens.
if (Car == 0)
return {1, 1, 1};
auto ElementSize = getMatMulAlignTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
int Kc = (Car * FirstCacheLevelSize) /
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
double Cac =
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
SecondCacheLevelSize;
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
"Matrix block sizes should be greater than zero");
return {Mc, Nc, Kc};
}
/// Create an access relation that is specific to
/// the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
/// the specified access relation.
/// @return The specified access relation.
isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
unsigned SecondDim) {
auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
auto AccessRel = isl::map::universe(AccessRelSpace);
AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
return MapOldIndVar.apply_range(AccessRel);
}
isl::schedule_node createExtensionNode(isl::schedule_node Node,
isl::map ExtensionMap) {
auto Extension = isl::union_map(ExtensionMap);
auto NewNode = isl::schedule_node::from_extension(Extension);
return Node.graft_before(NewNode);
}
/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
MicroKernelParamsTy MicroParams,
MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
// Create a copy statement that corresponds to the memory access to the
// matrix B, the second operand of the matrix multiplication.
Node = Node.parent().parent().parent().parent().parent().parent();
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
unsigned SecondDimSize = MacroParams.Kc;
unsigned ThirdDimSize = MicroParams.Nr;
auto *SAI = Stmt->getParent()->createScopArrayInfo(
MMI.B->getElementType(), "Packed_B",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
auto OldAcc = MMI.B->getLatestAccessRelation();
MMI.B->setNewAccessRelation(AccRel);
auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
MapOldIndVar.dim(isl::dim::out) - 2);
ExtMap = ExtMap.reverse();
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
auto Domain = Stmt->getDomain();
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
auto DomainId = Domain.get_tuple_id();
auto *NewStmt = Stmt->getParent()->addScopStmt(
OldAcc, MMI.B->getLatestAccessRelation(), Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
ExtMap = ExtMap.intersect_range(Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
// Create a copy statement that corresponds to the memory access
// to the matrix A, the first operand of the matrix multiplication.
Node = Node.child(0);
AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
ThirdDimSize = MicroParams.Mr;
SAI = Stmt->getParent()->createScopArrayInfo(
MMI.A->getElementType(), "Packed_A",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
OldAcc = MMI.A->getLatestAccessRelation();
MMI.A->setNewAccessRelation(AccRel);
ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
MapOldIndVar.dim(isl::dim::out) - 3);
ExtMap = ExtMap.reverse();
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
NewStmt = Stmt->getParent()->addScopStmt(
OldAcc, MMI.A->getLatestAccessRelation(), Domain);
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
ExtMap = ExtMap.intersect_range(Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
return Node.child(0).child(0).child(0).child(0).child(0);
}
/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
/// of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
/// to be taken into account.
/// @return The relation mapping original induction variables to the ones
/// produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,
MicroKernelParamsTy MicroKernelParams,
MacroKernelParamsTy MacroKernelParams) {
auto Child = Node.child(0);
auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
if (MapOldIndVar.dim(isl::dim::out) > 9)
return MapOldIndVar.project_out(isl::dim::out, 0,
MapOldIndVar.dim(isl::dim::out) - 9);
return MapOldIndVar;
}
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
///
/// @param Node The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
struct MicroKernelParamsTy MicroKernelParams) {
isl::schedule_node Child = Node.get_child(0);
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
unsigned Dims = Prefix.dim(isl::dim::set);
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
isl::union_set IsolateOption =
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
isl::ctx Ctx = Node.get_ctx();
auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
Node = Node.band_set_ast_build_options(Options);
Node = Node.parent().parent().parent();
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
IsolateOption = getIsolateOptions(Prefix, 3);
Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
Node = Node.band_set_ast_build_options(Options);
Node = Node.child(0).child(0).child(0);
Isolate a set of partial tile prefixes in case of the matrix multiplication optimization Isolate a set of partial tile prefixes to allow hoisting and sinking out of the unrolled innermost loops produced by the optimization of the matrix multiplication. In case it cannot be proved that the number of loop iterations can be evenly divided by tile sizes and we tile and unroll the point loop, the isl generates conditional expressions. Subsequently, the conditional expressions can prevent stores and loads of the unrolled loops from being sunk and hoisted. The patch isolates a set of partial tile prefixes, which have exactly Mr x Nr iterations of the two innermost loops, the result of the loop tiling performed by the matrix multiplication optimization, where Mr and Mr are parameters of the micro-kernel. This helps to get rid of the conditional expressions of the unrolled innermost loops. Probably this approach can be replaced with padding in future. In case of, for example, the gemm from Polybench/C 3.2 and parametric loop bounds, it helps to increase the performance from 7.98 GFlops (27.71% of theoretical peak) to 21.47 GFlops (74.57% of theoretical peak). Hence, we get the same performance as in case of scalar loops bounds. It also cause compile time regression. The compile-time is increased from 0.795 seconds to 0.837 seconds in case of scalar loops bounds and from 1.222 seconds to 1.490 seconds in case of parametric loops bounds. Reviewed-by: Michael Kruse <llvm@meinersbur.de> Differential Revision: https://reviews.llvm.org/D29244 llvm-svn: 294564
2017-02-09 15:10:01 +08:00
return Node;
}
/// Mark @p BasePtr with "Inter iteration alias-free" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @param BasePtr The pointer to be marked.
/// @return The modified isl_schedule_node.
static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
Value *BasePtr) {
if (!BasePtr)
return Node;
auto Id =
isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
return Node.insert_mark(Id).child(0);
}
/// Insert "Loop Vectorizer Disabled" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @return The modified isl_schedule_node.
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
return Node.insert_mark(Id).child(0);
}
/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
return Node;
auto Domain = Node.get_universe_domain();
assert(isl_union_set_n_set(Domain.get()) == 1);
if (Node.get_schedule_depth() != 0 ||
(static_cast<isl_size>(isl::set(Domain).dim(isl::dim::set)) !=
isl_schedule_node_band_n_member(Node.get())))
return Node;
Node = isl::manage(isl_schedule_node_delete(Node.copy()));
auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
auto PartialScheduleMultiPwAff =
isl::multi_union_pw_aff(PartialSchedulePwAff);
PartialScheduleMultiPwAff =
PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
}
isl::schedule_node
ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
const TargetTransformInfo *TTI,
MatMulInfoTy &MMI) {
assert(TTI && "The target transform info should be provided.");
Node = markInterIterationAliasFree(
Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
Node = getBandNodeWithOriginDimOrder(Node);
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
Node = createMacroKernel(Node, MacroKernelParams);
Node = createMicroKernel(Node, MicroKernelParams);
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
MacroKernelParams.Kc == 1)
return Node;
auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
MacroKernelParams);
if (!MapOldIndVar)
return Node;
Node = markLoopVectorizerDisabled(Node.parent()).child(0);
Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
MacroKernelParams, MMI);
}
bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
const Dependences *D,
MatMulInfoTy &MMI) {
auto PartialSchedule = isl::manage(
isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
Node = Node.child(0);
auto LeafType = isl_schedule_node_get_type(Node.get());
Node = Node.parent();
if (LeafType != isl_schedule_node_leaf ||
isl_schedule_node_band_n_member(Node.get()) < 3 ||
Node.get_schedule_depth() != 0 ||
isl_union_map_n_map(PartialSchedule.get()) != 1)
return false;
auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
if (containsMatrMult(NewPartialSchedule, D, MMI))
return true;
return false;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
void *User) {
if (!isTileableBandNode(isl::manage_copy(Node)))
return Node;
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
MatMulInfoTy MMI;
if (PMBasedOpts && User &&
isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
MatMulOpts++;
return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
}
return standardBandOpts(isl::manage(Node), User).release();
}
isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI) {
auto Root = Schedule.get_root();
Root = optimizeScheduleNode(Root, OAI);
return Root.get_schedule();
}
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
Node.release(), optimizeBand,
const_cast<void *>(static_cast<const void *>(OAI))));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
isl::schedule NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
auto NewScheduleMap = NewSchedule.get_map();
auto OldSchedule = S.getSchedule();
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !OldSchedule.is_equal(NewScheduleMap);
return changed;
}
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) {}
~IslScheduleOptimizer() override { isl_schedule_free(LastSchedule); }
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
}
private:
isl_schedule *LastSchedule = nullptr;
};
} // namespace
char IslScheduleOptimizer::ID = 0;
/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version The version of the schedule tree that is analyzed.
/// 0 for the original schedule tree before any transformation.
/// 1 for the schedule tree after isl's rescheduling.
/// 2 for the schedule tree after optimizations are applied
/// (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
auto Root = Schedule.get_root();
if (!Root)
return;
isl_schedule_node_foreach_descendant_top_down(
Root.get(),
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
isl::schedule_node Node = isl::manage_copy(nodeptr);
int Version = *static_cast<int *>(user);
switch (isl_schedule_node_get_type(Node.get())) {
case isl_schedule_node_band: {
NumBands[Version]++;
if (isl_schedule_node_band_get_permutable(Node.get()) ==
isl_bool_true)
NumPermutable[Version]++;
int CountMembers = isl_schedule_node_band_n_member(Node.get());
NumBandMembers[Version] += CountMembers;
for (int i = 0; i < CountMembers; i += 1) {
if (Node.band_member_get_coincident(i))
NumCoincident[Version]++;
}
break;
}
case isl_schedule_node_filter:
NumFilters[Version]++;
break;
case isl_schedule_node_extension:
NumExtension[Version]++;
break;
default:
break;
}
return isl_bool_true;
},
&Version);
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
if (S.isToBeSkipped())
return false;
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
const Dependences &D =
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
return false;
}
if (!D.hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
2014-04-16 15:33:47 +08:00
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = S.getDomains();
if (!Domain)
return false;
ScopsProcessed++;
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
isl::union_map Validity = D.getDependences(ValidityKinds);
isl::union_map Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx().get();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
auto Schedule = SC.compute_schedule();
isl_options_set_on_error(Ctx, OnErrorStatus);
walkScheduleTreeForStatistics(Schedule, 1);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
ScopsRescheduled++;
LLVM_DEBUG({
auto *P = isl_printer_to_str(Ctx);
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule.get());
auto *str = isl_printer_get_str(P);
dbgs() << "NewScheduleTree: \n" << str << "\n";
free(str);
isl_printer_free(P);
});
Function &F = S.getFunction();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
NewSchedule = hoistExtensionNodes(NewSchedule);
walkScheduleTreeForStatistics(NewSchedule, 2);
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
return false;
auto ScopStats = S.getStatistics();
ScopsOptimized++;
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
S.setScheduleTree(NewSchedule);
S.markAsOptimized();
if (OptimizedScops)
errs() << S;
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<DependenceInfo>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)