2022-01-28 05:35:34 +08:00
|
|
|
"""Common utilities that are useful for all the benchmarks."""
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mlir.all_passes_registration
|
|
|
|
|
|
|
|
from mlir import ir
|
|
|
|
from mlir.dialects import arith
|
|
|
|
from mlir.dialects import builtin
|
|
|
|
from mlir.dialects import memref
|
|
|
|
from mlir.dialects import scf
|
|
|
|
from mlir.dialects import std
|
|
|
|
from mlir.passmanager import PassManager
|
|
|
|
|
|
|
|
|
|
|
|
def setup_passes(mlir_module):
|
|
|
|
"""Setup pass pipeline parameters for benchmark functions.
|
|
|
|
"""
|
|
|
|
opt = (
|
|
|
|
"parallelization-strategy=0"
|
|
|
|
" vectorization-strategy=0 vl=1 enable-simd-index32=False"
|
|
|
|
)
|
|
|
|
pipeline = (
|
|
|
|
f"builtin.func"
|
|
|
|
f"(linalg-generalize-named-ops,linalg-fuse-elementwise-ops),"
|
|
|
|
f"sparsification{{{opt}}},"
|
|
|
|
f"sparse-tensor-conversion,"
|
|
|
|
f"builtin.func"
|
|
|
|
f"(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),"
|
|
|
|
f"convert-scf-to-std,"
|
|
|
|
f"func-bufferize,"
|
2022-01-31 04:01:24 +08:00
|
|
|
f"arith-bufferize,"
|
2022-01-28 05:35:34 +08:00
|
|
|
f"builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),"
|
|
|
|
f"convert-vector-to-llvm"
|
|
|
|
f"{{reassociate-fp-reductions=1 enable-index-optimizations=1}},"
|
|
|
|
f"lower-affine,"
|
|
|
|
f"convert-memref-to-llvm,"
|
|
|
|
f"convert-std-to-llvm,"
|
|
|
|
f"reconcile-unrealized-casts"
|
|
|
|
)
|
|
|
|
PassManager.parse(pipeline).run(mlir_module)
|
|
|
|
|
|
|
|
|
|
|
|
def create_sparse_np_tensor(dimensions, number_of_elements):
|
|
|
|
"""Constructs a numpy tensor of dimensions `dimensions` that has only a
|
|
|
|
specific number of nonzero elements, specified by the `number_of_elements`
|
|
|
|
argument.
|
|
|
|
"""
|
|
|
|
tensor = np.zeros(dimensions, np.float64)
|
|
|
|
tensor_indices_list = [
|
|
|
|
[np.random.randint(0, dimension) for dimension in dimensions]
|
|
|
|
for _ in range(number_of_elements)
|
|
|
|
]
|
|
|
|
for tensor_indices in tensor_indices_list:
|
|
|
|
current_tensor = tensor
|
|
|
|
for tensor_index in tensor_indices[:-1]:
|
|
|
|
current_tensor = current_tensor[tensor_index]
|
|
|
|
current_tensor[tensor_indices[-1]] = np.random.uniform(1, 100)
|
|
|
|
return tensor
|
|
|
|
|
|
|
|
|
|
|
|
def get_kernel_func_from_module(module: ir.Module) -> builtin.FuncOp:
|
|
|
|
"""Takes an mlir module object and extracts the function object out of it.
|
|
|
|
This function only works for a module with one region, one block, and one
|
|
|
|
operation.
|
|
|
|
"""
|
|
|
|
assert len(module.operation.regions) == 1, \
|
|
|
|
"Expected kernel module to have only one region"
|
|
|
|
assert len(module.operation.regions[0].blocks) == 1, \
|
|
|
|
"Expected kernel module to have only one block"
|
|
|
|
assert len(module.operation.regions[0].blocks[0].operations) == 1, \
|
|
|
|
"Expected kernel module to have only one operation"
|
|
|
|
return module.operation.regions[0].blocks[0].operations[0]
|
|
|
|
|
|
|
|
|
|
|
|
def emit_timer_func() -> builtin.FuncOp:
|
|
|
|
"""Returns the declaration of nano_time function. If nano_time function is
|
|
|
|
used, the `MLIR_RUNNER_UTILS` and `MLIR_C_RUNNER_UTILS` must be included.
|
|
|
|
"""
|
|
|
|
i64_type = ir.IntegerType.get_signless(64)
|
|
|
|
nano_time = builtin.FuncOp(
|
|
|
|
"nano_time", ([], [i64_type]), visibility="private")
|
|
|
|
nano_time.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
|
|
|
|
return nano_time
|
|
|
|
|
|
|
|
|
|
|
|
def emit_benchmark_wrapped_main_func(func, timer_func):
|
|
|
|
"""Takes a function and a timer function, both represented as FuncOp
|
|
|
|
objects, and returns a new function. This new function wraps the call to
|
|
|
|
the original function between calls to the timer_func and this wrapping
|
|
|
|
in turn is executed inside a loop. The loop is executed
|
|
|
|
len(func.type.results) times. This function can be used to create a
|
|
|
|
"time measuring" variant of a function.
|
|
|
|
"""
|
|
|
|
i64_type = ir.IntegerType.get_signless(64)
|
|
|
|
memref_of_i64_type = ir.MemRefType.get([-1], i64_type)
|
|
|
|
wrapped_func = builtin.FuncOp(
|
|
|
|
# Same signature and an extra buffer of indices to save timings.
|
|
|
|
"main",
|
|
|
|
(func.arguments.types + [memref_of_i64_type], func.type.results),
|
|
|
|
visibility="public"
|
|
|
|
)
|
|
|
|
wrapped_func.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
|
|
|
|
|
|
|
|
num_results = len(func.type.results)
|
|
|
|
with ir.InsertionPoint(wrapped_func.add_entry_block()):
|
|
|
|
timer_buffer = wrapped_func.arguments[-1]
|
|
|
|
zero = arith.ConstantOp.create_index(0)
|
|
|
|
n_iterations = memref.DimOp(ir.IndexType.get(), timer_buffer, zero)
|
|
|
|
one = arith.ConstantOp.create_index(1)
|
|
|
|
iter_args = list(wrapped_func.arguments[-num_results - 1:-1])
|
|
|
|
loop = scf.ForOp(zero, n_iterations, one, iter_args)
|
|
|
|
with ir.InsertionPoint(loop.body):
|
|
|
|
start = std.CallOp(timer_func, [])
|
|
|
|
call = std.CallOp(
|
|
|
|
func,
|
|
|
|
wrapped_func.arguments[:-num_results - 1] + loop.inner_iter_args
|
|
|
|
)
|
|
|
|
end = std.CallOp(timer_func, [])
|
|
|
|
time_taken = arith.SubIOp(end, start)
|
|
|
|
memref.StoreOp(time_taken, timer_buffer, [loop.induction_variable])
|
|
|
|
scf.YieldOp(list(call.results))
|
|
|
|
std.ReturnOp(loop)
|
|
|
|
|
|
|
|
return wrapped_func
|