llvm-project/clang/test/CodeGen/bpf-preserve-access-index.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

23 lines
624 B
C
Raw Normal View History

BPF: move AbstractMemberAccess and PreserveDIType passes to EP_EarlyAsPossible Move abstractMemberAccess and PreserveDIType passes as early as possible, right after clang code generation. Currently, compiler may transform the above code p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0); p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2); a = llvm.bpf.builtin.preserve_field_info(p2, EXIST); if (a) { p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0); p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2); bpf_probe_read(buf, buf_size, p2); } to p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0); p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2); a = llvm.bpf.builtin.preserve_field_info(p2, EXIST); if (a) { bpf_probe_read(buf, buf_size, p2); } and eventually assembly code looks like reloc_exist = 1; reloc_member_offset = 10; //calculate member offset from base p2 = base + reloc_member_offset; if (reloc_exist) { bpf_probe_read(bpf, buf_size, p2); } if during libbpf relocation resolution, reloc_exist is actually resolved to 0 (not exist), reloc_member_offset relocation cannot be resolved and will be patched with illegal instruction. This will cause verifier failure. This patch attempts to address this issue by do chaining analysis and replace chains with special globals right after clang code gen. This will remove the cse possibility described in the above. The IR typically looks like %6 = load @llvm.sk_buff:0:50$0:0:0:2:0 %7 = bitcast %struct.sk_buff* %2 to i8* %8 = getelementptr i8, i8* %7, %6 for a particular address computation relocation. But this transformation has another consequence, code sinking may happen like below: PHI = <possibly different @preserve_*_access_globals> %7 = bitcast %struct.sk_buff* %2 to i8* %8 = getelementptr i8, i8* %7, %6 For such cases, we will not able to generate relocations since multiple relocations are merged into one. This patch introduced a passthrough builtin to prevent such optimization. Looks like inline assembly has more impact for optimizaiton, e.g., inlining. Using passthrough has less impact on optimizations. A new IR pass is introduced at the beginning of target-dependent IR optimization, which does: - report fatal error if any reloc global in PHI nodes - remove all bpf passthrough builtin functions Changes for existing CORE tests: - for clang tests, add "-Xclang -disable-llvm-passes" flags to avoid builtin->reloc_global transformation so the test is still able to check correctness for clang generated IR. - for llvm CodeGen/BPF tests, add "opt -O2 <ir_file> | llvm-dis" command before "llc" command since "opt" is needed to call newly-placed builtin->reloc_global transformation. Add target triple in the IR file since "opt" requires it. - Since target triple is added in IR file, if a test may produce different results for different endianness, two tests will be created, one for bpfeb and another for bpfel, e.g., some tests for relocation of lshift/rshift of bitfields. - field-reloc-bitfield-1.ll has different relocations compared to old codes. This is because for the structure in the test, new code returns struct layout alignment 4 while old code is 8. Align 8 is more precise and permits double load. With align 4, the new mechanism uses 4-byte load, so generating different relocations. - test intrinsic-transforms.ll is removed. This is used to test cse on intrinsics so we do not lose metadata. Now metadata is attached to global and not instruction, it won't get lost with cse. Differential Revision: https://reviews.llvm.org/D87153
2020-09-03 13:56:41 +08:00
// RUN: %clang %s -target bpfeb -x c -emit-llvm -S -g -O2 -Xclang -disable-llvm-passes -o - | FileCheck --check-prefix=CHECK %s
// RUN: %clang %s -target bpfel -x c -emit-llvm -S -g -O2 -Xclang -disable-llvm-passes -o - | FileCheck --check-prefix=CHECK %s
[BPF] Preserve debuginfo array/union/struct type/access index For background of BPF CO-RE project, please refer to http://vger.kernel.org/bpfconf2019.html In summary, BPF CO-RE intends to compile bpf programs adjustable on struct/union layout change so the same program can run on multiple kernels with adjustment before loading based on native kernel structures. In order to do this, we need keep track of GEP(getelementptr) instruction base and result debuginfo types, so we can adjust on the host based on kernel BTF info. Capturing such information as an IR optimization is hard as various optimization may have tweaked GEP and also union is replaced by structure it is impossible to track fieldindex for union member accesses. Three intrinsic functions, preserve_{array,union,struct}_access_index, are introducted. addr = preserve_array_access_index(base, index, dimension) addr = preserve_union_access_index(base, di_index) addr = preserve_struct_access_index(base, gep_index, di_index) here, base: the base pointer for the array/union/struct access. index: the last access index for array, the same for IR/DebugInfo layout. dimension: the array dimension. gep_index: the access index based on IR layout. di_index: the access index based on user/debuginfo types. If using these intrinsics blindly, i.e., transforming all GEPs to these intrinsics and later on reducing them to GEPs, we have seen up to 7% more instructions generated. To avoid such an overhead, a clang builtin is proposed: base = __builtin_preserve_access_index(base) such that user wraps to-be-relocated GEPs in this builtin and preserve_*_access_index intrinsics only apply to those GEPs. Such a buyin will prevent performance degradation if people do not use CO-RE, even for programs which use bpf_probe_read(). For example, for the following example, $ cat test.c struct sk_buff { int i; int b1:1; int b2:2; union { struct { int o1; int o2; } o; struct { char flags; char dev_id; } dev; int netid; } u[10]; }; static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr) = (void *) 4; #define _(x) (__builtin_preserve_access_index(x)) int bpf_prog(struct sk_buff *ctx) { char dev_id; bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id)); return dev_id; } $ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \ test.c >& log The generated IR looks like below: ... define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 { %2 = alloca %struct.sk_buff*, align 8 %3 = alloca i8, align 1 store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45 call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49 call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50 call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51 %4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45 %5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45 %6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs( %struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19 %7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons( [10 x %union.anon]* %6, i32 1, i32 5), !dbg !53 %8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons( %union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26 %9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53 %10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s( %struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34 %11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52 %12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55 %13 = sext i8 %12 to i32, !dbg !54 call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56 ret i32 %13, !dbg !57 } !19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20) !26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27) !34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35) Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index attached to instructions to provide struct/union debuginfo type information. For &ctx->u[5].dev.dev_id, . The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout. . The "%7 = ..." represents array subscript "5". . The "%8 = ..." represents union member "dev" with index 1 for DI layout. . The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout. Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and examining all preserve_*_access_index calls, the debuginfo struct/union/array access index can be achieved. The intrinsics also contain enough information to regenerate codes for IR layout. For array and structure intrinsics, the proper GEP can be constructed. For union intrinsics, replacing all uses of "addr" with "base" should be enough. Signed-off-by: Yonghong Song <yhs@fb.com> Differential Revision: https://reviews.llvm.org/D61809 llvm-svn: 365438
2019-07-09 12:21:50 +08:00
struct t {
int i:1;
int j:2;
union {
int a;
int b;
} c[4];
};
#define _(x) (__builtin_preserve_access_index(x))
const void *test(struct t *arg) {
return _(&arg->c[3].b);
}
// CHECK: llvm.preserve.struct.access.index
// CHECK: llvm.preserve.array.access.index
// CHECK: llvm.preserve.union.access.index
// CHECK-NOT: __builtin_preserve_access_index