forked from OSchip/llvm-project
180 lines
4.8 KiB
LLVM
180 lines
4.8 KiB
LLVM
|
; RUN: opt < %s -loop-unroll -unroll-runtime -unroll-allow-partial -S | FileCheck %s
|
||
|
|
||
|
declare void @f() convergent
|
||
|
|
||
|
; Although this loop contains a convergent instruction, it should be
|
||
|
; fully unrolled.
|
||
|
;
|
||
|
; CHECK-LABEL: @full_unroll(
|
||
|
define i32 @full_unroll() {
|
||
|
entry:
|
||
|
br label %l3
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() ;convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, 3
|
||
|
br i1 %exitcond, label %exit, label %l3
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction, but it should be partially
|
||
|
; unrolled. The unroll count is the largest power of 2 that divides the
|
||
|
; multiple -- 4, in this case.
|
||
|
;
|
||
|
; CHECK-LABEL: @runtime_unroll(
|
||
|
define i32 @runtime_unroll(i32 %n) {
|
||
|
entry:
|
||
|
%loop_ctl = mul nsw i32 %n, 12
|
||
|
br label %l3
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, %loop_ctl
|
||
|
br i1 %exitcond, label %exit, label %l3
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction, so its partial unroll
|
||
|
; count must divide its trip multiple. This overrides its unroll
|
||
|
; pragma -- we unroll exactly 8 times, even though 16 is requested.
|
||
|
; CHECK-LABEL: @pragma_unroll
|
||
|
define i32 @pragma_unroll(i32 %n) {
|
||
|
entry:
|
||
|
%loop_ctl = mul nsw i32 %n, 24
|
||
|
br label %l3, !llvm.loop !0
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, %loop_ctl
|
||
|
br i1 %exitcond, label %exit, label %l3, !llvm.loop !0
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction. Since the pragma loop unroll
|
||
|
; count 2 divides trip count 4. The loop unroll should respect the pragma.
|
||
|
; CHECK-LABEL: @pragma_unroll_divisible_trip_count
|
||
|
define void @pragma_unroll_divisible_trip_count() {
|
||
|
entry:
|
||
|
br label %l3, !llvm.loop !1
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, 4
|
||
|
br i1 %exitcond, label %exit, label %l3, !llvm.loop !1
|
||
|
|
||
|
exit:
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction. Since the pragma loop unroll
|
||
|
; count 2 divides trip multiple 2. The loop unroll should respect the pragma.
|
||
|
; CHECK-LABEL: @pragma_unroll_divisible_trip_multiple
|
||
|
define i32 @pragma_unroll_divisible_trip_multiple(i32 %n) {
|
||
|
entry:
|
||
|
%loop_ctl = mul nsw i32 %n, 2
|
||
|
br label %l3, !llvm.loop !1
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, %loop_ctl
|
||
|
br i1 %exitcond, label %exit, label %l3, !llvm.loop !1
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction. Since the pragma loop unroll
|
||
|
; count 2 is unknown to divide runtime trip count, the loop is not unrolled
|
||
|
; since remainder is forbidden for unrolling convergent loop.
|
||
|
; ToDo: Forbidding remainder for unrolling convergent loop may be relaxed
|
||
|
; in the future.
|
||
|
; CHECK-LABEL: @pragma_unroll_indivisible_runtime_trip_count
|
||
|
define i32 @pragma_unroll_indivisible_runtime_trip_count(i32 %n) {
|
||
|
entry:
|
||
|
br label %l3, !llvm.loop !1
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, %n
|
||
|
br i1 %exitcond, label %exit, label %l3, !llvm.loop !1
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
; This loop contains a convergent instruction. Since the pragma loop unroll
|
||
|
; count 2 does not divide trip count 5, the loop is not unrolled by 2
|
||
|
; since remainder is forbidden for unrolling convergent loop. Instead, the
|
||
|
; loop gets fully unrolled.
|
||
|
; ToDo: Forbidding remainder for unrolling convergent loop may be relaxed
|
||
|
; in the future.
|
||
|
; CHECK-LABEL: @pragma_unroll_indivisible_trip_count
|
||
|
define i32 @pragma_unroll_indivisible_trip_count() {
|
||
|
entry:
|
||
|
br label %l3, !llvm.loop !1
|
||
|
|
||
|
l3:
|
||
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK: call void @f()
|
||
|
; CHECK-NOT: call void @f()
|
||
|
call void @f() convergent
|
||
|
%inc = add nsw i32 %x.0, 1
|
||
|
%exitcond = icmp eq i32 %inc, 5
|
||
|
br i1 %exitcond, label %exit, label %l3, !llvm.loop !1
|
||
|
|
||
|
exit:
|
||
|
ret i32 0
|
||
|
}
|
||
|
|
||
|
!0 = !{!0, !{!"llvm.loop.unroll.count", i32 16}}
|
||
|
!1 = !{!1, !{!"llvm.loop.unroll.count", i32 2}}
|
||
|
|