llvm-project/clang/test/CodeGen/inline-optim.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

34 lines
1.3 KiB
C
Raw Normal View History

// Make sure -finline-functions family flags are behaving correctly.
//
// REQUIRES: x86-registered-target
//
// RUN: %clang_cc1 -triple i686-pc-win32 -emit-llvm %s -o - | FileCheck -check-prefix=NOINLINE %s
// RUN: %clang_cc1 -triple i686-pc-win32 -O3 -fno-inline-functions -emit-llvm %s -o - | FileCheck -check-prefix=NOINLINE %s
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 09:24:49 +08:00
// RUN: %clang_cc1 -triple i686-pc-win32 -O3 -finline-hint-functions -emit-llvm %s -o - | FileCheck -check-prefix=HINT %s
// RUN: %clang_cc1 -triple i686-pc-win32 -O3 -finline-functions -emit-llvm %s -o - | FileCheck -check-prefix=INLINE %s
inline int inline_hint(int a, int b) { return(a+b); }
int inline_no_hint(int a, int b) { return (a/b); }
inline __attribute__ ((__always_inline__)) int inline_always(int a, int b) { return(a*b); }
volatile int *pa = (int*) 0x1000;
void foo(void) {
// NOINLINE-LABEL: @foo
// HINT-LABEL: @foo
// INLINE-LABEL: @foo
// NOINLINE: call i32 @inline_hint
// HINT-NOT: call i32 @inline_hint
// INLINE-NOT: call i32 @inline_hint
pa[0] = inline_hint(pa[1],pa[2]);
// NOINLINE-NOT: call i32 @inline_always
// HINT-NOT: call i32 @inline_always
// INLINE-NOT: call i32 @inline_always
pa[3] = inline_always(pa[4],pa[5]);
// NOINLINE: call i32 @inline_no_hint
// HINT: call i32 @inline_no_hint
// INLINE-NOT: call i32 @inline_no_hint
pa[6] = inline_no_hint(pa[7], pa[8]);
}