llvm-project/clang/lib/AST/ExprClassification.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

717 lines
28 KiB
C++
Raw Normal View History

//===- ExprClassification.cpp - Expression AST Node Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Expr::classify.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
using Cl = Expr::Classification;
static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
const Expr *trueExpr,
const Expr *falseExpr);
static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
Cl::Kinds Kind, SourceLocation &Loc);
Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
assert(!TR->isReferenceType() && "Expressions can't have reference type.");
Cl::Kinds kind = ClassifyInternal(Ctx, this);
// C99 6.3.2.1: An lvalue is an expression with an object type or an
// incomplete type other than void.
if (!Ctx.getLangOpts().CPlusPlus) {
// Thus, no functions.
if (TR->isFunctionType() || TR == Ctx.OverloadTy)
kind = Cl::CL_Function;
// No void either, but qualified void is OK because it is "other than void".
// Void "lvalues" are classified as addressable void values, which are void
// expressions whose address can be taken.
else if (TR->isVoidType() && !TR.hasQualifiers())
kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
}
// Enable this assertion for testing.
switch (kind) {
case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
case Cl::CL_Function:
case Cl::CL_Void:
case Cl::CL_AddressableVoid:
case Cl::CL_DuplicateVectorComponents:
case Cl::CL_MemberFunction:
case Cl::CL_SubObjCPropertySetting:
case Cl::CL_ClassTemporary:
case Cl::CL_ArrayTemporary:
case Cl::CL_ObjCMessageRValue:
case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
}
Cl::ModifiableType modifiable = Cl::CM_Untested;
if (Loc)
modifiable = IsModifiable(Ctx, this, kind, *Loc);
return Classification(kind, modifiable);
}
/// Classify an expression which creates a temporary, based on its type.
static Cl::Kinds ClassifyTemporary(QualType T) {
if (T->isRecordType())
return Cl::CL_ClassTemporary;
if (T->isArrayType())
return Cl::CL_ArrayTemporary;
// No special classification: these don't behave differently from normal
// prvalues.
return Cl::CL_PRValue;
}
static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
const Expr *E,
ExprValueKind Kind) {
switch (Kind) {
case VK_RValue:
return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
case VK_LValue:
return Cl::CL_LValue;
case VK_XValue:
return Cl::CL_XValue;
}
llvm_unreachable("Invalid value category of implicit cast.");
}
static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
// This function takes the first stab at classifying expressions.
const LangOptions &Lang = Ctx.getLangOpts();
switch (E->getStmtClass()) {
case Stmt::NoStmtClass:
#define ABSTRACT_STMT(Kind)
#define STMT(Kind, Base) case Expr::Kind##Class:
#define EXPR(Kind, Base)
#include "clang/AST/StmtNodes.inc"
llvm_unreachable("cannot classify a statement");
// First come the expressions that are always lvalues, unconditionally.
case Expr::ObjCIsaExprClass:
// C++ [expr.prim.general]p1: A string literal is an lvalue.
case Expr::StringLiteralClass:
// @encode is equivalent to its string
case Expr::ObjCEncodeExprClass:
// __func__ and friends are too.
case Expr::PredefinedExprClass:
// Property references are lvalues
case Expr::ObjCSubscriptRefExprClass:
case Expr::ObjCPropertyRefExprClass:
// C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
case Expr::CXXTypeidExprClass:
Rework how UuidAttr, CXXUuidofExpr, and GUID template arguments and constants are represented. Summary: Previously, we treated CXXUuidofExpr as quite a special case: it was the only kind of expression that could be a canonical template argument, it could be a constant lvalue base object, and so on. In addition, we represented the UUID value as a string, whose source form we did not preserve faithfully, and that we partially parsed in multiple different places. With this patch, we create an MSGuidDecl object to represent the implicit object of type 'struct _GUID' created by a UuidAttr. Each UuidAttr holds a pointer to its 'struct _GUID' and its original (as-written) UUID string. A non-value-dependent CXXUuidofExpr behaves like a DeclRefExpr denoting that MSGuidDecl object. We cache an APValue representation of the GUID on the MSGuidDecl and use it from constant evaluation where needed. This allows removing a lot of the special-case logic to handle these expressions. Unfortunately, many parts of Clang assume there are only a couple of interesting kinds of ValueDecl, so the total amount of special-case logic is not really reduced very much. This fixes a few bugs and issues: * PR38490: we now support reading from GUID objects returned from __uuidof during constant evaluation. * Our Itanium mangling for a non-instantiation-dependent template argument involving __uuidof no longer depends on which CXXUuidofExpr template argument we happened to see first. * We now predeclare ::_GUID, and permit use of __uuidof without any header inclusion, better matching MSVC's behavior. We do not predefine ::__s_GUID, though; that seems like a step too far. * Our IR representation for GUID constants now uses the correct IR type wherever possible. We will still fall back to using the {i32, i16, i16, [8 x i8]} layout if a definition of struct _GUID is not available. This is not ideal: in principle the two layouts could have different padding. Reviewers: rnk, jdoerfert Subscribers: arphaman, cfe-commits, aeubanks Tags: #clang Differential Revision: https://reviews.llvm.org/D78171
2020-04-12 13:15:29 +08:00
case Expr::CXXUuidofExprClass:
// Unresolved lookups and uncorrected typos get classified as lvalues.
// FIXME: Is this wise? Should they get their own kind?
case Expr::UnresolvedLookupExprClass:
case Expr::UnresolvedMemberExprClass:
case Expr::TypoExprClass:
[AST] Add RecoveryExpr to retain expressions on semantic errors Normally clang avoids creating expressions when it encounters semantic errors, even if the parser knows which expression to produce. This works well for the compiler. However, this is not ideal for source-level tools that have to deal with broken code, e.g. clangd is not able to provide navigation features even for names that compiler knows how to resolve. The new RecoveryExpr aims to capture the minimal set of information useful for the tools that need to deal with incorrect code: source range of the expression being dropped, subexpressions of the expression. We aim to make constructing RecoveryExprs as simple as possible to ensure writing code to avoid dropping expressions is easy. Producing RecoveryExprs can result in new code paths being taken in the frontend. In particular, clang can produce some new diagnostics now and we aim to suppress bogus ones based on Expr::containsErrors. We deliberately produce RecoveryExprs only in the parser for now to minimize the code affected by this patch. Producing RecoveryExprs in Sema potentially allows to preserve more information (e.g. type of an expression), but also results in more code being affected. E.g. SFINAE checks will have to take presence of RecoveryExprs into account. Initial implementation only works in C++ mode, as it relies on compiler postponing diagnostics on dependent expressions. C and ObjC often do not do this, so they require more work to make sure we do not produce too many bogus diagnostics on the new expressions. See documentation of RecoveryExpr for more details. original patch from Ilya This change is based on https://reviews.llvm.org/D61722 Reviewers: sammccall, rsmith Reviewed By: sammccall, rsmith Tags: #clang Differential Revision: https://reviews.llvm.org/D69330
2020-03-19 23:30:40 +08:00
case Expr::RecoveryExprClass:
case Expr::DependentCoawaitExprClass:
case Expr::CXXDependentScopeMemberExprClass:
case Expr::DependentScopeDeclRefExprClass:
// ObjC instance variables are lvalues
// FIXME: ObjC++0x might have different rules
case Expr::ObjCIvarRefExprClass:
case Expr::FunctionParmPackExprClass:
case Expr::MSPropertyRefExprClass:
case Expr::MSPropertySubscriptExprClass:
case Expr::OMPArraySectionExprClass:
case Expr::OMPArrayShapingExprClass:
case Expr::OMPIteratorExprClass:
return Cl::CL_LValue;
// C99 6.5.2.5p5 says that compound literals are lvalues.
// In C++, they're prvalue temporaries, except for file-scope arrays.
case Expr::CompoundLiteralExprClass:
return !E->isLValue() ? ClassifyTemporary(E->getType()) : Cl::CL_LValue;
// Expressions that are prvalues.
case Expr::CXXBoolLiteralExprClass:
case Expr::CXXPseudoDestructorExprClass:
case Expr::UnaryExprOrTypeTraitExprClass:
case Expr::CXXNewExprClass:
case Expr::CXXThisExprClass:
case Expr::CXXNullPtrLiteralExprClass:
case Expr::ImaginaryLiteralClass:
case Expr::GNUNullExprClass:
case Expr::OffsetOfExprClass:
case Expr::CXXThrowExprClass:
case Expr::ShuffleVectorExprClass:
case Expr::ConvertVectorExprClass:
case Expr::IntegerLiteralClass:
case Expr::FixedPointLiteralClass:
case Expr::CharacterLiteralClass:
case Expr::AddrLabelExprClass:
case Expr::CXXDeleteExprClass:
case Expr::ImplicitValueInitExprClass:
case Expr::BlockExprClass:
case Expr::FloatingLiteralClass:
case Expr::CXXNoexceptExprClass:
case Expr::CXXScalarValueInitExprClass:
case Expr::TypeTraitExprClass:
case Expr::ArrayTypeTraitExprClass:
case Expr::ExpressionTraitExprClass:
case Expr::ObjCSelectorExprClass:
case Expr::ObjCProtocolExprClass:
case Expr::ObjCStringLiteralClass:
case Expr::ObjCBoxedExprClass:
case Expr::ObjCArrayLiteralClass:
case Expr::ObjCDictionaryLiteralClass:
case Expr::ObjCBoolLiteralExprClass:
case Expr::ObjCAvailabilityCheckExprClass:
case Expr::ParenListExprClass:
case Expr::SizeOfPackExprClass:
case Expr::SubstNonTypeTemplateParmPackExprClass:
case Expr::AsTypeExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::AtomicExprClass:
case Expr::CXXFoldExprClass:
case Expr::ArrayInitLoopExprClass:
case Expr::ArrayInitIndexExprClass:
case Expr::NoInitExprClass:
case Expr::DesignatedInitUpdateExprClass:
case Expr::SourceLocExprClass:
case Expr::ConceptSpecializationExprClass:
case Expr::RequiresExprClass:
return Cl::CL_PRValue;
case Expr::ConstantExprClass:
return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr());
// Next come the complicated cases.
case Expr::SubstNonTypeTemplateParmExprClass:
return ClassifyInternal(Ctx,
cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
// C, C++98 [expr.sub]p1: The result is an lvalue of type "T".
// C++11 (DR1213): in the case of an array operand, the result is an lvalue
// if that operand is an lvalue and an xvalue otherwise.
// Subscripting vector types is more like member access.
case Expr::ArraySubscriptExprClass:
if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
if (Lang.CPlusPlus11) {
// Step over the array-to-pointer decay if present, but not over the
// temporary materialization.
auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts();
if (Base->getType()->isArrayType())
return ClassifyInternal(Ctx, Base);
}
return Cl::CL_LValue;
// C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
// function or variable and a prvalue otherwise.
case Expr::DeclRefExprClass:
if (E->getType() == Ctx.UnknownAnyTy)
return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
? Cl::CL_PRValue : Cl::CL_LValue;
return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());
// Member access is complex.
case Expr::MemberExprClass:
return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));
case Expr::UnaryOperatorClass:
switch (cast<UnaryOperator>(E)->getOpcode()) {
// C++ [expr.unary.op]p1: The unary * operator performs indirection:
// [...] the result is an lvalue referring to the object or function
// to which the expression points.
case UO_Deref:
return Cl::CL_LValue;
// GNU extensions, simply look through them.
case UO_Extension:
return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());
// Treat _Real and _Imag basically as if they were member
// expressions: l-value only if the operand is a true l-value.
case UO_Real:
case UO_Imag: {
const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
Cl::Kinds K = ClassifyInternal(Ctx, Op);
if (K != Cl::CL_LValue) return K;
if (isa<ObjCPropertyRefExpr>(Op))
return Cl::CL_SubObjCPropertySetting;
return Cl::CL_LValue;
}
// C++ [expr.pre.incr]p1: The result is the updated operand; it is an
// lvalue, [...]
// Not so in C.
case UO_PreInc:
case UO_PreDec:
return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;
default:
return Cl::CL_PRValue;
}
case Expr::OpaqueValueExprClass:
return ClassifyExprValueKind(Lang, E, E->getValueKind());
// Pseudo-object expressions can produce l-values with reference magic.
case Expr::PseudoObjectExprClass:
return ClassifyExprValueKind(Lang, E,
cast<PseudoObjectExpr>(E)->getValueKind());
// Implicit casts are lvalues if they're lvalue casts. Other than that, we
// only specifically record class temporaries.
case Expr::ImplicitCastExprClass:
return ClassifyExprValueKind(Lang, E, E->getValueKind());
// C++ [expr.prim.general]p4: The presence of parentheses does not affect
// whether the expression is an lvalue.
case Expr::ParenExprClass:
return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());
// C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
// or a void expression if its result expression is, respectively, an
// lvalue, a function designator, or a void expression.
case Expr::GenericSelectionExprClass:
if (cast<GenericSelectionExpr>(E)->isResultDependent())
return Cl::CL_PRValue;
return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());
case Expr::BinaryOperatorClass:
case Expr::CompoundAssignOperatorClass:
// C doesn't have any binary expressions that are lvalues.
if (Lang.CPlusPlus)
return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
return Cl::CL_PRValue;
case Expr::CallExprClass:
case Expr::CXXOperatorCallExprClass:
case Expr::CXXMemberCallExprClass:
case Expr::UserDefinedLiteralClass:
case Expr::CUDAKernelCallExprClass:
return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx));
case Expr::CXXRewrittenBinaryOperatorClass:
return ClassifyInternal(
Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
// __builtin_choose_expr is equivalent to the chosen expression.
case Expr::ChooseExprClass:
return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr());
// Extended vector element access is an lvalue unless there are duplicates
// in the shuffle expression.
case Expr::ExtVectorElementExprClass:
if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements())
return Cl::CL_DuplicateVectorComponents;
if (cast<ExtVectorElementExpr>(E)->isArrow())
return Cl::CL_LValue;
return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase());
// Simply look at the actual default argument.
case Expr::CXXDefaultArgExprClass:
return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());
// Same idea for default initializers.
case Expr::CXXDefaultInitExprClass:
return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr());
// Same idea for temporary binding.
case Expr::CXXBindTemporaryExprClass:
return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());
// And the cleanups guard.
case Expr::ExprWithCleanupsClass:
return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());
// Casts depend completely on the target type. All casts work the same.
case Expr::CStyleCastExprClass:
case Expr::CXXFunctionalCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXDynamicCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXConstCastExprClass:
case Expr::ObjCBridgedCastExprClass:
case Expr::BuiltinBitCastExprClass:
// Only in C++ can casts be interesting at all.
if (!Lang.CPlusPlus) return Cl::CL_PRValue;
return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());
case Expr::CXXUnresolvedConstructExprClass:
return ClassifyUnnamed(Ctx,
cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());
case Expr::BinaryConditionalOperatorClass: {
if (!Lang.CPlusPlus) return Cl::CL_PRValue;
const auto *co = cast<BinaryConditionalOperator>(E);
return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
}
case Expr::ConditionalOperatorClass: {
// Once again, only C++ is interesting.
if (!Lang.CPlusPlus) return Cl::CL_PRValue;
const auto *co = cast<ConditionalOperator>(E);
return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
}
// ObjC message sends are effectively function calls, if the target function
// is known.
case Expr::ObjCMessageExprClass:
if (const ObjCMethodDecl *Method =
cast<ObjCMessageExpr>(E)->getMethodDecl()) {
Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType());
return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
}
return Cl::CL_PRValue;
// Some C++ expressions are always class temporaries.
case Expr::CXXConstructExprClass:
P0136R1, DR1573, DR1645, DR1715, DR1736, DR1903, DR1941, DR1959, DR1991: Replace inheriting constructors implementation with new approach, voted into C++ last year as a DR against C++11. Instead of synthesizing a set of derived class constructors for each inherited base class constructor, we make the constructors of the base class visible to constructor lookup in the derived class, using the normal rules for using-declarations. For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived class that tracks the requisite additional information. We create shadow constructors (not found by name lookup) in the derived class to model the actual initialization, and have a new expression node, CXXInheritedCtorInitExpr, to model the initialization of a base class from such a constructor. (This initialization is special because it performs real perfect forwarding of arguments.) In cases where argument forwarding is not possible (for inalloca calls, variadic calls, and calls with callee parameter cleanup), the shadow inheriting constructor is not emitted and instead we directly emit the initialization code into the caller of the inherited constructor. Note that this new model is not perfectly compatible with the old model in some corner cases. In particular: * if B inherits a private constructor from A, and C uses that constructor to construct a B, then we previously required that A befriends B and B befriends C, but the new rules require A to befriend C directly, and * if a derived class has its own constructors (and so its implicit default constructor is suppressed), it may still inherit a default constructor from a base class llvm-svn: 274049
2016-06-29 03:03:57 +08:00
case Expr::CXXInheritedCtorInitExprClass:
case Expr::CXXTemporaryObjectExprClass:
case Expr::LambdaExprClass:
case Expr::CXXStdInitializerListExprClass:
return Cl::CL_ClassTemporary;
case Expr::VAArgExprClass:
return ClassifyUnnamed(Ctx, E->getType());
case Expr::DesignatedInitExprClass:
return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());
case Expr::StmtExprClass: {
const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
return ClassifyUnnamed(Ctx, LastExpr->getType());
return Cl::CL_PRValue;
}
case Expr::PackExpansionExprClass:
return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());
case Expr::MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
? Cl::CL_LValue
: Cl::CL_XValue;
case Expr::InitListExprClass:
// An init list can be an lvalue if it is bound to a reference and
// contains only one element. In that case, we look at that element
// for an exact classification. Init list creation takes care of the
// value kind for us, so we only need to fine-tune.
if (E->isRValue())
return ClassifyExprValueKind(Lang, E, E->getValueKind());
assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
"Only 1-element init lists can be glvalues.");
return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));
case Expr::CoawaitExprClass:
case Expr::CoyieldExprClass:
return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr());
}
llvm_unreachable("unhandled expression kind in classification");
}
/// ClassifyDecl - Return the classification of an expression referencing the
/// given declaration.
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
// C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
// function, variable, or data member and a prvalue otherwise.
// In C, functions are not lvalues.
// In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
// lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
// special-case this.
if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
return Cl::CL_MemberFunction;
bool islvalue;
if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(D))
islvalue = NTTParm->getType()->isReferenceType();
else
islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
isa<IndirectFieldDecl>(D) ||
isa<BindingDecl>(D) ||
Rework how UuidAttr, CXXUuidofExpr, and GUID template arguments and constants are represented. Summary: Previously, we treated CXXUuidofExpr as quite a special case: it was the only kind of expression that could be a canonical template argument, it could be a constant lvalue base object, and so on. In addition, we represented the UUID value as a string, whose source form we did not preserve faithfully, and that we partially parsed in multiple different places. With this patch, we create an MSGuidDecl object to represent the implicit object of type 'struct _GUID' created by a UuidAttr. Each UuidAttr holds a pointer to its 'struct _GUID' and its original (as-written) UUID string. A non-value-dependent CXXUuidofExpr behaves like a DeclRefExpr denoting that MSGuidDecl object. We cache an APValue representation of the GUID on the MSGuidDecl and use it from constant evaluation where needed. This allows removing a lot of the special-case logic to handle these expressions. Unfortunately, many parts of Clang assume there are only a couple of interesting kinds of ValueDecl, so the total amount of special-case logic is not really reduced very much. This fixes a few bugs and issues: * PR38490: we now support reading from GUID objects returned from __uuidof during constant evaluation. * Our Itanium mangling for a non-instantiation-dependent template argument involving __uuidof no longer depends on which CXXUuidofExpr template argument we happened to see first. * We now predeclare ::_GUID, and permit use of __uuidof without any header inclusion, better matching MSVC's behavior. We do not predefine ::__s_GUID, though; that seems like a step too far. * Our IR representation for GUID constants now uses the correct IR type wherever possible. We will still fall back to using the {i32, i16, i16, [8 x i8]} layout if a definition of struct _GUID is not available. This is not ideal: in principle the two layouts could have different padding. Reviewers: rnk, jdoerfert Subscribers: arphaman, cfe-commits, aeubanks Tags: #clang Differential Revision: https://reviews.llvm.org/D78171
2020-04-12 13:15:29 +08:00
isa<MSGuidDecl>(D) ||
(Ctx.getLangOpts().CPlusPlus &&
(isa<FunctionDecl>(D) || isa<MSPropertyDecl>(D) ||
isa<FunctionTemplateDecl>(D)));
return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
}
/// ClassifyUnnamed - Return the classification of an expression yielding an
/// unnamed value of the given type. This applies in particular to function
/// calls and casts.
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
// In C, function calls are always rvalues.
if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;
// C++ [expr.call]p10: A function call is an lvalue if the result type is an
// lvalue reference type or an rvalue reference to function type, an xvalue
// if the result type is an rvalue reference to object type, and a prvalue
// otherwise.
if (T->isLValueReferenceType())
return Cl::CL_LValue;
const auto *RV = T->getAs<RValueReferenceType>();
if (!RV) // Could still be a class temporary, though.
return ClassifyTemporary(T);
return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
}
static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
if (E->getType() == Ctx.UnknownAnyTy)
return (isa<FunctionDecl>(E->getMemberDecl())
? Cl::CL_PRValue : Cl::CL_LValue);
// Handle C first, it's easier.
if (!Ctx.getLangOpts().CPlusPlus) {
// C99 6.5.2.3p3
// For dot access, the expression is an lvalue if the first part is. For
// arrow access, it always is an lvalue.
if (E->isArrow())
return Cl::CL_LValue;
// ObjC property accesses are not lvalues, but get special treatment.
Expr *Base = E->getBase()->IgnoreParens();
if (isa<ObjCPropertyRefExpr>(Base))
return Cl::CL_SubObjCPropertySetting;
return ClassifyInternal(Ctx, Base);
}
NamedDecl *Member = E->getMemberDecl();
// C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
// C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
// E1.E2 is an lvalue.
if (const auto *Value = dyn_cast<ValueDecl>(Member))
if (Value->getType()->isReferenceType())
return Cl::CL_LValue;
// Otherwise, one of the following rules applies.
// -- If E2 is a static member [...] then E1.E2 is an lvalue.
if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
return Cl::CL_LValue;
// -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
// E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
// otherwise, it is a prvalue.
if (isa<FieldDecl>(Member)) {
// *E1 is an lvalue
if (E->isArrow())
return Cl::CL_LValue;
Expr *Base = E->getBase()->IgnoreParenImpCasts();
if (isa<ObjCPropertyRefExpr>(Base))
return Cl::CL_SubObjCPropertySetting;
return ClassifyInternal(Ctx, E->getBase());
}
// -- If E2 is a [...] member function, [...]
// -- If it refers to a static member function [...], then E1.E2 is an
// lvalue; [...]
// -- Otherwise [...] E1.E2 is a prvalue.
if (const auto *Method = dyn_cast<CXXMethodDecl>(Member))
return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;
// -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
// So is everything else we haven't handled yet.
return Cl::CL_PRValue;
}
static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
assert(Ctx.getLangOpts().CPlusPlus &&
"This is only relevant for C++.");
// C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
// Except we override this for writes to ObjC properties.
if (E->isAssignmentOp())
return (E->getLHS()->getObjectKind() == OK_ObjCProperty
? Cl::CL_PRValue : Cl::CL_LValue);
// C++ [expr.comma]p1: the result is of the same value category as its right
// operand, [...].
if (E->getOpcode() == BO_Comma)
return ClassifyInternal(Ctx, E->getRHS());
// C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
// is a pointer to a data member is of the same value category as its first
// operand.
if (E->getOpcode() == BO_PtrMemD)
return (E->getType()->isFunctionType() ||
E->hasPlaceholderType(BuiltinType::BoundMember))
? Cl::CL_MemberFunction
: ClassifyInternal(Ctx, E->getLHS());
// C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
// second operand is a pointer to data member and a prvalue otherwise.
if (E->getOpcode() == BO_PtrMemI)
return (E->getType()->isFunctionType() ||
E->hasPlaceholderType(BuiltinType::BoundMember))
? Cl::CL_MemberFunction
: Cl::CL_LValue;
// All other binary operations are prvalues.
return Cl::CL_PRValue;
}
static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
const Expr *False) {
assert(Ctx.getLangOpts().CPlusPlus &&
"This is only relevant for C++.");
// C++ [expr.cond]p2
// If either the second or the third operand has type (cv) void,
// one of the following shall hold:
if (True->getType()->isVoidType() || False->getType()->isVoidType()) {
// The second or the third operand (but not both) is a (possibly
// parenthesized) throw-expression; the result is of the [...] value
// category of the other.
bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts());
bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts());
if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False)
: (FalseIsThrow ? True : nullptr))
return ClassifyInternal(Ctx, NonThrow);
// [Otherwise] the result [...] is a prvalue.
return Cl::CL_PRValue;
}
// Note that at this point, we have already performed all conversions
// according to [expr.cond]p3.
// C++ [expr.cond]p4: If the second and third operands are glvalues of the
// same value category [...], the result is of that [...] value category.
// C++ [expr.cond]p5: Otherwise, the result is a prvalue.
Cl::Kinds LCl = ClassifyInternal(Ctx, True),
RCl = ClassifyInternal(Ctx, False);
return LCl == RCl ? LCl : Cl::CL_PRValue;
}
static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
Cl::Kinds Kind, SourceLocation &Loc) {
// As a general rule, we only care about lvalues. But there are some rvalues
// for which we want to generate special results.
if (Kind == Cl::CL_PRValue) {
// For the sake of better diagnostics, we want to specifically recognize
// use of the GCC cast-as-lvalue extension.
if (const auto *CE = dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
Loc = CE->getExprLoc();
return Cl::CM_LValueCast;
}
}
}
if (Kind != Cl::CL_LValue)
return Cl::CM_RValue;
// This is the lvalue case.
// Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
return Cl::CM_Function;
// Assignment to a property in ObjC is an implicit setter access. But a
// setter might not exist.
if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (Expr->isImplicitProperty() &&
Expr->getImplicitPropertySetter() == nullptr)
return Cl::CM_NoSetterProperty;
}
CanQualType CT = Ctx.getCanonicalType(E->getType());
// Const stuff is obviously not modifiable.
if (CT.isConstQualified())
return Cl::CM_ConstQualified;
if (Ctx.getLangOpts().OpenCL &&
CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant)
return Cl::CM_ConstAddrSpace;
// Arrays are not modifiable, only their elements are.
if (CT->isArrayType())
return Cl::CM_ArrayType;
// Incomplete types are not modifiable.
if (CT->isIncompleteType())
return Cl::CM_IncompleteType;
// Records with any const fields (recursively) are not modifiable.
if (const RecordType *R = CT->getAs<RecordType>())
if (R->hasConstFields())
return Cl::CM_ConstQualifiedField;
return Cl::CM_Modifiable;
}
Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
Classification VC = Classify(Ctx);
switch (VC.getKind()) {
case Cl::CL_LValue: return LV_Valid;
case Cl::CL_XValue: return LV_InvalidExpression;
case Cl::CL_Function: return LV_NotObjectType;
case Cl::CL_Void: return LV_InvalidExpression;
case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
case Cl::CL_MemberFunction: return LV_MemberFunction;
case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
case Cl::CL_ClassTemporary: return LV_ClassTemporary;
case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
case Cl::CL_PRValue: return LV_InvalidExpression;
}
llvm_unreachable("Unhandled kind");
}
Expr::isModifiableLvalueResult
Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
SourceLocation dummy;
Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
switch (VC.getKind()) {
case Cl::CL_LValue: break;
case Cl::CL_XValue: return MLV_InvalidExpression;
case Cl::CL_Function: return MLV_NotObjectType;
case Cl::CL_Void: return MLV_InvalidExpression;
case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
case Cl::CL_MemberFunction: return MLV_MemberFunction;
case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
case Cl::CL_PRValue:
return VC.getModifiable() == Cl::CM_LValueCast ?
MLV_LValueCast : MLV_InvalidExpression;
}
assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
switch (VC.getModifiable()) {
case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
case Cl::CM_Modifiable: return MLV_Valid;
case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
case Cl::CM_Function: return MLV_NotObjectType;
case Cl::CM_LValueCast:
llvm_unreachable("CM_LValueCast and CL_LValue don't match");
case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
case Cl::CM_ConstQualified: return MLV_ConstQualified;
case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField;
case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace;
case Cl::CM_ArrayType: return MLV_ArrayType;
case Cl::CM_IncompleteType: return MLV_IncompleteType;
}
llvm_unreachable("Unhandled modifiable type");
}