llvm-project/flang/lib/Semantics/tools.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1360 lines
46 KiB
C++
Raw Normal View History

//===-- lib/Semantics/tools.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Parser/tools.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <variant>
namespace Fortran::semantics {
// Find this or containing scope that matches predicate
static const Scope *FindScopeContaining(
const Scope &start, std::function<bool(const Scope &)> predicate) {
for (const Scope *scope{&start};; scope = &scope->parent()) {
if (predicate(*scope)) {
return scope;
}
if (scope->IsGlobal()) {
return nullptr;
}
}
}
const Scope *FindModuleContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModule(); });
}
const Symbol *FindCommonBlockContaining(const Symbol &object) {
if (const auto *details{object.detailsIf<ObjectEntityDetails>()}) {
return details->commonBlock();
} else {
return nullptr;
}
}
const Scope *FindProgramUnitContaining(const Scope &start) {
return FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
return true;
default:
return false;
}
});
}
const Scope *FindProgramUnitContaining(const Symbol &symbol) {
return FindProgramUnitContaining(symbol.owner());
}
const Scope *FindPureProcedureContaining(const Scope &start) {
// N.B. We only need to examine the innermost containing program unit
// because an internal subprogram of a pure subprogram must also
// be pure (C1592).
if (const Scope * scope{FindProgramUnitContaining(start)}) {
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
if (IsPureProcedure(*scope)) {
return scope;
}
}
return nullptr;
}
Tristate IsDefinedAssignment(
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
if (!lhsType || !rhsType) {
return Tristate::No; // error or rhs is untyped
}
TypeCategory lhsCat{lhsType->category()};
TypeCategory rhsCat{rhsType->category()};
if (rhsRank > 0 && lhsRank != rhsRank) {
return Tristate::Yes;
} else if (lhsCat != TypeCategory::Derived) {
return ToTristate(lhsCat != rhsCat &&
(!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
} else {
const auto *lhsDerived{evaluate::GetDerivedTypeSpec(lhsType)};
const auto *rhsDerived{evaluate::GetDerivedTypeSpec(rhsType)};
if (lhsDerived && rhsDerived && *lhsDerived == *rhsDerived) {
return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or
// intrinsic
} else {
return Tristate::Yes;
}
}
}
bool IsIntrinsicRelational(common::RelationalOperator opr,
const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
if (!evaluate::AreConformable(rank0, rank1)) {
return false;
} else {
auto cat0{type0.category()};
auto cat1{type1.category()};
if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
// numeric types: EQ/NE always ok, others ok for non-complex
return opr == common::RelationalOperator::EQ ||
opr == common::RelationalOperator::NE ||
(cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
} else {
// not both numeric: only Character is ok
return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
}
}
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
return IsNumericTypeCategory(type0.category());
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
IsNumericTypeCategory(type0.category()) &&
IsNumericTypeCategory(type1.category());
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
return type0.category() == TypeCategory::Logical;
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Logical &&
type1.category() == TypeCategory::Logical;
}
bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Character &&
type1.category() == TypeCategory::Character &&
type0.kind() == type1.kind();
}
[flang] Resolve defined operators to specifics Most of these changes involve moving code around so that it case be used for `DefinedUnary` and `DefinedBinary`. The functional changes are in the `Analyze` member functions for those cases where the arguments are now analyzed, the generic is resolved, and a `FunctionRef` is created. Add `ArgumentAnalyzer` to handling building of the `ActualArguments` of a call. This allows the code to be shared with the defined unary and defined binary cases. Move `AnalyzeActualArgument` and `AnalyzeActualArgument` into that class (renaming both to `Analyze`). Create an overload of `GetCalleeAndArguments` for the `Name` case so it can be used for defined ops where we don't have a `ProcedureDesignator`. Move `IsGenericDefinedOp` to `tools.h` to make it available to the new code. We were using `semantics::CheckExplicitInterface` to resolve a generic interface to a specific procedure based on actual arguments. The problem with that is that it performs too many checks. We just want to get the right specific; there may be errors reported later during call analysis. To fix this, add a new function, `CheckInterfaceForGeneric`, to perform this check. It shares code with `CheckExplicitInterface`, but it passes in a null scope to indicate that the full set of checks aren't necessary in `CheckExplicitInterfaceArg`. Instead we lift the call to `TypeAndShape::IsCompatibleWith` out of `CheckExplicitDataArg`, and skip the latter when there is no scope. Original-commit: flang-compiler/f18@fff2d1580f26719e0c384c66576aa6620d04faff Reviewed-on: https://github.com/flang-compiler/f18/pull/786
2019-10-23 00:31:33 +08:00
bool IsGenericDefinedOp(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
return generic->kind().IsDefinedOperator();
} else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
} else {
return false;
}
[flang] Resolve defined operators to specifics Most of these changes involve moving code around so that it case be used for `DefinedUnary` and `DefinedBinary`. The functional changes are in the `Analyze` member functions for those cases where the arguments are now analyzed, the generic is resolved, and a `FunctionRef` is created. Add `ArgumentAnalyzer` to handling building of the `ActualArguments` of a call. This allows the code to be shared with the defined unary and defined binary cases. Move `AnalyzeActualArgument` and `AnalyzeActualArgument` into that class (renaming both to `Analyze`). Create an overload of `GetCalleeAndArguments` for the `Name` case so it can be used for defined ops where we don't have a `ProcedureDesignator`. Move `IsGenericDefinedOp` to `tools.h` to make it available to the new code. We were using `semantics::CheckExplicitInterface` to resolve a generic interface to a specific procedure based on actual arguments. The problem with that is that it performs too many checks. We just want to get the right specific; there may be errors reported later during call analysis. To fix this, add a new function, `CheckInterfaceForGeneric`, to perform this check. It shares code with `CheckExplicitInterface`, but it passes in a null scope to indicate that the full set of checks aren't necessary in `CheckExplicitInterfaceArg`. Instead we lift the call to `TypeAndShape::IsCompatibleWith` out of `CheckExplicitDataArg`, and skip the latter when there is no scope. Original-commit: flang-compiler/f18@fff2d1580f26719e0c384c66576aa6620d04faff Reviewed-on: https://github.com/flang-compiler/f18/pull/786
2019-10-23 00:31:33 +08:00
}
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
const auto &objects{block.get<CommonBlockDetails>().objects()};
auto found{std::find(objects.begin(), objects.end(), object)};
return found != objects.end();
}
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
const Scope *owner{FindProgramUnitContaining(symbol.GetUltimate().owner())};
return owner && owner->kind() == Scope::Kind::Module &&
owner != FindProgramUnitContaining(scope);
}
bool DoesScopeContain(
const Scope *maybeAncestor, const Scope &maybeDescendent) {
return maybeAncestor && !maybeDescendent.IsGlobal() &&
FindScopeContaining(maybeDescendent.parent(),
[&](const Scope &scope) { return &scope == maybeAncestor; });
}
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
return DoesScopeContain(maybeAncestor, symbol.owner());
}
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
const Scope *subprogram{FindProgramUnitContaining(scope)};
return subprogram &&
DoesScopeContain(FindProgramUnitContaining(symbol), *subprogram);
}
bool IsDummy(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
return details->isDummy();
} else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
return details->isDummy();
} else {
return false;
}
}
bool IsStmtFunction(const Symbol &symbol) {
const auto *subprogram{symbol.detailsIf<SubprogramDetails>()};
return subprogram && subprogram->stmtFunction();
}
bool IsInStmtFunction(const Symbol &symbol) {
if (const Symbol * function{symbol.owner().symbol()}) {
return IsStmtFunction(*function);
}
return false;
}
bool IsStmtFunctionDummy(const Symbol &symbol) {
return IsDummy(symbol) && IsInStmtFunction(symbol);
}
bool IsStmtFunctionResult(const Symbol &symbol) {
return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
}
bool IsPointerDummy(const Symbol &symbol) {
return IsPointer(symbol) && IsDummy(symbol);
}
// variable-name
bool IsVariableName(const Symbol &symbol) {
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
if (const Symbol * root{GetAssociationRoot(symbol)}) {
return root->has<ObjectEntityDetails>() && !IsNamedConstant(*root);
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
} else {
return false;
}
}
// proc-name
bool IsProcName(const Symbol &symbol) {
return symbol.GetUltimate().has<ProcEntityDetails>();
}
bool IsFunction(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const SubprogramDetails &x) { return x.isFunction(); },
[&](const SubprogramNameDetails &) {
return symbol.test(Symbol::Flag::Function);
},
[](const ProcEntityDetails &x) {
const auto &ifc{x.interface()};
return ifc.type() || (ifc.symbol() && IsFunction(*ifc.symbol()));
},
[](const ProcBindingDetails &x) { return IsFunction(x.symbol()); },
[](const UseDetails &x) { return IsFunction(x.symbol()); },
[](const auto &) { return false; },
},
symbol.details());
}
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
bool IsPureProcedure(const Symbol &symbol) {
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
// procedure component with a pure interface
return IsPureProcedure(*procInterface);
}
} else if (const auto *details{symbol.detailsIf<ProcBindingDetails>()}) {
return IsPureProcedure(details->symbol());
} else if (!IsProcedure(symbol)) {
return false;
}
return symbol.attrs().test(Attr::PURE) ||
(symbol.attrs().test(Attr::ELEMENTAL) &&
!symbol.attrs().test(Attr::IMPURE));
}
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
bool IsPureProcedure(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
return IsPureProcedure(*symbol);
} else {
return false;
}
}
bool IsBindCProcedure(const Symbol &symbol) {
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
// procedure component with a BIND(C) interface
return IsBindCProcedure(*procInterface);
}
}
return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
}
bool IsBindCProcedure(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
return IsBindCProcedure(*symbol);
} else {
return false;
}
}
bool IsProcedure(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const SubprogramDetails &) { return true; },
[](const SubprogramNameDetails &) { return true; },
[flang] Continue semantic checking after name resolution error When an error occurs in name resolution, continue semantic processing in order to detect other errors. This means we can no longer assume that every `parser::Name` has a symbol even after name resolution completes. In `RewriteMutator`, only report internal error for unresolved symbol if there have been no fatal errors. Add `Error` flag to `Symbol` to indicate that an error occcurred related to it. Once we report an error about a symbol we should avoid reporting any more to prevent cascading errors. Add `HasError()` and `SetError()` to simplify working with this flag. Change some places that we assume that a `parser::Name` has a non-null symbol. There are probably more. `resolve-names.cc`: Set the `Error` flag when we report a fatal error related to a symbol. (This requires making some symbols non-const.) Remove `CheckScalarIntegerType()` as `ExprChecker` will take care of those constraints if they are expressed in the parse tree. One exception to that is the name in a `ConcurrentControl`. Explicitly perform that check using `EvaluateExpr()` and constraint classes so we get consistent error messages. In expression analysis, when a constraint is violated (like `Scalar<>` or `Integer<>`), reset the wrapped expression so that we don't assume it is valid. A `GenericExprWrapper` holding a std::nullopt indicates error. Change `EnforceTypeConstraint()` to return false when the constraint fails to enable this. check-do-concurrent.cc: Reorganize the Gather*VariableNames functions into one to simplify the task of filtering out unresolved names. Remove `CheckNoDuplicates()` and `CheckNoCollisions()` as those checks is already done in name resolution when the names are added to the scope. Original-commit: flang-compiler/f18@bcdb679405906575f36d3314f17da89e3e89d45c Reviewed-on: https://github.com/flang-compiler/f18/pull/429 Tree-same-pre-rewrite: false
2019-04-26 04:18:33 +08:00
[](const ProcEntityDetails &) { return true; },
[](const GenericDetails &) { return true; },
[](const ProcBindingDetails &) { return true; },
[](const UseDetails &x) { return IsProcedure(x.symbol()); },
// TODO: FinalProcDetails?
[](const auto &) { return false; },
},
symbol.details());
}
bool IsProcedurePointer(const Symbol &symbol) {
return symbol.has<ProcEntityDetails>() && IsPointer(symbol);
}
static const Symbol *FindPointerComponent(
const Scope &scope, std::set<const Scope *> &visited) {
if (!scope.IsDerivedType()) {
return nullptr;
}
if (!visited.insert(&scope).second) {
return nullptr;
}
// If there's a top-level pointer component, return it for clearer error
// messaging.
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (IsPointer(symbol)) {
return &symbol;
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * nested{derived->scope()}) {
if (const Symbol *
pointer{FindPointerComponent(*nested, visited)}) {
return pointer;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindPointerComponent(const Scope &scope) {
std::set<const Scope *> visited;
return FindPointerComponent(scope, visited);
}
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
if (const Scope * scope{derived.scope()}) {
return FindPointerComponent(*scope);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
return FindPointerComponent(*derived);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
return type ? FindPointerComponent(*type) : nullptr;
}
const Symbol *FindPointerComponent(const Symbol &symbol) {
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
}
// C1594 specifies several ways by which an object might be globally visible.
const Symbol *FindExternallyVisibleObject(
const Symbol &object, const Scope &scope) {
// TODO: Storage association with any object for which this predicate holds,
// once EQUIVALENCE is supported.
if (IsUseAssociated(object, scope) || IsHostAssociated(object, scope) ||
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
(IsPureProcedure(scope) && IsPointerDummy(object)) ||
(IsIntentIn(object) && IsDummy(object))) {
return &object;
} else if (const Symbol * block{FindCommonBlockContaining(object)}) {
return block;
} else {
return nullptr;
}
}
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type) {
auto dynamicType{expr.GetType()};
return dynamicType && dynamicType->category() == type;
}
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context) {
auto dynamicType{expr.GetType()};
return dynamicType &&
dynamicType->category() != common::TypeCategory::Derived &&
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
}
// If an analyzed expr or assignment is missing, dump the node and die.
template <typename T>
static void CheckMissingAnalysis(bool absent, const T &x) {
if (absent) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << "node has not been analyzed:\n";
parser::DumpTree(ss, x);
common::die(ss.str().c_str());
}
}
const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
CheckMissingAnalysis(!x.typedExpr, x);
return common::GetPtrFromOptional(x.typedExpr->v);
}
const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
CheckMissingAnalysis(!x.typedExpr, x);
return common::GetPtrFromOptional(x.typedExpr->v);
}
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
CheckMissingAnalysis(!x.typedAssignment, x);
return common::GetPtrFromOptional(x.typedAssignment->v);
}
const evaluate::Assignment *GetAssignment(
const parser::PointerAssignmentStmt &x) {
CheckMissingAnalysis(!x.typedAssignment, x);
return common::GetPtrFromOptional(x.typedAssignment->v);
}
const Symbol *FindInterface(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const ProcEntityDetails &details) {
return details.interface().symbol();
},
[](const ProcBindingDetails &details) { return &details.symbol(); },
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindSubprogram(const Symbol &symbol) {
return std::visit(
common::visitors{
[&](const ProcEntityDetails &details) -> const Symbol * {
if (const Symbol * interface{details.interface().symbol()}) {
return FindSubprogram(*interface);
} else {
return &symbol;
}
},
[](const ProcBindingDetails &details) {
return FindSubprogram(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindSubprogram(details.symbol());
},
[](const HostAssocDetails &details) {
return FindSubprogram(details.symbol());
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindFunctionResult(const Symbol &symbol) {
if (const Symbol * subp{FindSubprogram(symbol)}) {
if (const auto &subpDetails{subp->detailsIf<SubprogramDetails>()}) {
if (subpDetails->isFunction()) {
return &subpDetails->result();
}
}
}
return nullptr;
}
const Symbol *FindOverriddenBinding(const Symbol &symbol) {
if (symbol.has<ProcBindingDetails>()) {
if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
return parentScope->FindComponent(symbol.name());
}
}
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
return FindParentTypeSpec(derived.typeSymbol());
}
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
return FindParentTypeSpec(*derived);
} else {
return nullptr;
}
}
const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
if (scope.kind() == Scope::Kind::DerivedType) {
if (const auto *symbol{scope.symbol()}) {
return FindParentTypeSpec(*symbol);
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
if (const Scope * scope{symbol.scope()}) {
if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
if (const Symbol * parent{details->GetParentComponent(*scope)}) {
return parent->GetType();
}
}
}
return nullptr;
}
// When a construct association maps to a variable, and that variable
// is not an array with a vector-valued subscript, return the base
// Symbol of that variable, else nullptr. Descends into other construct
// associations when one associations maps to another.
static const Symbol *GetAssociatedVariable(const AssocEntityDetails &details) {
if (const MaybeExpr & expr{details.expr()}) {
if (evaluate::IsVariable(*expr) && !evaluate::HasVectorSubscript(*expr)) {
if (const Symbol * varSymbol{evaluate::GetFirstSymbol(*expr)}) {
return GetAssociationRoot(*varSymbol);
}
}
}
return nullptr;
}
// Return the Symbol of the variable of a construct association, if it exists
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
// Return nullptr if the name is associated with an expression
const Symbol *GetAssociationRoot(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *details{ultimate.detailsIf<AssocEntityDetails>()}) {
// We have a construct association
return GetAssociatedVariable(*details);
} else {
return &ultimate;
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
}
}
bool IsExtensibleType(const DerivedTypeSpec *derived) {
return derived && !IsIsoCType(derived) &&
!derived->typeSymbol().attrs().test(Attr::BIND_C) &&
!derived->typeSymbol().get<DerivedTypeDetails>().sequence();
}
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) {
if (!derived) {
return false;
} else {
const auto &symbol{derived->typeSymbol()};
return symbol.owner().IsModule() &&
symbol.owner().GetName().value() == "__fortran_builtins" &&
symbol.name() == "__builtin_"s + name;
}
}
bool IsIsoCType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "c_ptr") ||
IsBuiltinDerivedType(derived, "c_funptr");
}
bool IsTeamType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "team_type");
}
bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
return IsBuiltinDerivedType(derivedTypeSpec, "event_type") ||
IsBuiltinDerivedType(derivedTypeSpec, "lock_type");
}
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
bool IsOrContainsEventOrLockComponent(const Symbol &symbol) {
if (const Symbol * root{GetAssociationRoot(symbol)}) {
if (const auto *details{root->detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return IsEventTypeOrLockType(derived) ||
FindEventOrLockPotentialComponent(*derived);
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
}
}
}
}
return false;
}
bool IsSaved(const Symbol &symbol) {
auto scopeKind{symbol.owner().kind()};
if (scopeKind == Scope::Kind::Module || scopeKind == Scope::Kind::BlockData) {
return true;
} else if (scopeKind == Scope::Kind::DerivedType) {
return false; // this is a component
} else if (IsNamedConstant(symbol)) {
return false;
} else if (symbol.attrs().test(Attr::SAVE)) {
return true;
} else {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->init()) {
return true;
}
} else if (IsProcedurePointer(symbol)) {
if (symbol.get<ProcEntityDetails>().init()) {
return true;
}
}
if (const Symbol * block{FindCommonBlockContaining(symbol)}) {
if (block->attrs().test(Attr::SAVE)) {
return true;
}
}
return false;
}
}
// Check this symbol suitable as a type-bound procedure - C769
bool CanBeTypeBoundProc(const Symbol *symbol) {
if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) {
return false;
} else if (symbol->has<SubprogramNameDetails>()) {
return symbol->owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return symbol->owner().kind() == Scope::Kind::Module ||
details->isInterface();
} else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
return !symbol->attrs().test(Attr::INTRINSIC) &&
proc->HasExplicitInterface();
} else {
return false;
}
}
bool IsInitialized(const Symbol &symbol) {
if (symbol.test(Symbol::Flag::InDataStmt)) {
return true;
} else if (IsNamedConstant(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (IsAllocatable(symbol) || object->init()) {
return true;
}
if (!IsPointer(symbol) && object->type()) {
if (const auto *derived{object->type()->AsDerived()}) {
if (derived->HasDefaultInitialization()) {
return true;
}
}
}
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
return proc->init().has_value();
}
return false;
}
bool HasIntrinsicTypeName(const Symbol &symbol) {
std::string name{symbol.name().ToString()};
if (name == "doubleprecision") {
return true;
} else if (name == "derived") {
return false;
} else {
for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
return true;
}
}
return false;
}
}
bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
if (symbol && symbol->attrs().test(Attr::MODULE)) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return details->isInterface();
}
}
return false;
}
bool IsFinalizable(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return IsFinalizable(*derived);
}
}
return false;
}
bool IsFinalizable(const DerivedTypeSpec &derived) {
ScopeComponentIterator components{derived};
return std::find_if(components.begin(), components.end(),
[](const Symbol &x) { return x.has<FinalProcDetails>(); }) !=
components.end();
}
// TODO The following function returns true for all types with FINAL procedures
// This is because we don't yet fill in the data for FinalProcDetails
bool HasImpureFinal(const DerivedTypeSpec &derived) {
ScopeComponentIterator components{derived};
return std::find_if(
components.begin(), components.end(), [](const Symbol &x) {
return x.has<FinalProcDetails>() && !x.attrs().test(Attr::PURE);
}) != components.end();
}
bool IsCoarray(const Symbol &symbol) { return symbol.Corank() > 0; }
bool IsAssumedLengthCharacter(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->category() == DeclTypeSpec::Character &&
type->characterTypeSpec().length().isAssumed();
} else {
return false;
}
}
// C722 and C723: For a function to be assumed length, it must be external and
// of CHARACTER type
bool IsExternal(const Symbol &symbol) {
return (symbol.has<SubprogramDetails>() && symbol.owner().IsGlobal()) ||
symbol.attrs().test(Attr::EXTERNAL);
}
const Symbol *IsExternalInPureContext(
const Symbol &symbol, const Scope &scope) {
if (const auto *pureProc{FindPureProcedureContaining(scope)}) {
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
if (const Symbol * root{GetAssociationRoot(symbol)}) {
if (const Symbol *
visible{FindExternallyVisibleObject(*root, *pureProc)}) {
return visible;
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
}
}
}
return nullptr;
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
}
[flang] Changes to check for constraint C1140 This constraint prohibits deallocation of polymorphic entities in a DO CONCURRENT. Section 9.7.3.2 specifies the situations that might cause deallocation of a polymorphic entity. The ones that are applicable to a DO CONCURRENT are exiting from a block that declares such variables, intrinsic assignment, and an actual DEALLOCATE statement. This section also specifies (paragraph 8) that deallocation of a derived type causes deallocation of all of its allocatable subobjects. Section 10.2.1.3 specifies what happens during intrinsic assignment. Paragraph 3 states If the variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length type parameter values of the variable and expr differ, or the variable is polymorphic and the dynamic type or any corresponding kind type parameter values of the variable and expr differ." Thus, an allocatable polymorphic variable on the left hand side of an assignment statement gets deallocated. Paragraph 13 states that "For a noncoarray allocatable component the following sequence of operations is applied. (1) If the component of the variable is allocated, it is deallocated." Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated. Deallocation can be caused by exiting from a block where the entity is declared, from an assignment, and from direct deallocation. Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087 Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && type->IsPolymorphic();
}
return false;
});
}
bool IsOrContainsPolymorphicComponent(const Symbol &symbol) {
if (const Symbol * root{GetAssociationRoot(symbol)}) {
if (const auto *details{root->detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (type->IsPolymorphic()) {
return true;
}
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return (bool)FindPolymorphicPotentialComponent(*derived);
}
}
}
}
return false;
}
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
bool InProtectedContext(const Symbol &symbol, const Scope &currentScope) {
return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope);
}
// C1101 and C1158
// TODO Need to check for a coindexed object (why? C1103?)
std::optional<parser::MessageFixedText> WhyNotModifiable(
const Symbol &symbol, const Scope &scope) {
const Symbol *root{GetAssociationRoot(symbol)};
if (!root) {
return "'%s' is construct associated with an expression"_en_US;
} else if (InProtectedContext(*root, scope)) {
return "'%s' is protected in this scope"_en_US;
} else if (IsExternalInPureContext(*root, scope)) {
return "'%s' is externally visible and referenced in a pure"
" procedure"_en_US;
} else if (IsOrContainsEventOrLockComponent(*root)) {
return "'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US;
} else if (IsIntentIn(*root)) {
return "'%s' is an INTENT(IN) dummy argument"_en_US;
} else if (!IsVariableName(*root)) {
return "'%s' is not a variable"_en_US;
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
} else {
return std::nullopt;
[flang] Changes for constraint C1128. Specifically, these changes enforce the last sentence of the constraint, which prohibits names that cannot appear in a variable definition context from appearing in a locality-spec. Here are the details. - Created the function "IsModifiableName" to return "true" when its parameter is the name of a variable that can appear in a variable definition context. - Created the function "GetAssociationRoot" to follow construct associations to potentially get to an underlying variable. This function is similar to the existing "GetUltimate" function that follows use associations and host associations. One difference is that "GetAssociationRoot" requires access to the types "MaybeExpr" and "SomeExpr", which makes is inappropriate to put into symbol.cc, which is where "GetUltimate" lives. Perhaps we should move "GetUltimate" to tools.[h,cc]. - Generalized the functions "IsPureFunction" to "IsPureProcedure" since either a pure function or subroutine can provide a context for variables that cannot be modified. Changed "FindPureFunctionContaining" to "FindPureProcedueContaining" to go along with this. - Added the function "IsExternalInPureContext" to detect the case where a nominally pure procedure potentially modifies a variable. - Created the function "IsOrContainsEventOrLockComponent" to detect variables that either are of EVENT_TYPE or LOCK_TYPE or contain components of these types. Such variables cannot appear in variable definition contexts. - Added the test resolve56.f90 to test most of these conditions. Note that I only tested the new code from the perspective of locality-specs. Original-commit: flang-compiler/f18@c9d2507b74da881dda2eb11805a0394a415db2e4 Reviewed-on: https://github.com/flang-compiler/f18/pull/596 Tree-same-pre-rewrite: false
2019-07-20 06:17:14 +08:00
}
}
std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at,
const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) {
if (!evaluate::IsVariable(expr)) {
return parser::Message{at, "Expression is not a variable"_en_US};
} else if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) {
if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) {
return parser::Message{at, "Variable has a vector subscript"_en_US};
}
const Symbol &symbol{dataRef->GetFirstSymbol()};
if (auto maybeWhy{WhyNotModifiable(symbol, scope)}) {
return parser::Message{symbol.name(),
parser::MessageFormattedText{std::move(*maybeWhy), symbol.name()}};
}
} else {
// reference to function returning POINTER
}
return std::nullopt;
}
class ImageControlStmtHelper {
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
using ImageControlStmts = std::variant<parser::ChangeTeamConstruct,
parser::CriticalConstruct, parser::EventPostStmt, parser::EventWaitStmt,
parser::FormTeamStmt, parser::LockStmt, parser::StopStmt,
parser::SyncAllStmt, parser::SyncImagesStmt, parser::SyncMemoryStmt,
parser::SyncTeamStmt, parser::UnlockStmt>;
public:
template <typename T> bool operator()(const T &) {
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
return common::HasMember<T, ImageControlStmts>;
}
template <typename T> bool operator()(const common::Indirection<T> &x) {
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
return (*this)(x.value());
}
bool operator()(const parser::AllocateStmt &stmt) {
const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
for (const auto &allocation : allocationList) {
const auto &allocateObject{
std::get<parser::AllocateObject>(allocation.t)};
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::DeallocateStmt &stmt) {
const auto &allocateObjectList{
std::get<std::list<parser::AllocateObject>>(stmt.t)};
for (const auto &allocateObject : allocateObjectList) {
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::CallStmt &stmt) {
const auto &procedureDesignator{
std::get<parser::ProcedureDesignator>(stmt.v.t)};
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
// TODO: also ensure that the procedure is, in fact, an intrinsic
if (name->source == "move_alloc") {
const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)};
if (!args.empty()) {
const parser::ActualArg &actualArg{
std::get<parser::ActualArg>(args.front().t)};
if (const auto *argExpr{
std::get_if<common::Indirection<parser::Expr>>(
&actualArg.u)}) {
return HasCoarray(argExpr->value());
}
}
}
}
return false;
}
bool operator()(const parser::Statement<parser::ActionStmt> &stmt) {
return std::visit(*this, stmt.statement.u);
}
private:
bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
const parser::Name &name{GetLastName(allocateObject)};
return name.symbol && IsCoarray(*name.symbol);
}
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
};
bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
return std::visit(ImageControlStmtHelper{}, construct.u);
}
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
const parser::ExecutableConstruct &construct) {
if (const auto *actionStmt{
std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
return std::visit(
common::visitors{
[](const common::Indirection<parser::AllocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "ALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::DeallocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "DEALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::CallStmt> &)
-> std::optional<parser::MessageFixedText> {
return "MOVE_ALLOC of a coarray is an image control"
" statement "_en_US;
},
[](const auto &) -> std::optional<parser::MessageFixedText> {
return std::nullopt;
},
},
actionStmt->statement.u);
}
return std::nullopt;
}
parser::CharBlock GetImageControlStmtLocation(
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
const parser::ExecutableConstruct &executableConstruct) {
return std::visit(
common::visitors{
[](const common::Indirection<parser::ChangeTeamConstruct>
&construct) {
return std::get<parser::Statement<parser::ChangeTeamStmt>>(
construct.value().t)
.source;
},
[](const common::Indirection<parser::CriticalConstruct> &construct) {
return std::get<parser::Statement<parser::CriticalStmt>>(
construct.value().t)
.source;
},
[](const parser::Statement<parser::ActionStmt> &actionStmt) {
return actionStmt.source;
},
[](const auto &) { return parser::CharBlock{}; },
},
executableConstruct.u);
}
bool HasCoarray(const parser::Expr &expression) {
if (const auto *expr{GetExpr(expression)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (const Symbol * root{GetAssociationRoot(symbol)}) {
[flang] # This is a combination of 2 commits. # This is the 1st commit message: Changes to disallow image control statements in DO CONCURRENT Most of these changes were already implemented. The last remaining part was to check for calls to move_alloc with coarray arguments. This set of changes implements that. I also bundled other changes. Specifically: All of the code to detect image control statements was moved from check-do.cc to tools.cc so that it could be used by other semantic checking functions. I added location information to the error messages for all DO semantics checks to highlight either the DO loop associated with the error or other relevant source locations. I cleaned up the error messages associated with DO semantics so that they have more consistent grammar and punctuation. I eliminated redundant checks for IEEE_GET_FLAG and IEEE_HALTING_MODE. I removed the redundant test doconcurrent08.f90. Responses to pull request comments I changed the interface to determine whether a statement is an image control statement to use an ExecutableConstruct as its input. Since ExecutableConstruct contains types that do not have source location information (ChangeTeamConstruct and CriticalConstruct), I also created a function to get the source location of an ExecutableConstruct. Also, some ExecutableConstructs are image control statements because they reference coarrays. I wanted to tell users that the reason that an ALLOCATE statement (for example) is an image control statement because it references a coarray. To make this happen, I added another function to return a message for image control statements that reference coarrays. I also cleaned up the references to the standard in comments in check-do.cc to briefly describe the contents of those constraints. I also added messages that refer to the enclosing DO CONCURRENT statement for error messages where appropriate. Responses to pull request comments The biggest change was to redo the implementation of "IsImageControlStmt()" to use a custom visitor that strips off the "common::Indirection<...>" prefix of most of the image control statement types and also takes advantage of "common::HasMember<...>" to determine if a variant contains a specific type. Spelling error. # This is the commit message flang-compiler/f18#2: More refactoring in response to comments on the pull request. Original-commit: flang-compiler/f18@3f0a0155b3fc3ae8bd81780c1254e235dc272b77 Reviewed-on: https://github.com/flang-compiler/f18/pull/780
2019-10-12 05:39:33 +08:00
if (IsCoarray(*root)) {
return true;
}
}
}
}
return false;
}
[flang] Changes to check for constraint C1140 This constraint prohibits deallocation of polymorphic entities in a DO CONCURRENT. Section 9.7.3.2 specifies the situations that might cause deallocation of a polymorphic entity. The ones that are applicable to a DO CONCURRENT are exiting from a block that declares such variables, intrinsic assignment, and an actual DEALLOCATE statement. This section also specifies (paragraph 8) that deallocation of a derived type causes deallocation of all of its allocatable subobjects. Section 10.2.1.3 specifies what happens during intrinsic assignment. Paragraph 3 states If the variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length type parameter values of the variable and expr differ, or the variable is polymorphic and the dynamic type or any corresponding kind type parameter values of the variable and expr differ." Thus, an allocatable polymorphic variable on the left hand side of an assignment statement gets deallocated. Paragraph 13 states that "For a noncoarray allocatable component the following sequence of operations is applied. (1) If the component of the variable is allocated, it is deallocated." Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated. Deallocation can be caused by exiting from a block where the entity is declared, from an assignment, and from direct deallocation. Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087 Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
bool IsPolymorphic(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsPolymorphic();
}
return false;
}
[flang] Changes to check for constraint C1140 This constraint prohibits deallocation of polymorphic entities in a DO CONCURRENT. Section 9.7.3.2 specifies the situations that might cause deallocation of a polymorphic entity. The ones that are applicable to a DO CONCURRENT are exiting from a block that declares such variables, intrinsic assignment, and an actual DEALLOCATE statement. This section also specifies (paragraph 8) that deallocation of a derived type causes deallocation of all of its allocatable subobjects. Section 10.2.1.3 specifies what happens during intrinsic assignment. Paragraph 3 states If the variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length type parameter values of the variable and expr differ, or the variable is polymorphic and the dynamic type or any corresponding kind type parameter values of the variable and expr differ." Thus, an allocatable polymorphic variable on the left hand side of an assignment statement gets deallocated. Paragraph 13 states that "For a noncoarray allocatable component the following sequence of operations is applied. (1) If the component of the variable is allocated, it is deallocated." Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated. Deallocation can be caused by exiting from a block where the entity is declared, from an assignment, and from direct deallocation. Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087 Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
bool IsPolymorphicAllocatable(const Symbol &symbol) {
return IsAllocatable(symbol) && IsPolymorphic(symbol);
}
std::optional<parser::MessageFormattedText> CheckAccessibleComponent(
const Scope &scope, const Symbol &symbol) {
CHECK(symbol.owner().IsDerivedType()); // symbol must be a component
if (symbol.attrs().test(Attr::PRIVATE)) {
if (const Scope * moduleScope{FindModuleContaining(symbol.owner())}) {
if (!moduleScope->Contains(scope)) {
return parser::MessageFormattedText{
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
symbol.name(), moduleScope->GetName().value()};
}
}
}
return std::nullopt;
}
std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
std::list<SourceName> result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterNames(spec->typeSymbol());
}
const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
result.insert(result.end(), paramNames.begin(), paramNames.end());
return result;
}
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterDeclarations(spec->typeSymbol());
}
const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
return result;
}
const DeclTypeSpec &FindOrInstantiateDerivedType(Scope &scope,
DerivedTypeSpec &&spec, SemanticsContext &semanticsContext,
DeclTypeSpec::Category category) {
spec.CookParameters(semanticsContext.foldingContext());
spec.EvaluateParameters(semanticsContext.foldingContext());
if (const DeclTypeSpec *
type{scope.FindInstantiatedDerivedType(spec, category)}) {
return *type;
}
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
type.derivedTypeSpec().Instantiate(scope, semanticsContext);
return type;
}
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
if (proc) {
if (const Symbol * submodule{proc->owner().symbol()}) {
if (const auto *details{submodule->detailsIf<ModuleDetails>()}) {
if (const Scope * ancestor{details->ancestor()}) {
const Symbol *iface{ancestor->FindSymbol(proc->name())};
if (IsSeparateModuleProcedureInterface(iface)) {
return iface;
}
}
}
}
}
return nullptr;
}
// ComponentIterator implementation
template <ComponentKind componentKind>
typename ComponentIterator<componentKind>::const_iterator
ComponentIterator<componentKind>::const_iterator::Create(
const DerivedTypeSpec &derived) {
const_iterator it{};
it.componentPath_.emplace_back(derived);
it.Increment(); // cue up first relevant component, if any
return it;
}
template <ComponentKind componentKind>
const DerivedTypeSpec *
ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
const Symbol &component) const {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
bool traverse{false};
if constexpr (componentKind == ComponentKind::Ordered) {
// Order Component (only visit parents)
traverse = component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Ultimate) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Potential) {
traverse = !IsPointer(component);
} else if constexpr (componentKind == ComponentKind::Scope) {
traverse = !IsAllocatableOrPointer(component);
}
if (traverse) {
const Symbol &newTypeSymbol{derived->typeSymbol()};
// Avoid infinite loop if the type is already part of the types
// being visited. It is possible to have "loops in type" because
// C744 does not forbid to use not yet declared type for
// ALLOCATABLE or POINTER components.
for (const auto &node : componentPath_) {
if (&newTypeSymbol == &node.GetTypeSymbol()) {
return nullptr;
}
}
return derived;
}
}
} // intrinsic & unlimited polymorphic not traversable
}
return nullptr;
}
template <ComponentKind componentKind>
static bool StopAtComponentPre(const Symbol &component) {
if constexpr (componentKind == ComponentKind::Ordered) {
// Parent components need to be iterated upon after their
// sub-components in structure constructor analysis.
return !component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
return true;
} else if constexpr (componentKind == ComponentKind::Ultimate) {
return component.has<ProcEntityDetails>() ||
IsAllocatableOrPointer(component) ||
(component.get<ObjectEntityDetails>().type() &&
component.get<ObjectEntityDetails>().type()->AsIntrinsic());
} else if constexpr (componentKind == ComponentKind::Potential) {
return !IsPointer(component);
}
}
template <ComponentKind componentKind>
static bool StopAtComponentPost(const Symbol &component) {
return componentKind == ComponentKind::Ordered &&
component.test(Symbol::Flag::ParentComp);
}
template <ComponentKind componentKind>
void ComponentIterator<componentKind>::const_iterator::Increment() {
while (!componentPath_.empty()) {
ComponentPathNode &deepest{componentPath_.back()};
if (deepest.component()) {
if (!deepest.descended()) {
deepest.set_descended(true);
if (const DerivedTypeSpec *
derived{PlanComponentTraversal(*deepest.component())}) {
componentPath_.emplace_back(*derived);
continue;
}
} else if (!deepest.visited()) {
deepest.set_visited(true);
return; // this is the next component to visit, after descending
}
}
auto &nameIterator{deepest.nameIterator()};
if (nameIterator == deepest.nameEnd()) {
componentPath_.pop_back();
} else if constexpr (componentKind == ComponentKind::Scope) {
deepest.set_component(*nameIterator++->second);
deepest.set_descended(false);
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
const Scope &scope{deepest.GetScope()};
auto scopeIter{scope.find(*nameIterator++)};
if (scopeIter != scope.cend()) {
const Symbol &component{*scopeIter->second};
deepest.set_component(component);
deepest.set_descended(false);
if (StopAtComponentPre<componentKind>(component)) {
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
deepest.set_visited(!StopAtComponentPost<componentKind>(component));
}
}
}
}
}
template <ComponentKind componentKind>
std::string
ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
const {
std::string designator{""};
for (const auto &node : componentPath_) {
designator += "%" + DEREF(node.component()).name().ToString();
}
return designator;
}
template class ComponentIterator<ComponentKind::Ordered>;
template class ComponentIterator<ComponentKind::Direct>;
template class ComponentIterator<ComponentKind::Ultimate>;
template class ComponentIterator<ComponentKind::Potential>;
template class ComponentIterator<ComponentKind::Scope>;
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsCoarray);
}
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
}
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && IsEventTypeOrLockType(type->AsDerived());
}
return false;
});
}
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(
ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableNonCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) {
return IsPolymorphicAllocatable(x) && !IsCoarray(x);
});
}
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
const std::function<bool(const Symbol &)> &predicate) {
UltimateComponentIterator ultimates{derived};
if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
[&predicate](const Symbol &component) -> bool {
return predicate(component);
})}) {
return &*it;
}
return nullptr;
}
const Symbol *FindUltimateComponent(const Symbol &symbol,
const std::function<bool(const Symbol &)> &predicate) {
if (predicate(symbol)) {
return &symbol;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindUltimateComponent(*derived, predicate);
}
}
}
return nullptr;
}
const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
const std::function<bool(const Symbol &)> &predicate) {
if (const Scope * scope{type.scope()}) {
const Symbol *parent{nullptr};
for (const auto &pair : *scope) {
const Symbol *symbol{&*pair.second};
if (predicate(*symbol)) {
return symbol;
}
if (symbol->test(Symbol::Flag::ParentComp)) {
parent = symbol;
}
}
if (parent) {
if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindImmediateComponent(*derived, predicate);
}
}
}
}
}
return nullptr;
}
bool IsFunctionResult(const Symbol &symbol) {
return (symbol.has<ObjectEntityDetails>() &&
symbol.get<ObjectEntityDetails>().isFuncResult()) ||
(symbol.has<ProcEntityDetails>() &&
symbol.get<ProcEntityDetails>().isFuncResult());
}
bool IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
if (IsFunctionResult(symbol)) {
if (const Symbol * function{symbol.owner().symbol()}) {
return symbol.name() == function->name();
}
}
return false;
}
void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
checkLabelUse(gotoStmt.v);
}
void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
checkLabelUse(std::get<1>(arithmeticIfStmt.t));
checkLabelUse(std::get<2>(arithmeticIfStmt.t));
checkLabelUse(std::get<3>(arithmeticIfStmt.t));
}
void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
checkLabelUse(std::get<parser::Label>(assignStmt.t));
}
void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
checkLabelUse(altReturnSpec.v);
}
void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
checkLabelUse(errLabel.v);
}
void LabelEnforce::Post(const parser::EndLabel &endLabel) {
checkLabelUse(endLabel.v);
}
void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
checkLabelUse(eorLabel.v);
}
void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) {
if (labels_.find(labelUsed) == labels_.end()) {
SayWithConstruct(context_, currentStatementSourcePosition_,
parser::MessageFormattedText{
"Control flow escapes from %s"_err_en_US, construct_},
constructSourcePosition_);
}
}
parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
return {"Enclosing %s statement"_en_US, construct_};
}
void LabelEnforce::SayWithConstruct(SemanticsContext &context,
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
parser::CharBlock constructLocation) {
context.Say(stmtLocation, message)
.Attach(constructLocation, GetEnclosingConstructMsg());
}
} // namespace Fortran::semantics