llvm-project/llvm/test/CodeGen/X86/mmx-arith.ll

858 lines
34 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+mmx,+sse2 | FileCheck -check-prefix=X32 %s
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+mmx,+sse2 | FileCheck -check-prefix=X64 %s
;; A basic sanity check to make sure that MMX arithmetic actually compiles.
;; First is a straight translation of the original with bitcasts as needed.
define void @test0(x86_mmx* %A, x86_mmx* %B) {
; X32-LABEL: test0:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebp
; X32-NEXT: .cfi_def_cfa_offset 8
; X32-NEXT: .cfi_offset %ebp, -8
; X32-NEXT: movl %esp, %ebp
; X32-NEXT: .cfi_def_cfa_register %ebp
; X32-NEXT: andl $-8, %esp
; X32-NEXT: subl $32, %esp
; X32-NEXT: movl 12(%ebp), %ecx
; X32-NEXT: movl 8(%ebp), %eax
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7]
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X32-NEXT: paddw %xmm0, %xmm1
; X32-NEXT: movdqa {{.*#+}} xmm0 = [255,255,255,255,255,255,255,255]
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: packuswb %xmm1, %xmm1
; X32-NEXT: movq %xmm1, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: paddsb (%ecx), %mm0
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: paddusb (%ecx), %mm0
; X32-NEXT: movq %mm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X32-NEXT: psubw %xmm2, %xmm1
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: packuswb %xmm1, %xmm1
; X32-NEXT: movq %xmm1, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: psubsb (%ecx), %mm0
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: psubusb (%ecx), %mm0
; X32-NEXT: movq %mm0, (%esp)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X32-NEXT: pmullw %xmm1, %xmm2
; X32-NEXT: movdqa %xmm2, %xmm1
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: packuswb %xmm1, %xmm1
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X32-NEXT: pand %xmm2, %xmm1
; X32-NEXT: movdqa %xmm1, %xmm2
; X32-NEXT: pand %xmm0, %xmm2
; X32-NEXT: packuswb %xmm2, %xmm2
; X32-NEXT: movq %xmm2, (%eax)
; X32-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X32-NEXT: por %xmm1, %xmm2
; X32-NEXT: movdqa %xmm2, %xmm1
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: packuswb %xmm1, %xmm1
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X32-NEXT: pxor %xmm2, %xmm1
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: packuswb %xmm1, %xmm1
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: emms
; X32-NEXT: movl %ebp, %esp
; X32-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa %esp, 4
; X32-NEXT: retl
;
; X64-LABEL: test0:
; X64: # %bb.0: # %entry
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7]
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X64-NEXT: paddw %xmm0, %xmm1
; X64-NEXT: movdqa {{.*#+}} xmm0 = [255,255,255,255,255,255,255,255]
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: packuswb %xmm1, %xmm1
; X64-NEXT: movq %xmm1, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq -{{[0-9]+}}(%rsp), %mm0
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: paddsb (%rsi), %mm0
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: paddusb (%rsi), %mm0
; X64-NEXT: movq %mm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X64-NEXT: psubw %xmm2, %xmm1
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: packuswb %xmm1, %xmm1
; X64-NEXT: movq %xmm1, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq -{{[0-9]+}}(%rsp), %mm0
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: psubsb (%rsi), %mm0
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: psubusb (%rsi), %mm0
; X64-NEXT: movq %mm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X64-NEXT: pmullw %xmm1, %xmm2
; X64-NEXT: movdqa %xmm2, %xmm1
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: packuswb %xmm1, %xmm1
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X64-NEXT: pand %xmm2, %xmm1
; X64-NEXT: movdqa %xmm1, %xmm2
; X64-NEXT: pand %xmm0, %xmm2
; X64-NEXT: packuswb %xmm2, %xmm2
; X64-NEXT: movq %xmm2, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm2 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm2 = xmm2[0],xmm0[0],xmm2[1],xmm0[1],xmm2[2],xmm0[2],xmm2[3],xmm0[3],xmm2[4],xmm0[4],xmm2[5],xmm0[5],xmm2[6],xmm0[6],xmm2[7],xmm0[7]
; X64-NEXT: por %xmm1, %xmm2
; X64-NEXT: movdqa %xmm2, %xmm1
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: packuswb %xmm1, %xmm1
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklbw {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3],xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; X64-NEXT: pxor %xmm2, %xmm1
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: packuswb %xmm1, %xmm1
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: emms
; X64-NEXT: retq
entry:
%tmp1 = load x86_mmx, x86_mmx* %A
%tmp3 = load x86_mmx, x86_mmx* %B
%tmp1a = bitcast x86_mmx %tmp1 to <8 x i8>
%tmp3a = bitcast x86_mmx %tmp3 to <8 x i8>
%tmp4 = add <8 x i8> %tmp1a, %tmp3a
%tmp4a = bitcast <8 x i8> %tmp4 to x86_mmx
store x86_mmx %tmp4a, x86_mmx* %A
%tmp7 = load x86_mmx, x86_mmx* %B
%tmp12 = tail call x86_mmx @llvm.x86.mmx.padds.b(x86_mmx %tmp4a, x86_mmx %tmp7)
store x86_mmx %tmp12, x86_mmx* %A
%tmp16 = load x86_mmx, x86_mmx* %B
%tmp21 = tail call x86_mmx @llvm.x86.mmx.paddus.b(x86_mmx %tmp12, x86_mmx %tmp16)
store x86_mmx %tmp21, x86_mmx* %A
%tmp27 = load x86_mmx, x86_mmx* %B
%tmp21a = bitcast x86_mmx %tmp21 to <8 x i8>
%tmp27a = bitcast x86_mmx %tmp27 to <8 x i8>
%tmp28 = sub <8 x i8> %tmp21a, %tmp27a
%tmp28a = bitcast <8 x i8> %tmp28 to x86_mmx
store x86_mmx %tmp28a, x86_mmx* %A
%tmp31 = load x86_mmx, x86_mmx* %B
%tmp36 = tail call x86_mmx @llvm.x86.mmx.psubs.b(x86_mmx %tmp28a, x86_mmx %tmp31)
store x86_mmx %tmp36, x86_mmx* %A
%tmp40 = load x86_mmx, x86_mmx* %B
%tmp45 = tail call x86_mmx @llvm.x86.mmx.psubus.b(x86_mmx %tmp36, x86_mmx %tmp40)
store x86_mmx %tmp45, x86_mmx* %A
%tmp51 = load x86_mmx, x86_mmx* %B
%tmp45a = bitcast x86_mmx %tmp45 to <8 x i8>
%tmp51a = bitcast x86_mmx %tmp51 to <8 x i8>
%tmp52 = mul <8 x i8> %tmp45a, %tmp51a
%tmp52a = bitcast <8 x i8> %tmp52 to x86_mmx
store x86_mmx %tmp52a, x86_mmx* %A
%tmp57 = load x86_mmx, x86_mmx* %B
%tmp57a = bitcast x86_mmx %tmp57 to <8 x i8>
%tmp58 = and <8 x i8> %tmp52, %tmp57a
%tmp58a = bitcast <8 x i8> %tmp58 to x86_mmx
store x86_mmx %tmp58a, x86_mmx* %A
%tmp63 = load x86_mmx, x86_mmx* %B
%tmp63a = bitcast x86_mmx %tmp63 to <8 x i8>
%tmp64 = or <8 x i8> %tmp58, %tmp63a
%tmp64a = bitcast <8 x i8> %tmp64 to x86_mmx
store x86_mmx %tmp64a, x86_mmx* %A
%tmp69 = load x86_mmx, x86_mmx* %B
%tmp69a = bitcast x86_mmx %tmp69 to <8 x i8>
%tmp64b = bitcast x86_mmx %tmp64a to <8 x i8>
%tmp70 = xor <8 x i8> %tmp64b, %tmp69a
%tmp70a = bitcast <8 x i8> %tmp70 to x86_mmx
store x86_mmx %tmp70a, x86_mmx* %A
tail call void @llvm.x86.mmx.emms()
ret void
}
define void @test1(x86_mmx* %A, x86_mmx* %B) {
; X32-LABEL: test1:
; X32: # %bb.0: # %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X32-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm1 = xmm1[0,1,1,3]
; X32-NEXT: paddq %xmm0, %xmm1
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X32-NEXT: movdqa %xmm1, %xmm2
; X32-NEXT: psrlq $32, %xmm2
; X32-NEXT: pmuludq %xmm0, %xmm2
; X32-NEXT: movdqa %xmm0, %xmm3
; X32-NEXT: psrlq $32, %xmm3
; X32-NEXT: pmuludq %xmm1, %xmm3
; X32-NEXT: paddq %xmm2, %xmm3
; X32-NEXT: psllq $32, %xmm3
; X32-NEXT: pmuludq %xmm1, %xmm0
; X32-NEXT: paddq %xmm3, %xmm0
; X32-NEXT: pshufd {{.*#+}} xmm1 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm1 = xmm1[0,1,1,3]
; X32-NEXT: andps %xmm0, %xmm1
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X32-NEXT: orps %xmm1, %xmm0
; X32-NEXT: pshufd {{.*#+}} xmm1 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: shufps {{.*#+}} xmm1 = xmm1[0,1,1,3]
; X32-NEXT: xorps %xmm0, %xmm1
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: emms
; X32-NEXT: retl
;
; X64-LABEL: test1:
; X64: # %bb.0: # %entry
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,1,1,3]
; X64-NEXT: paddq %xmm0, %xmm1
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X64-NEXT: movdqa %xmm1, %xmm2
; X64-NEXT: psrlq $32, %xmm2
; X64-NEXT: pmuludq %xmm0, %xmm2
; X64-NEXT: movdqa %xmm0, %xmm3
; X64-NEXT: psrlq $32, %xmm3
; X64-NEXT: pmuludq %xmm1, %xmm3
; X64-NEXT: paddq %xmm2, %xmm3
; X64-NEXT: psllq $32, %xmm3
; X64-NEXT: pmuludq %xmm0, %xmm1
; X64-NEXT: paddq %xmm3, %xmm1
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X64-NEXT: pand %xmm1, %xmm0
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,1,1,3]
; X64-NEXT: por %xmm0, %xmm1
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,1,3]
; X64-NEXT: pxor %xmm1, %xmm0
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: emms
; X64-NEXT: retq
entry:
%tmp1 = load x86_mmx, x86_mmx* %A
%tmp3 = load x86_mmx, x86_mmx* %B
%tmp1a = bitcast x86_mmx %tmp1 to <2 x i32>
%tmp3a = bitcast x86_mmx %tmp3 to <2 x i32>
%tmp4 = add <2 x i32> %tmp1a, %tmp3a
%tmp4a = bitcast <2 x i32> %tmp4 to x86_mmx
store x86_mmx %tmp4a, x86_mmx* %A
%tmp9 = load x86_mmx, x86_mmx* %B
%tmp9a = bitcast x86_mmx %tmp9 to <2 x i32>
%tmp10 = sub <2 x i32> %tmp4, %tmp9a
%tmp10a = bitcast <2 x i32> %tmp4 to x86_mmx
store x86_mmx %tmp10a, x86_mmx* %A
%tmp15 = load x86_mmx, x86_mmx* %B
%tmp10b = bitcast x86_mmx %tmp10a to <2 x i32>
%tmp15a = bitcast x86_mmx %tmp15 to <2 x i32>
%tmp16 = mul <2 x i32> %tmp10b, %tmp15a
%tmp16a = bitcast <2 x i32> %tmp16 to x86_mmx
store x86_mmx %tmp16a, x86_mmx* %A
%tmp21 = load x86_mmx, x86_mmx* %B
%tmp16b = bitcast x86_mmx %tmp16a to <2 x i32>
%tmp21a = bitcast x86_mmx %tmp21 to <2 x i32>
%tmp22 = and <2 x i32> %tmp16b, %tmp21a
%tmp22a = bitcast <2 x i32> %tmp22 to x86_mmx
store x86_mmx %tmp22a, x86_mmx* %A
%tmp27 = load x86_mmx, x86_mmx* %B
%tmp22b = bitcast x86_mmx %tmp22a to <2 x i32>
%tmp27a = bitcast x86_mmx %tmp27 to <2 x i32>
%tmp28 = or <2 x i32> %tmp22b, %tmp27a
%tmp28a = bitcast <2 x i32> %tmp28 to x86_mmx
store x86_mmx %tmp28a, x86_mmx* %A
%tmp33 = load x86_mmx, x86_mmx* %B
%tmp28b = bitcast x86_mmx %tmp28a to <2 x i32>
%tmp33a = bitcast x86_mmx %tmp33 to <2 x i32>
%tmp34 = xor <2 x i32> %tmp28b, %tmp33a
%tmp34a = bitcast <2 x i32> %tmp34 to x86_mmx
store x86_mmx %tmp34a, x86_mmx* %A
tail call void @llvm.x86.mmx.emms( )
ret void
}
define void @test2(x86_mmx* %A, x86_mmx* %B) {
; X32-LABEL: test2:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebp
; X32-NEXT: .cfi_def_cfa_offset 8
; X32-NEXT: .cfi_offset %ebp, -8
; X32-NEXT: movl %esp, %ebp
; X32-NEXT: .cfi_def_cfa_register %ebp
; X32-NEXT: andl $-8, %esp
; X32-NEXT: subl $48, %esp
; X32-NEXT: movl 12(%ebp), %ecx
; X32-NEXT: movl 8(%ebp), %eax
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X32-NEXT: paddd %xmm0, %xmm1
; X32-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: paddsw (%ecx), %mm0
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: paddusw (%ecx), %mm0
; X32-NEXT: movq %mm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X32-NEXT: psubd %xmm1, %xmm0
; X32-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: psubsw (%ecx), %mm0
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: psubusw (%ecx), %mm0
; X32-NEXT: movq %mm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X32-NEXT: pshufd {{.*#+}} xmm2 = xmm0[1,1,3,3]
; X32-NEXT: pmuludq %xmm1, %xmm0
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: pshufd {{.*#+}} xmm1 = xmm1[1,1,3,3]
; X32-NEXT: pmuludq %xmm2, %xmm1
; X32-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,2,2,3]
; X32-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; X32-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm0, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: pmulhw (%ecx), %mm0
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: pmaddwd (%ecx), %mm0
; X32-NEXT: movq %mm0, (%esp)
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X32-NEXT: movq %mm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X32-NEXT: pand %xmm0, %xmm1
; X32-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X32-NEXT: por %xmm1, %xmm0
; X32-NEXT: pshuflw {{.*#+}} xmm1 = xmm0[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm1 = xmm1[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,2,2,3]
; X32-NEXT: movq %xmm1, (%eax)
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X32-NEXT: pxor %xmm0, %xmm1
; X32-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X32-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X32-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X32-NEXT: movq %xmm0, (%eax)
; X32-NEXT: emms
; X32-NEXT: movl %ebp, %esp
; X32-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa %esp, 4
; X32-NEXT: retl
;
; X64-LABEL: test2:
; X64: # %bb.0: # %entry
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X64-NEXT: paddd %xmm0, %xmm1
; X64-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq -{{[0-9]+}}(%rsp), %mm0
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: paddsw (%rsi), %mm0
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: paddusw (%rsi), %mm0
; X64-NEXT: movq %mm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X64-NEXT: psubd %xmm1, %xmm0
; X64-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq -{{[0-9]+}}(%rsp), %mm0
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: psubsw (%rsi), %mm0
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: psubusw (%rsi), %mm0
; X64-NEXT: movq %mm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X64-NEXT: pshufd {{.*#+}} xmm2 = xmm0[1,1,3,3]
; X64-NEXT: pmuludq %xmm1, %xmm0
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm1[1,1,3,3]
; X64-NEXT: pmuludq %xmm2, %xmm1
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,2,2,3]
; X64-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; X64-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq -{{[0-9]+}}(%rsp), %mm0
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: pmulhw (%rsi), %mm0
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: pmaddwd (%rsi), %mm0
; X64-NEXT: movq %mm0, -{{[0-9]+}}(%rsp)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X64-NEXT: movq %mm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X64-NEXT: pand %xmm0, %xmm1
; X64-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; X64-NEXT: por %xmm1, %xmm0
; X64-NEXT: pshuflw {{.*#+}} xmm1 = xmm0[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm1 = xmm1[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,2,2,3]
; X64-NEXT: movq %xmm1, (%rdi)
; X64-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X64-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; X64-NEXT: pxor %xmm0, %xmm1
; X64-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; X64-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,7]
; X64-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; X64-NEXT: movq %xmm0, (%rdi)
; X64-NEXT: emms
; X64-NEXT: retq
entry:
%tmp1 = load x86_mmx, x86_mmx* %A
%tmp3 = load x86_mmx, x86_mmx* %B
%tmp1a = bitcast x86_mmx %tmp1 to <4 x i16>
%tmp3a = bitcast x86_mmx %tmp3 to <4 x i16>
%tmp4 = add <4 x i16> %tmp1a, %tmp3a
%tmp4a = bitcast <4 x i16> %tmp4 to x86_mmx
store x86_mmx %tmp4a, x86_mmx* %A
%tmp7 = load x86_mmx, x86_mmx* %B
%tmp12 = tail call x86_mmx @llvm.x86.mmx.padds.w(x86_mmx %tmp4a, x86_mmx %tmp7)
store x86_mmx %tmp12, x86_mmx* %A
%tmp16 = load x86_mmx, x86_mmx* %B
%tmp21 = tail call x86_mmx @llvm.x86.mmx.paddus.w(x86_mmx %tmp12, x86_mmx %tmp16)
store x86_mmx %tmp21, x86_mmx* %A
%tmp27 = load x86_mmx, x86_mmx* %B
%tmp21a = bitcast x86_mmx %tmp21 to <4 x i16>
%tmp27a = bitcast x86_mmx %tmp27 to <4 x i16>
%tmp28 = sub <4 x i16> %tmp21a, %tmp27a
%tmp28a = bitcast <4 x i16> %tmp28 to x86_mmx
store x86_mmx %tmp28a, x86_mmx* %A
%tmp31 = load x86_mmx, x86_mmx* %B
%tmp36 = tail call x86_mmx @llvm.x86.mmx.psubs.w(x86_mmx %tmp28a, x86_mmx %tmp31)
store x86_mmx %tmp36, x86_mmx* %A
%tmp40 = load x86_mmx, x86_mmx* %B
%tmp45 = tail call x86_mmx @llvm.x86.mmx.psubus.w(x86_mmx %tmp36, x86_mmx %tmp40)
store x86_mmx %tmp45, x86_mmx* %A
%tmp51 = load x86_mmx, x86_mmx* %B
%tmp45a = bitcast x86_mmx %tmp45 to <4 x i16>
%tmp51a = bitcast x86_mmx %tmp51 to <4 x i16>
%tmp52 = mul <4 x i16> %tmp45a, %tmp51a
%tmp52a = bitcast <4 x i16> %tmp52 to x86_mmx
store x86_mmx %tmp52a, x86_mmx* %A
%tmp55 = load x86_mmx, x86_mmx* %B
%tmp60 = tail call x86_mmx @llvm.x86.mmx.pmulh.w(x86_mmx %tmp52a, x86_mmx %tmp55)
store x86_mmx %tmp60, x86_mmx* %A
%tmp64 = load x86_mmx, x86_mmx* %B
%tmp69 = tail call x86_mmx @llvm.x86.mmx.pmadd.wd(x86_mmx %tmp60, x86_mmx %tmp64)
%tmp70 = bitcast x86_mmx %tmp69 to x86_mmx
store x86_mmx %tmp70, x86_mmx* %A
%tmp75 = load x86_mmx, x86_mmx* %B
%tmp70a = bitcast x86_mmx %tmp70 to <4 x i16>
%tmp75a = bitcast x86_mmx %tmp75 to <4 x i16>
%tmp76 = and <4 x i16> %tmp70a, %tmp75a
%tmp76a = bitcast <4 x i16> %tmp76 to x86_mmx
store x86_mmx %tmp76a, x86_mmx* %A
%tmp81 = load x86_mmx, x86_mmx* %B
%tmp76b = bitcast x86_mmx %tmp76a to <4 x i16>
%tmp81a = bitcast x86_mmx %tmp81 to <4 x i16>
%tmp82 = or <4 x i16> %tmp76b, %tmp81a
%tmp82a = bitcast <4 x i16> %tmp82 to x86_mmx
store x86_mmx %tmp82a, x86_mmx* %A
%tmp87 = load x86_mmx, x86_mmx* %B
%tmp82b = bitcast x86_mmx %tmp82a to <4 x i16>
%tmp87a = bitcast x86_mmx %tmp87 to <4 x i16>
%tmp88 = xor <4 x i16> %tmp82b, %tmp87a
%tmp88a = bitcast <4 x i16> %tmp88 to x86_mmx
store x86_mmx %tmp88a, x86_mmx* %A
tail call void @llvm.x86.mmx.emms( )
ret void
}
define <1 x i64> @test3(<1 x i64>* %a, <1 x i64>* %b, i32 %count) nounwind {
; X32-LABEL: test3:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebp
; X32-NEXT: movl %esp, %ebp
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %edi
; X32-NEXT: pushl %esi
; X32-NEXT: andl $-8, %esp
; X32-NEXT: subl $16, %esp
; X32-NEXT: cmpl $0, 16(%ebp)
; X32-NEXT: je .LBB3_1
; X32-NEXT: # %bb.2: # %bb26.preheader
; X32-NEXT: xorl %ebx, %ebx
; X32-NEXT: xorl %eax, %eax
; X32-NEXT: xorl %edx, %edx
; X32-NEXT: .p2align 4, 0x90
; X32-NEXT: .LBB3_3: # %bb26
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: movl 8(%ebp), %ecx
; X32-NEXT: movl %ecx, %esi
; X32-NEXT: movl (%ecx,%ebx,8), %ecx
; X32-NEXT: movl 4(%esi,%ebx,8), %esi
; X32-NEXT: movl 12(%ebp), %edi
; X32-NEXT: addl (%edi,%ebx,8), %ecx
; X32-NEXT: adcl 4(%edi,%ebx,8), %esi
; X32-NEXT: addl %eax, %ecx
; X32-NEXT: movl %ecx, (%esp)
; X32-NEXT: adcl %edx, %esi
; X32-NEXT: movl %esi, {{[0-9]+}}(%esp)
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: movd %xmm0, %eax
; X32-NEXT: shufps {{.*#+}} xmm0 = xmm0[1,1,0,1]
; X32-NEXT: movd %xmm0, %edx
; X32-NEXT: incl %ebx
; X32-NEXT: cmpl 16(%ebp), %ebx
; X32-NEXT: jb .LBB3_3
; X32-NEXT: jmp .LBB3_4
; X32-NEXT: .LBB3_1:
; X32-NEXT: xorl %eax, %eax
; X32-NEXT: xorl %edx, %edx
; X32-NEXT: .LBB3_4: # %bb31
; X32-NEXT: leal -12(%ebp), %esp
; X32-NEXT: popl %esi
; X32-NEXT: popl %edi
; X32-NEXT: popl %ebx
; X32-NEXT: popl %ebp
; X32-NEXT: retl
;
; X64-LABEL: test3:
; X64: # %bb.0: # %entry
; X64-NEXT: xorl %r8d, %r8d
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: testl %edx, %edx
; X64-NEXT: je .LBB3_2
; X64-NEXT: .p2align 4, 0x90
; X64-NEXT: .LBB3_1: # %bb26
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movslq %r8d, %r8
; X64-NEXT: movq (%rdi,%r8,8), %rcx
; X64-NEXT: addq (%rsi,%r8,8), %rcx
; X64-NEXT: addq %rcx, %rax
; X64-NEXT: incl %r8d
; X64-NEXT: cmpl %edx, %r8d
; X64-NEXT: jb .LBB3_1
; X64-NEXT: .LBB3_2: # %bb31
; X64-NEXT: retq
entry:
%tmp2942 = icmp eq i32 %count, 0
br i1 %tmp2942, label %bb31, label %bb26
bb26:
%i.037.0 = phi i32 [ 0, %entry ], [ %tmp25, %bb26 ]
%sum.035.0 = phi <1 x i64> [ zeroinitializer, %entry ], [ %tmp22, %bb26 ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp13 = getelementptr <1 x i64>, <1 x i64>* %b, i32 %i.037.0
%tmp14 = load <1 x i64>, <1 x i64>* %tmp13
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp18 = getelementptr <1 x i64>, <1 x i64>* %a, i32 %i.037.0
%tmp19 = load <1 x i64>, <1 x i64>* %tmp18
%tmp21 = add <1 x i64> %tmp19, %tmp14
%tmp22 = add <1 x i64> %tmp21, %sum.035.0
%tmp25 = add i32 %i.037.0, 1
%tmp29 = icmp ult i32 %tmp25, %count
br i1 %tmp29, label %bb26, label %bb31
bb31:
%sum.035.1 = phi <1 x i64> [ zeroinitializer, %entry ], [ %tmp22, %bb26 ]
ret <1 x i64> %sum.035.1
}
; There are no MMX operations here, so we use XMM or i64.
define void @ti8(double %a, double %b) nounwind {
; X32-LABEL: ti8:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: paddb %xmm0, %xmm1
; X32-NEXT: movq %xmm1, 0
; X32-NEXT: retl
;
; X64-LABEL: ti8:
; X64: # %bb.0: # %entry
; X64-NEXT: paddb %xmm1, %xmm0
; X64-NEXT: movq %xmm0, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to <8 x i8>
%tmp2 = bitcast double %b to <8 x i8>
%tmp3 = add <8 x i8> %tmp1, %tmp2
store <8 x i8> %tmp3, <8 x i8>* null
ret void
}
define void @ti16(double %a, double %b) nounwind {
; X32-LABEL: ti16:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: paddw %xmm0, %xmm1
; X32-NEXT: movq %xmm1, 0
; X32-NEXT: retl
;
; X64-LABEL: ti16:
; X64: # %bb.0: # %entry
; X64-NEXT: paddw %xmm1, %xmm0
; X64-NEXT: movq %xmm0, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to <4 x i16>
%tmp2 = bitcast double %b to <4 x i16>
%tmp3 = add <4 x i16> %tmp1, %tmp2
store <4 x i16> %tmp3, <4 x i16>* null
ret void
}
define void @ti32(double %a, double %b) nounwind {
; X32-LABEL: ti32:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: movq {{.*#+}} xmm1 = mem[0],zero
; X32-NEXT: paddd %xmm0, %xmm1
; X32-NEXT: movq %xmm1, 0
; X32-NEXT: retl
;
; X64-LABEL: ti32:
; X64: # %bb.0: # %entry
; X64-NEXT: paddd %xmm1, %xmm0
; X64-NEXT: movq %xmm0, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to <2 x i32>
%tmp2 = bitcast double %b to <2 x i32>
%tmp3 = add <2 x i32> %tmp1, %tmp2
store <2 x i32> %tmp3, <2 x i32>* null
ret void
}
define void @ti64(double %a, double %b) nounwind {
; X32-LABEL: ti64:
; X32: # %bb.0: # %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: addl {{[0-9]+}}(%esp), %eax
; X32-NEXT: adcl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl %eax, 0
; X32-NEXT: movl %ecx, 4
; X32-NEXT: retl
;
; X64-LABEL: ti64:
; X64: # %bb.0: # %entry
; X64-NEXT: movq %xmm0, %rax
; X64-NEXT: movq %xmm1, %rcx
; X64-NEXT: addq %rax, %rcx
; X64-NEXT: movq %rcx, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to <1 x i64>
%tmp2 = bitcast double %b to <1 x i64>
%tmp3 = add <1 x i64> %tmp1, %tmp2
store <1 x i64> %tmp3, <1 x i64>* null
ret void
}
; MMX intrinsics calls get us MMX instructions.
define void @ti8a(double %a, double %b) nounwind {
; X32-LABEL: ti8a:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: paddb {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %mm0, 0
; X32-NEXT: retl
;
; X64-LABEL: ti8a:
; X64: # %bb.0: # %entry
; X64-NEXT: movdq2q %xmm0, %mm0
; X64-NEXT: movdq2q %xmm1, %mm1
; X64-NEXT: paddb %mm0, %mm1
; X64-NEXT: movq %mm1, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to x86_mmx
%tmp2 = bitcast double %b to x86_mmx
%tmp3 = tail call x86_mmx @llvm.x86.mmx.padd.b(x86_mmx %tmp1, x86_mmx %tmp2)
store x86_mmx %tmp3, x86_mmx* null
ret void
}
define void @ti16a(double %a, double %b) nounwind {
; X32-LABEL: ti16a:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: paddw {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %mm0, 0
; X32-NEXT: retl
;
; X64-LABEL: ti16a:
; X64: # %bb.0: # %entry
; X64-NEXT: movdq2q %xmm0, %mm0
; X64-NEXT: movdq2q %xmm1, %mm1
; X64-NEXT: paddw %mm0, %mm1
; X64-NEXT: movq %mm1, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to x86_mmx
%tmp2 = bitcast double %b to x86_mmx
%tmp3 = tail call x86_mmx @llvm.x86.mmx.padd.w(x86_mmx %tmp1, x86_mmx %tmp2)
store x86_mmx %tmp3, x86_mmx* null
ret void
}
define void @ti32a(double %a, double %b) nounwind {
; X32-LABEL: ti32a:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: paddd {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %mm0, 0
; X32-NEXT: retl
;
; X64-LABEL: ti32a:
; X64: # %bb.0: # %entry
; X64-NEXT: movdq2q %xmm0, %mm0
; X64-NEXT: movdq2q %xmm1, %mm1
; X64-NEXT: paddd %mm0, %mm1
; X64-NEXT: movq %mm1, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to x86_mmx
%tmp2 = bitcast double %b to x86_mmx
%tmp3 = tail call x86_mmx @llvm.x86.mmx.padd.d(x86_mmx %tmp1, x86_mmx %tmp2)
store x86_mmx %tmp3, x86_mmx* null
ret void
}
define void @ti64a(double %a, double %b) nounwind {
; X32-LABEL: ti64a:
; X32: # %bb.0: # %entry
; X32-NEXT: movq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: paddq {{[0-9]+}}(%esp), %mm0
; X32-NEXT: movq %mm0, 0
; X32-NEXT: retl
;
; X64-LABEL: ti64a:
; X64: # %bb.0: # %entry
; X64-NEXT: movdq2q %xmm0, %mm0
; X64-NEXT: movdq2q %xmm1, %mm1
; X64-NEXT: paddq %mm0, %mm1
; X64-NEXT: movq %mm1, 0
; X64-NEXT: retq
entry:
%tmp1 = bitcast double %a to x86_mmx
%tmp2 = bitcast double %b to x86_mmx
%tmp3 = tail call x86_mmx @llvm.x86.mmx.padd.q(x86_mmx %tmp1, x86_mmx %tmp2)
store x86_mmx %tmp3, x86_mmx* null
ret void
}
declare x86_mmx @llvm.x86.mmx.padd.b(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.padd.w(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.padd.d(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.padd.q(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.paddus.b(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.psubus.b(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.paddus.w(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.psubus.w(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.pmulh.w(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.pmadd.wd(x86_mmx, x86_mmx)
declare void @llvm.x86.mmx.emms()
declare x86_mmx @llvm.x86.mmx.padds.b(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.padds.w(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.psubs.b(x86_mmx, x86_mmx)
declare x86_mmx @llvm.x86.mmx.psubs.w(x86_mmx, x86_mmx)