llvm-project/clang/test/SemaCXX/constant-expression-cxx11.cpp

685 lines
22 KiB
C++
Raw Normal View History

// RUN: %clang_cc1 -triple i686-linux -fsyntax-only -verify -std=c++11 %s
// This version of static_assert just requires a foldable value as the
// expression, not an ICE.
// FIXME: Once we implement the C++11 ICE rules, most uses of this here should
// be converted to static_assert.
#define static_assert_fold(expr, str) \
static_assert(__builtin_constant_p(expr), "not an integral constant expression"); \
static_assert(__builtin_constant_p(expr) ? expr : true, str)
namespace StaticAssertFoldTest {
int x;
static_assert_fold(++x, "test"); // expected-error {{not an integral constant expression}}
static_assert_fold(false, "test"); // expected-error {{test}}
}
// FIXME: support const T& parameters here.
//template<typename T> constexpr T id(const T &t) { return t; }
template<typename T> constexpr T id(T t) { return t; }
// FIXME: support templates here.
//template<typename T> constexpr T min(const T &a, const T &b) {
// return a < b ? a : b;
//}
//template<typename T> constexpr T max(const T &a, const T &b) {
// return a < b ? b : a;
//}
constexpr int min(const int &a, const int &b) { return a < b ? a : b; }
constexpr int max(const int &a, const int &b) { return a < b ? b : a; }
struct MemberZero {
constexpr int zero() { return 0; }
};
namespace DerivedToVBaseCast {
struct U { int n; };
struct V : U { int n; };
struct A : virtual V { int n; };
struct Aa { int n; };
struct B : virtual A, Aa {};
struct C : virtual A, Aa {};
struct D : B, C {};
D d;
constexpr B *p = &d;
constexpr C *q = &d;
static_assert_fold((void*)p != (void*)q, "");
static_assert_fold((A*)p == (A*)q, "");
static_assert_fold((Aa*)p != (Aa*)q, "");
constexpr B &pp = d;
constexpr C &qq = d;
static_assert_fold((void*)&pp != (void*)&qq, "");
static_assert_fold(&(A&)pp == &(A&)qq, "");
static_assert_fold(&(Aa&)pp != &(Aa&)qq, "");
constexpr V *v = p;
constexpr V *w = q;
constexpr V *x = (A*)p;
static_assert_fold(v == w, "");
static_assert_fold(v == x, "");
static_assert_fold((U*)&d == p, "");
static_assert_fold((U*)&d == q, "");
static_assert_fold((U*)&d == v, "");
static_assert_fold((U*)&d == w, "");
static_assert_fold((U*)&d == x, "");
struct X {};
struct Y1 : virtual X {};
struct Y2 : X {};
struct Z : Y1, Y2 {};
Z z;
static_assert_fold((X*)(Y1*)&z != (X*)(Y2*)&z, "");
}
namespace ConstCast {
constexpr int n1 = 0;
constexpr int n2 = const_cast<int&>(n1);
constexpr int *n3 = const_cast<int*>(&n1);
constexpr int n4 = *const_cast<int*>(&n1);
constexpr const int * const *n5 = const_cast<const int* const*>(&n3);
constexpr int **n6 = const_cast<int**>(&n3);
constexpr int n7 = **n5;
constexpr int n8 = **n6;
}
namespace TemplateArgumentConversion {
template<int n> struct IntParam {};
using IntParam0 = IntParam<0>;
// FIXME: This should be accepted once we do constexpr function invocation.
using IntParam0 = IntParam<id(0)>; // expected-error {{not an integral constant expression}}
using IntParam0 = IntParam<MemberZero().zero>; // expected-error {{did you mean to call it with no arguments?}} expected-error {{not an integral constant expression}}
}
namespace CaseStatements {
void f(int n) {
switch (n) {
// FIXME: Produce the 'add ()' fixit for this.
case MemberZero().zero: // desired-error {{did you mean to call it with no arguments?}} expected-error {{not an integer constant expression}}
// FIXME: This should be accepted once we do constexpr function invocation.
case id(1): // expected-error {{not an integer constant expression}}
return;
}
}
}
extern int &Recurse1;
int &Recurse2 = Recurse1, &Recurse1 = Recurse2;
constexpr int &Recurse3 = Recurse2; // expected-error {{must be initialized by a constant expression}}
namespace MemberEnum {
struct WithMemberEnum {
enum E { A = 42 };
} wme;
static_assert_fold(wme.A == 42, "");
}
namespace DefaultArguments {
const int z = int();
constexpr int Sum(int a = 0, const int &b = 0, const int *c = &z, char d = 0) {
return a + b + *c + d;
}
const int four = 4;
constexpr int eight = 8;
constexpr const int twentyseven = 27;
static_assert_fold(Sum() == 0, "");
static_assert_fold(Sum(1) == 1, "");
static_assert_fold(Sum(1, four) == 5, "");
static_assert_fold(Sum(1, eight, &twentyseven) == 36, "");
static_assert_fold(Sum(1, 2, &four, eight) == 15, "");
}
namespace Ellipsis {
// Note, values passed through an ellipsis can't actually be used.
constexpr int F(int a, ...) { return a; }
static_assert_fold(F(0) == 0, "");
static_assert_fold(F(1, 0) == 1, "");
static_assert_fold(F(2, "test") == 2, "");
static_assert_fold(F(3, &F) == 3, "");
int k = 0;
static_assert_fold(F(4, k) == 3, ""); // expected-error {{constant expression}}
}
namespace Recursion {
constexpr int fib(int n) { return n > 1 ? fib(n-1) + fib(n-2) : n; }
static_assert_fold(fib(11) == 89, "");
constexpr int gcd_inner(int a, int b) {
return b == 0 ? a : gcd_inner(b, a % b);
}
constexpr int gcd(int a, int b) {
return gcd_inner(max(a, b), min(a, b));
}
static_assert_fold(gcd(1749237, 5628959) == 7, "");
}
namespace FunctionCast {
// When folding, we allow functions to be cast to different types. Such
// cast functions cannot be called, even if they're constexpr.
constexpr int f() { return 1; }
typedef double (*DoubleFn)();
typedef int (*IntFn)();
int a[(int)DoubleFn(f)()]; // expected-error {{variable length array}}
int b[(int)IntFn(f)()]; // ok
}
namespace StaticMemberFunction {
struct S {
static constexpr int k = 42;
static constexpr int f(int n) { return n * k + 2; }
} s;
constexpr int n = s.f(19);
static_assert_fold(S::f(19) == 800, "");
static_assert_fold(s.f(19) == 800, "");
static_assert_fold(n == 800, "");
}
namespace ParameterScopes {
const int k = 42;
constexpr const int &ObscureTheTruth(const int &a) { return a; }
constexpr const int &MaybeReturnJunk(bool b, const int a) {
return ObscureTheTruth(b ? a : k);
}
static_assert_fold(MaybeReturnJunk(false, 0) == 42, ""); // ok
constexpr int a = MaybeReturnJunk(true, 0); // expected-error {{constant expression}}
constexpr const int MaybeReturnNonstaticRef(bool b, const int a) {
// If ObscureTheTruth returns a reference to 'a', the result is not a
// constant expression even though 'a' is still in scope.
return ObscureTheTruth(b ? a : k);
}
static_assert_fold(MaybeReturnNonstaticRef(false, 0) == 42, ""); // ok
constexpr int b = MaybeReturnNonstaticRef(true, 0); // expected-error {{constant expression}}
constexpr int InternalReturnJunk(int n) {
// FIXME: We should reject this: it never produces a constant expression.
return MaybeReturnJunk(true, n);
}
constexpr int n3 = InternalReturnJunk(0); // expected-error {{must be initialized by a constant expression}}
constexpr int LToR(int &n) { return n; }
constexpr int GrabCallersArgument(bool which, int a, int b) {
return LToR(which ? b : a);
}
static_assert_fold(GrabCallersArgument(false, 1, 2) == 1, "");
static_assert_fold(GrabCallersArgument(true, 4, 8) == 8, "");
}
namespace Pointers {
constexpr int f(int n, const int *a, const int *b, const int *c) {
return n == 0 ? 0 : *a + f(n-1, b, c, a);
}
const int x = 1, y = 10, z = 100;
static_assert_fold(f(23, &x, &y, &z) == 788, "");
constexpr int g(int n, int a, int b, int c) {
return f(n, &a, &b, &c);
}
static_assert_fold(g(23, x, y, z) == 788, "");
}
namespace FunctionPointers {
constexpr int Double(int n) { return 2 * n; }
constexpr int Triple(int n) { return 3 * n; }
constexpr int Twice(int (*F)(int), int n) { return F(F(n)); }
constexpr int Quadruple(int n) { return Twice(Double, n); }
constexpr auto Select(int n) -> int (*)(int) {
return n == 2 ? &Double : n == 3 ? &Triple : n == 4 ? &Quadruple : 0;
}
constexpr int Apply(int (*F)(int), int n) { return F(n); }
static_assert_fold(1 + Apply(Select(4), 5) + Apply(Select(3), 7) == 42, "");
constexpr int Invalid = Apply(Select(0), 0); // expected-error {{must be initialized by a constant expression}}
}
namespace PointerComparison {
int x, y;
static_assert_fold(&x == &y, "false"); // expected-error {{false}}
static_assert_fold(&x != &y, "");
constexpr bool g1 = &x == &y;
constexpr bool g2 = &x != &y;
constexpr bool g3 = &x <= &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool g4 = &x >= &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool g5 = &x < &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool g6 = &x > &y; // expected-error {{must be initialized by a constant expression}}
struct S { int x, y; } s;
static_assert_fold(&s.x == &s.y, "false"); // expected-error {{false}}
static_assert_fold(&s.x != &s.y, "");
static_assert_fold(&s.x <= &s.y, "");
static_assert_fold(&s.x >= &s.y, "false"); // expected-error {{false}}
static_assert_fold(&s.x < &s.y, "");
static_assert_fold(&s.x > &s.y, "false"); // expected-error {{false}}
static_assert_fold(0 == &y, "false"); // expected-error {{false}}
static_assert_fold(0 != &y, "");
constexpr bool n3 = 0 <= &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool n4 = 0 >= &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool n5 = 0 < &y; // expected-error {{must be initialized by a constant expression}}
constexpr bool n6 = 0 > &y; // expected-error {{must be initialized by a constant expression}}
static_assert_fold(&x == 0, "false"); // expected-error {{false}}
static_assert_fold(&x != 0, "");
constexpr bool n9 = &x <= 0; // expected-error {{must be initialized by a constant expression}}
constexpr bool n10 = &x >= 0; // expected-error {{must be initialized by a constant expression}}
constexpr bool n11 = &x < 0; // expected-error {{must be initialized by a constant expression}}
constexpr bool n12 = &x > 0; // expected-error {{must be initialized by a constant expression}}
static_assert_fold(&x == &x, "");
static_assert_fold(&x != &x, "false"); // expected-error {{false}}
static_assert_fold(&x <= &x, "");
static_assert_fold(&x >= &x, "");
static_assert_fold(&x < &x, "false"); // expected-error {{false}}
static_assert_fold(&x > &x, "false"); // expected-error {{false}}
constexpr S* sptr = &s;
// FIXME: This is not a constant expression; check we reject this and move this
// test elsewhere.
constexpr bool dyncast = sptr == dynamic_cast<S*>(sptr);
extern char externalvar[];
// FIXME: This is not a constant expression; check we reject this and move this
// test elsewhere.
constexpr bool constaddress = (void *)externalvar == (void *)0x4000UL; // expected-error {{must be initialized by a constant expression}}
constexpr bool litaddress = "foo" == "foo"; // expected-error {{must be initialized by a constant expression}} expected-warning {{unspecified}}
static_assert_fold(0 != "foo", "");
}
namespace MaterializeTemporary {
constexpr int f(const int &r) { return r; }
constexpr int n = f(1);
constexpr bool same(const int &a, const int &b) { return &a == &b; }
constexpr bool sameTemporary(const int &n) { return same(n, n); }
static_assert_fold(n, "");
static_assert_fold(!same(4, 4), "");
static_assert_fold(same(n, n), "");
static_assert_fold(sameTemporary(9), "");
}
constexpr int strcmp_ce(const char *p, const char *q) {
return (!*p || *p != *q) ? *p - *q : strcmp_ce(p+1, q+1);
}
namespace StringLiteral {
// FIXME: Refactor this once we support constexpr templates.
constexpr int MangleChars(const char *p) {
return *p + 3 * (*p ? MangleChars(p+1) : 0);
}
constexpr int MangleChars(const char16_t *p) {
return *p + 3 * (*p ? MangleChars(p+1) : 0);
}
constexpr int MangleChars(const char32_t *p) {
return *p + 3 * (*p ? MangleChars(p+1) : 0);
}
static_assert_fold(MangleChars("constexpr!") == 1768383, "");
static_assert_fold(MangleChars(u"constexpr!") == 1768383, "");
static_assert_fold(MangleChars(U"constexpr!") == 1768383, "");
constexpr char c0 = "nought index"[0];
constexpr char c1 = "nice index"[10];
constexpr char c2 = "nasty index"[12]; // expected-error {{must be initialized by a constant expression}} expected-warning {{indexes past the end}}
constexpr char c3 = "negative index"[-1]; // expected-error {{must be initialized by a constant expression}} expected-warning {{indexes before the beginning}}
constexpr char c4 = ((char*)(int*)"no reinterpret_casts allowed")[14]; // expected-error {{must be initialized by a constant expression}}
constexpr const char *p = "test" + 2;
static_assert_fold(*p == 's', "");
constexpr const char *max_iter(const char *a, const char *b) {
return *a < *b ? b : a;
}
constexpr const char *max_element(const char *a, const char *b) {
return (a+1 >= b) ? a : max_iter(a, max_element(a+1, b));
}
constexpr const char *begin(const char (&arr)[45]) { return arr; }
constexpr const char *end(const char (&arr)[45]) { return arr + 45; }
constexpr char str[] = "the quick brown fox jumped over the lazy dog";
constexpr const char *max = max_element(begin(str), end(str));
static_assert_fold(*max == 'z', "");
static_assert_fold(max == str + 38, "");
static_assert_fold(strcmp_ce("hello world", "hello world") == 0, "");
static_assert_fold(strcmp_ce("hello world", "hello clang") > 0, "");
static_assert_fold(strcmp_ce("constexpr", "test") < 0, "");
static_assert_fold(strcmp_ce("", " ") < 0, "");
}
namespace Array {
// FIXME: Use templates for these once we support constexpr templates.
constexpr int Sum(const int *begin, const int *end) {
return begin == end ? 0 : *begin + Sum(begin+1, end);
}
constexpr const int *begin(const int (&xs)[5]) { return xs; }
constexpr const int *end(const int (&xs)[5]) { return xs + 5; }
constexpr int xs[] = { 1, 2, 3, 4, 5 };
constexpr int ys[] = { 5, 4, 3, 2, 1 };
constexpr int sum_xs = Sum(begin(xs), end(xs));
static_assert_fold(sum_xs == 15, "");
constexpr int ZipFoldR(int (*F)(int x, int y, int c), int n,
const int *xs, const int *ys, int c) {
return n ? F(*xs, *ys, ZipFoldR(F, n-1, xs+1, ys+1, c)) : c;
}
constexpr int MulAdd(int x, int y, int c) { return x * y + c; }
constexpr int InnerProduct = ZipFoldR(MulAdd, 5, xs, ys, 0);
static_assert_fold(InnerProduct == 35, "");
constexpr int SubMul(int x, int y, int c) { return (x - y) * c; }
constexpr int DiffProd = ZipFoldR(SubMul, 2, xs+3, ys+3, 1);
static_assert_fold(DiffProd == 8, "");
static_assert_fold(ZipFoldR(SubMul, 3, xs+3, ys+3, 1), ""); // expected-error {{constant expression}}
constexpr const int *p = xs + 3;
constexpr int xs4 = p[1]; // ok
constexpr int xs5 = p[2]; // expected-error {{constant expression}}
constexpr int xs0 = p[-3]; // ok
constexpr int xs_1 = p[-4]; // expected-error {{constant expression}}
constexpr int zs[2][2][2][2] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
static_assert_fold(zs[0][0][0][0] == 1, "");
static_assert_fold(zs[1][1][1][1] == 16, "");
static_assert_fold(zs[0][0][0][2] == 3, ""); // expected-error {{constant expression}}
static_assert_fold((&zs[0][0][0][2])[-1] == 2, "");
static_assert_fold(**(**(zs + 1) + 1) == 11, "");
static_assert_fold(*(&(&(*(*&(&zs[2] - 1)[0] + 2 - 2))[2])[-1][-1] + 1) == 11, "");
constexpr int arr[40] = { 1, 2, 3, [8] = 4 };
constexpr int SumNonzero(const int *p) {
return *p + (*p ? SumNonzero(p+1) : 0);
}
constexpr int CountZero(const int *p, const int *q) {
return p == q ? 0 : (*p == 0) + CountZero(p+1, q);
}
static_assert_fold(SumNonzero(arr) == 6, "");
static_assert_fold(CountZero(arr, arr + 40) == 36, "");
}
namespace DependentValues {
struct I { int n; typedef I V[10]; };
I::V x, y;
template<bool B> struct S {
int k;
void f() {
I::V &cells = B ? x : y;
I &i = cells[k];
switch (i.n) {}
}
};
}
namespace Class {
struct A { constexpr A(int a, int b) : k(a + b) {} int k; };
constexpr int fn(const A &a) { return a.k; }
static_assert_fold(fn(A(4,5)) == 9, "");
struct B { int n; int m; } constexpr b = { 0, b.n }; // expected-warning {{uninitialized}}
struct C {
constexpr C(C *this_) : m(42), n(this_->m) {} // ok
int m, n;
};
struct D {
C c;
constexpr D() : c(&c) {}
};
static_assert_fold(D().c.n == 42, "");
struct E {
constexpr E() : p(&p) {}
void *p;
};
constexpr const E &e1 = E(); // expected-error {{constant expression}}
// This is a constant expression if we elide the copy constructor call, and
// is not a constant expression if we don't! But we do, so it is.
// FIXME: The move constructor is not currently implicitly defined as constexpr.
// We notice this when evaluating an expression which uses it, but not when
// checking its initializer.
constexpr E e2 = E(); // unexpected-error {{constant expression}}
static_assert_fold(e2.p == &e2.p, ""); // unexpected-error {{constant expression}}
// FIXME: We don't pass through the fact that 'this' is ::e3 when checking the
// initializer of this declaration.
constexpr E e3; // unexpected-error {{constant expression}}
static_assert_fold(e3.p == &e3.p, "");
extern const class F f;
struct F {
constexpr F() : p(&f.p) {}
const void *p;
};
constexpr F f = F();
struct G {
struct T {
constexpr T(T *p) : u1(), u2(p) {}
union U1 {
constexpr U1() {}
int a, b = 42;
} u1;
union U2 {
constexpr U2(T *p) : c(p->u1.b) {}
int c, d;
} u2;
} t;
constexpr G() : t(&t) {}
} constexpr g;
static_assert_fold(g.t.u1.a == 42, ""); // expected-error {{constant expression}}
static_assert_fold(g.t.u1.b == 42, "");
static_assert_fold(g.t.u2.c == 42, "");
static_assert_fold(g.t.u2.d == 42, ""); // expected-error {{constant expression}}
struct S {
int a, b;
const S *p;
double d;
const char *q;
constexpr S(int n, const S *p) : a(5), b(n), p(p), d(n), q("hello") {}
};
S global(43, &global);
static_assert_fold(S(15, &global).b == 15, "");
constexpr bool CheckS(const S &s) {
return s.a == 5 && s.b == 27 && s.p == &global && s.d == 27. && s.q[3] == 'l';
}
static_assert_fold(CheckS(S(27, &global)), "");
struct Arr {
char arr[3];
constexpr Arr() : arr{'x', 'y', 'z'} {}
};
constexpr int hash(Arr &&a) {
return a.arr[0] + a.arr[1] * 0x100 + a.arr[2] * 0x10000;
}
constexpr int k = hash(Arr());
static_assert_fold(k == 0x007a7978, "");
struct AggregateInit {
const char &c;
int n;
double d;
int arr[5];
void *p;
};
constexpr AggregateInit agg1 = { "hello"[0] };
static_assert_fold(strcmp_ce(&agg1.c, "hello") == 0, "");
static_assert_fold(agg1.n == 0, "");
static_assert_fold(agg1.d == 0.0, "");
static_assert_fold(agg1.arr[-1] == 0, ""); // expected-error {{constant expression}}
static_assert_fold(agg1.arr[0] == 0, "");
static_assert_fold(agg1.arr[4] == 0, "");
static_assert_fold(agg1.arr[5] == 0, ""); // expected-error {{constant expression}}
static_assert_fold(agg1.p == nullptr, "");
namespace SimpleDerivedClass {
struct B {
constexpr B(int n) : a(n) {}
int a;
};
struct D : B {
constexpr D(int n) : B(n) {}
};
constexpr D d(3);
static_assert_fold(d.a == 3, "");
}
struct Base {
constexpr Base(int a = 42, const char *b = "test") : a(a), b(b) {}
int a;
const char *b;
};
struct Base2 {
constexpr Base2(const int &r) : r(r) {}
int q = 123;
// FIXME: When we track the global for which we are computing the initializer,
// use a reference here.
//const int &r;
int r;
};
struct Derived : Base, Base2 {
constexpr Derived() : Base(76), Base2(a) {}
int c = r + b[1];
};
constexpr bool operator==(const Base &a, const Base &b) {
return a.a == b.a && strcmp_ce(a.b, b.b) == 0;
}
constexpr Base base;
constexpr Base base2(76);
constexpr Derived derived;
static_assert_fold(derived.a == 76, "");
static_assert_fold(derived.b[2] == 's', "");
static_assert_fold(derived.c == 76 + 'e', "");
static_assert_fold(derived.q == 123, "");
static_assert_fold(derived.r == 76, "");
static_assert_fold(&derived.r == &derived.a, ""); // expected-error {{}}
static_assert_fold(!(derived == base), "");
static_assert_fold(derived == base2, "");
}
namespace Union {
union U {
int a;
int b;
};
constexpr U u[4] = { { .a = 0 }, { .b = 1 }, { .a = 2 }, { .b = 3 } };
static_assert_fold(u[0].a == 0, "");
static_assert_fold(u[0].b, ""); // expected-error {{constant expression}}
static_assert_fold(u[1].b == 1, "");
static_assert_fold((&u[1].b)[1] == 2, ""); // expected-error {{constant expression}}
static_assert_fold(*(&(u[1].b) + 1 + 1) == 3, ""); // expected-error {{constant expression}}
static_assert_fold((&(u[1]) + 1 + 1)->b == 3, "");
}
namespace Complex {
class complex {
int re, im;
public:
constexpr complex(int re = 0, int im = 0) : re(re), im(im) {}
constexpr complex(const complex &o) : re(o.re), im(o.im) {}
constexpr complex operator-() const { return complex(-re, -im); }
friend constexpr complex operator+(const complex &l, const complex &r) {
return complex(l.re + r.re, l.im + r.im);
}
friend constexpr complex operator-(const complex &l, const complex &r) {
return l + -r;
}
friend constexpr complex operator*(const complex &l, const complex &r) {
return complex(l.re * r.re - l.im * r.im, l.re * r.im + l.im * r.re);
}
friend constexpr bool operator==(const complex &l, const complex &r) {
return l.re == r.re && l.im == r.im;
}
constexpr bool operator!=(const complex &r) const {
return re != r.re || im != r.im;
}
constexpr int real() const { return re; }
constexpr int imag() const { return im; }
};
constexpr complex i = complex(0, 1);
constexpr complex k = (3 + 4*i) * (6 - 4*i);
static_assert_fold(complex(1,0).real() == 1, "");
static_assert_fold(complex(1,0).imag() == 0, "");
static_assert_fold(((complex)1).imag() == 0, "");
static_assert_fold(k.real() == 34, "");
static_assert_fold(k.imag() == 12, "");
static_assert_fold(k - 34 == 12*i, "");
static_assert_fold((complex)1 == complex(1), "");
static_assert_fold((complex)1 != complex(0, 1), "");
static_assert_fold(complex(1) == complex(1), "");
static_assert_fold(complex(1) != complex(0, 1), "");
constexpr complex makeComplex(int re, int im) { return complex(re, im); }
static_assert_fold(makeComplex(1,0) == complex(1), "");
static_assert_fold(makeComplex(1,0) != complex(0, 1), "");
class complex_wrap : public complex {
public:
constexpr complex_wrap(int re, int im = 0) : complex(re, im) {}
constexpr complex_wrap(const complex_wrap &o) : complex(o) {}
};
static_assert_fold((complex_wrap)1 == complex(1), "");
static_assert_fold((complex)1 != complex_wrap(0, 1), "");
static_assert_fold(complex(1) == complex_wrap(1), "");
static_assert_fold(complex_wrap(1) != complex(0, 1), "");
constexpr complex_wrap makeComplexWrap(int re, int im) {
return complex_wrap(re, im);
}
static_assert_fold(makeComplexWrap(1,0) == complex(1), "");
static_assert_fold(makeComplexWrap(1,0) != complex(0, 1), "");
}