llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp

583 lines
21 KiB
C++
Raw Normal View History

//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Hexagon specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <map>
using namespace llvm;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "hexagon-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "HexagonGenSubtargetInfo.inc"
static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(true));
static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(false));
static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(true),
cl::desc("Enable the scheduler to generate .cur"));
static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Disable Hexagon MI Scheduling"));
static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
cl::Hidden, cl::ZeroOrMore, cl::init(true),
cl::desc("Enable subregister liveness tracking for Hexagon"));
static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("If present, forces/disables the use of long calls"));
static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Consider calls to be predicable"));
static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
cl::Hidden, cl::ZeroOrMore, cl::init(true));
static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
cl::Hidden, cl::ZeroOrMore, cl::init(true));
static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
cl::Hidden, cl::ZeroOrMore, cl::init(true),
cl::desc("Enable checking for cache bank conflicts"));
HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
StringRef FS, const TargetMachine &TM)
: HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
CPUString(Hexagon_MC::selectHexagonCPU(CPU)),
InstrInfo(initializeSubtargetDependencies(CPU, FS)),
RegInfo(getHwMode()), TLInfo(TM, *this),
InstrItins(getInstrItineraryForCPU(CPUString)) {
// Beware of the default constructor of InstrItineraryData: it will
// reset all members to 0.
assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
}
HexagonSubtarget &
HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
static std::map<StringRef, Hexagon::ArchEnum> CpuTable{
{"generic", Hexagon::ArchEnum::V60},
{"hexagonv5", Hexagon::ArchEnum::V5},
{"hexagonv55", Hexagon::ArchEnum::V55},
{"hexagonv60", Hexagon::ArchEnum::V60},
{"hexagonv62", Hexagon::ArchEnum::V62},
{"hexagonv65", Hexagon::ArchEnum::V65},
};
auto FoundIt = CpuTable.find(CPUString);
if (FoundIt != CpuTable.end())
HexagonArchVersion = FoundIt->second;
else
llvm_unreachable("Unrecognized Hexagon processor version");
UseHVX128BOps = false;
UseHVX64BOps = false;
UseLongCalls = false;
UseBSBScheduling = hasV60Ops() && EnableBSBSched;
ParseSubtargetFeatures(CPUString, FS);
if (OverrideLongCalls.getPosition())
UseLongCalls = OverrideLongCalls;
FeatureBitset Features = getFeatureBits();
if (HexagonDisableDuplex)
setFeatureBits(Features.set(Hexagon::FeatureDuplex, false));
setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
return *this;
}
void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
for (SUnit &SU : DAG->SUnits) {
if (!SU.isInstr())
continue;
SmallVector<SDep, 4> Erase;
for (auto &D : SU.Preds)
if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
Erase.push_back(D);
for (auto &E : Erase)
SU.removePred(E);
}
}
void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
for (SUnit &SU : DAG->SUnits) {
// Update the latency of chain edges between v60 vector load or store
// instructions to be 1. These instruction cannot be scheduled in the
// same packet.
MachineInstr &MI1 = *SU.getInstr();
auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
bool IsStoreMI1 = MI1.mayStore();
bool IsLoadMI1 = MI1.mayLoad();
if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
continue;
for (SDep &SI : SU.Succs) {
if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
continue;
MachineInstr &MI2 = *SI.getSUnit()->getInstr();
if (!QII->isHVXVec(MI2))
continue;
if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
SI.setLatency(1);
SU.setHeightDirty();
// Change the dependence in the opposite direction too.
for (SDep &PI : SI.getSUnit()->Preds) {
if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
continue;
PI.setLatency(1);
SI.getSUnit()->setDepthDirty();
}
}
}
}
}
// Check if a call and subsequent A2_tfrpi instructions should maintain
// scheduling affinity. We are looking for the TFRI to be consumed in
// the next instruction. This should help reduce the instances of
// double register pairs being allocated and scheduled before a call
// when not used until after the call. This situation is exacerbated
// by the fact that we allocate the pair from the callee saves list,
// leading to excess spills and restores.
bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
const HexagonInstrInfo &HII, const SUnit &Inst1,
const SUnit &Inst2) const {
if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
return false;
// TypeXTYPE are 64 bit operations.
unsigned Type = HII.getType(*Inst2.getInstr());
return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
}
void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
SUnit* LastSequentialCall = nullptr;
// Map from virtual register to physical register from the copy.
DenseMap<unsigned, unsigned> VRegHoldingReg;
// Map from the physical register to the instruction that uses virtual
// register. This is used to create the barrier edge.
DenseMap<unsigned, SUnit *> LastVRegUse;
auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
// Currently we only catch the situation when compare gets scheduled
// before preceding call.
for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
// Remember the call.
if (DAG->SUnits[su].getInstr()->isCall())
LastSequentialCall = &DAG->SUnits[su];
// Look for a compare that defines a predicate.
else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
// Look for call and tfri* instructions.
else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
// Prevent redundant register copies due to reads and writes of physical
// registers. The original motivation for this was the code generated
// between two calls, which are caused both the return value and the
// argument for the next call being in %r0.
// Example:
// 1: <call1>
// 2: %vreg = COPY %r0
// 3: <use of %vreg>
// 4: %r0 = ...
// 5: <call2>
// The scheduler would often swap 3 and 4, so an additional register is
// needed. This code inserts a Barrier dependence between 3 & 4 to prevent
// this.
// The code below checks for all the physical registers, not just R0/D0/V0.
else if (SchedRetvalOptimization) {
const MachineInstr *MI = DAG->SUnits[su].getInstr();
if (MI->isCopy() &&
TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) {
// %vregX = COPY %r0
VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
LastVRegUse.erase(MI->getOperand(1).getReg());
} else {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isUse() && !MI->isCopy() &&
VRegHoldingReg.count(MO.getReg())) {
// <use of %vregX>
LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
} else if (MO.isDef() &&
TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
++AI) {
if (LastVRegUse.count(*AI) &&
LastVRegUse[*AI] != &DAG->SUnits[su])
// %r0 = ...
DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
LastVRegUse.erase(*AI);
}
}
}
}
}
}
}
void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
if (!EnableCheckBankConflict)
return;
const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
// Create artificial edges between loads that could likely cause a bank
// conflict. Since such loads would normally not have any dependency
// between them, we cannot rely on existing edges.
for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
SUnit &S0 = DAG->SUnits[i];
MachineInstr &L0 = *S0.getInstr();
if (!L0.mayLoad() || L0.mayStore() ||
HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
continue;
int64_t Offset0;
unsigned Size0;
MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
// Is the access size is longer than the L1 cache line, skip the check.
if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
continue;
// Scan only up to 32 instructions ahead (to avoid n^2 complexity).
for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
SUnit &S1 = DAG->SUnits[j];
MachineInstr &L1 = *S1.getInstr();
if (!L1.mayLoad() || L1.mayStore() ||
HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
continue;
int64_t Offset1;
unsigned Size1;
MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
BaseOp0->getReg() != BaseOp1->getReg())
continue;
// Check bits 3 and 4 of the offset: if they differ, a bank conflict
// is unlikely.
if (((Offset0 ^ Offset1) & 0x18) != 0)
continue;
// Bits 3 and 4 are the same, add an artificial edge and set extra
// latency.
SDep A(&S0, SDep::Artificial);
A.setLatency(1);
S1.addPred(A, true);
}
}
}
/// Enable use of alias analysis during code generation (during MI
/// scheduling, DAGCombine, etc.).
bool HexagonSubtarget::useAA() const {
if (OptLevel != CodeGenOpt::None)
return true;
return false;
}
/// Perform target specific adjustments to the latency of a schedule
/// dependency.
void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
SDep &Dep) const {
MachineInstr *SrcInst = Src->getInstr();
MachineInstr *DstInst = Dst->getInstr();
if (!Src->isInstr() || !Dst->isInstr())
return;
const HexagonInstrInfo *QII = getInstrInfo();
// Instructions with .new operands have zero latency.
SmallSet<SUnit *, 4> ExclSrc;
SmallSet<SUnit *, 4> ExclDst;
if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
Dep.setLatency(0);
return;
}
if (!hasV60Ops())
return;
[Pipeliner] Use latency to compute RecMII The patch contains severals changes needed to pipeline an example that was transformed so that a Phi with a subreg is converted to copies. The pipeliner wasn't working for a couple of reasons. - The RecMII was 3 instead of 2 due to the extra copies. - Copy instructions contained a latency of 1. - The node order algorithm was not choosing the best "bottom" node, which caused an instruction to be scheduled that had a predecessor and successor already scheduled. - Updated the Hexagon Machine Scheduler to check if the node is latency bound when adding the cost for a 0-latency dependence. The RecMII was 3 because the computation looks at the number of nodes in the recurrence. The extra copy is an extra node but it shouldn't increase the latency. The new RecMII computation looks at the latency of the instructions in the recurrence. We changed the latency of the dependence of a copy to 0. The latency computation for the copy also checks the use of the copy (similar to a reg_sequence). The node order algorithm was not choosing the last instruction in the recurrence for a bottom up traversal. This was when the last instruction is a copy. A check was added when choosing the instruction to check for NodeNum if the maxASAP is the same. This means that the scheduler will not end up with another node in the recurrence that has both a predecessor and successor already scheduled. The cost computation in Hexagon Machine Scheduler adds cost when an instruction can be packetized with a zero-latency instruction. We should only do this if the schedule is latency bound. Patch by Brendon Cahoon. llvm-svn: 328542
2018-03-27 00:33:16 +08:00
// Set the latency for a copy to zero since we hope that is will get removed.
if (DstInst->isCopy())
Dep.setLatency(0);
// If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
// the correct latency.
[Pipeliner] Use latency to compute RecMII The patch contains severals changes needed to pipeline an example that was transformed so that a Phi with a subreg is converted to copies. The pipeliner wasn't working for a couple of reasons. - The RecMII was 3 instead of 2 due to the extra copies. - Copy instructions contained a latency of 1. - The node order algorithm was not choosing the best "bottom" node, which caused an instruction to be scheduled that had a predecessor and successor already scheduled. - Updated the Hexagon Machine Scheduler to check if the node is latency bound when adding the cost for a 0-latency dependence. The RecMII was 3 because the computation looks at the number of nodes in the recurrence. The extra copy is an extra node but it shouldn't increase the latency. The new RecMII computation looks at the latency of the instructions in the recurrence. We changed the latency of the dependence of a copy to 0. The latency computation for the copy also checks the use of the copy (similar to a reg_sequence). The node order algorithm was not choosing the last instruction in the recurrence for a bottom up traversal. This was when the last instruction is a copy. A check was added when choosing the instruction to check for NodeNum if the maxASAP is the same. This means that the scheduler will not end up with another node in the recurrence that has both a predecessor and successor already scheduled. The cost computation in Hexagon Machine Scheduler adds cost when an instruction can be packetized with a zero-latency instruction. We should only do this if the schedule is latency bound. Patch by Brendon Cahoon. llvm-svn: 328542
2018-03-27 00:33:16 +08:00
if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
unsigned DReg = DstInst->getOperand(0).getReg();
MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
unsigned UseIdx = -1;
[Pipeliner] Use latency to compute RecMII The patch contains severals changes needed to pipeline an example that was transformed so that a Phi with a subreg is converted to copies. The pipeliner wasn't working for a couple of reasons. - The RecMII was 3 instead of 2 due to the extra copies. - Copy instructions contained a latency of 1. - The node order algorithm was not choosing the best "bottom" node, which caused an instruction to be scheduled that had a predecessor and successor already scheduled. - Updated the Hexagon Machine Scheduler to check if the node is latency bound when adding the cost for a 0-latency dependence. The RecMII was 3 because the computation looks at the number of nodes in the recurrence. The extra copy is an extra node but it shouldn't increase the latency. The new RecMII computation looks at the latency of the instructions in the recurrence. We changed the latency of the dependence of a copy to 0. The latency computation for the copy also checks the use of the copy (similar to a reg_sequence). The node order algorithm was not choosing the last instruction in the recurrence for a bottom up traversal. This was when the last instruction is a copy. A check was added when choosing the instruction to check for NodeNum if the maxASAP is the same. This means that the scheduler will not end up with another node in the recurrence that has both a predecessor and successor already scheduled. The cost computation in Hexagon Machine Scheduler adds cost when an instruction can be packetized with a zero-latency instruction. We should only do this if the schedule is latency bound. Patch by Brendon Cahoon. llvm-svn: 328542
2018-03-27 00:33:16 +08:00
for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
const MachineOperand &MO = DDst->getOperand(OpNum);
if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
UseIdx = OpNum;
break;
}
}
[Pipeliner] Use latency to compute RecMII The patch contains severals changes needed to pipeline an example that was transformed so that a Phi with a subreg is converted to copies. The pipeliner wasn't working for a couple of reasons. - The RecMII was 3 instead of 2 due to the extra copies. - Copy instructions contained a latency of 1. - The node order algorithm was not choosing the best "bottom" node, which caused an instruction to be scheduled that had a predecessor and successor already scheduled. - Updated the Hexagon Machine Scheduler to check if the node is latency bound when adding the cost for a 0-latency dependence. The RecMII was 3 because the computation looks at the number of nodes in the recurrence. The extra copy is an extra node but it shouldn't increase the latency. The new RecMII computation looks at the latency of the instructions in the recurrence. We changed the latency of the dependence of a copy to 0. The latency computation for the copy also checks the use of the copy (similar to a reg_sequence). The node order algorithm was not choosing the last instruction in the recurrence for a bottom up traversal. This was when the last instruction is a copy. A check was added when choosing the instruction to check for NodeNum if the maxASAP is the same. This means that the scheduler will not end up with another node in the recurrence that has both a predecessor and successor already scheduled. The cost computation in Hexagon Machine Scheduler adds cost when an instruction can be packetized with a zero-latency instruction. We should only do this if the schedule is latency bound. Patch by Brendon Cahoon. llvm-svn: 328542
2018-03-27 00:33:16 +08:00
int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
0, *DDst, UseIdx));
DLatency = std::max(DLatency, 0);
Dep.setLatency((unsigned)DLatency);
}
// Try to schedule uses near definitions to generate .cur.
ExclSrc.clear();
ExclDst.clear();
if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
Dep.setLatency(0);
return;
}
updateLatency(*SrcInst, *DstInst, Dep);
}
void HexagonSubtarget::getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
Mutations.push_back(llvm::make_unique<BankConflictMutation>());
}
void HexagonSubtarget::getSMSMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
}
// Pin the vtable to this file.
void HexagonSubtarget::anchor() {}
bool HexagonSubtarget::enableMachineScheduler() const {
if (DisableHexagonMISched.getNumOccurrences())
return !DisableHexagonMISched;
return true;
}
bool HexagonSubtarget::usePredicatedCalls() const {
return EnablePredicatedCalls;
}
void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
MachineInstr &DstInst, SDep &Dep) const {
if (Dep.isArtificial()) {
Dep.setLatency(1);
return;
}
if (!hasV60Ops())
return;
auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
// BSB scheduling.
if (QII.isHVXVec(SrcInst) || useBSBScheduling())
Dep.setLatency((Dep.getLatency() + 1) >> 1);
}
void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
MachineInstr *SrcI = Src->getInstr();
for (auto &I : Src->Succs) {
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
continue;
unsigned DepR = I.getReg();
int DefIdx = -1;
for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
const MachineOperand &MO = SrcI->getOperand(OpNum);
if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
DefIdx = OpNum;
}
assert(DefIdx >= 0 && "Def Reg not found in Src MI");
MachineInstr *DstI = Dst->getInstr();
SDep T = I;
for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
const MachineOperand &MO = DstI->getOperand(OpNum);
if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
DefIdx, *DstI, OpNum));
// For some instructions (ex: COPY), we might end up with < 0 latency
// as they don't have any Itinerary class associated with them.
[Pipeliner] Use latency to compute RecMII The patch contains severals changes needed to pipeline an example that was transformed so that a Phi with a subreg is converted to copies. The pipeliner wasn't working for a couple of reasons. - The RecMII was 3 instead of 2 due to the extra copies. - Copy instructions contained a latency of 1. - The node order algorithm was not choosing the best "bottom" node, which caused an instruction to be scheduled that had a predecessor and successor already scheduled. - Updated the Hexagon Machine Scheduler to check if the node is latency bound when adding the cost for a 0-latency dependence. The RecMII was 3 because the computation looks at the number of nodes in the recurrence. The extra copy is an extra node but it shouldn't increase the latency. The new RecMII computation looks at the latency of the instructions in the recurrence. We changed the latency of the dependence of a copy to 0. The latency computation for the copy also checks the use of the copy (similar to a reg_sequence). The node order algorithm was not choosing the last instruction in the recurrence for a bottom up traversal. This was when the last instruction is a copy. A check was added when choosing the instruction to check for NodeNum if the maxASAP is the same. This means that the scheduler will not end up with another node in the recurrence that has both a predecessor and successor already scheduled. The cost computation in Hexagon Machine Scheduler adds cost when an instruction can be packetized with a zero-latency instruction. We should only do this if the schedule is latency bound. Patch by Brendon Cahoon. llvm-svn: 328542
2018-03-27 00:33:16 +08:00
Latency = std::max(Latency, 0);
I.setLatency(Latency);
updateLatency(*SrcI, *DstI, I);
}
}
// Update the latency of opposite edge too.
T.setSUnit(Src);
auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
assert(F != Dst->Preds.end());
F->setLatency(I.getLatency());
}
}
/// Change the latency between the two SUnits.
void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
const {
for (auto &I : Src->Succs) {
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
continue;
SDep T = I;
I.setLatency(Lat);
// Update the latency of opposite edge too.
T.setSUnit(Src);
auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
assert(F != Dst->Preds.end());
F->setLatency(Lat);
}
}
/// If the SUnit has a zero latency edge, return the other SUnit.
static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
for (auto &I : Deps)
if (I.isAssignedRegDep() && I.getLatency() == 0 &&
!I.getSUnit()->getInstr()->isPseudo())
return I.getSUnit();
return nullptr;
}
// Return true if these are the best two instructions to schedule
// together with a zero latency. Only one dependence should have a zero
// latency. If there are multiple choices, choose the best, and change
// the others, if needed.
bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
SmallSet<SUnit*, 4> &ExclDst) const {
MachineInstr &SrcInst = *Src->getInstr();
MachineInstr &DstInst = *Dst->getInstr();
// Ignore Boundary SU nodes as these have null instructions.
if (Dst->isBoundaryNode())
return false;
if (SrcInst.isPHI() || DstInst.isPHI())
return false;
if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
!TII->canExecuteInBundle(SrcInst, DstInst))
return false;
// The architecture doesn't allow three dependent instructions in the same
// packet. So, if the destination has a zero latency successor, then it's
// not a candidate for a zero latency predecessor.
if (getZeroLatency(Dst, Dst->Succs) != nullptr)
return false;
// Check if the Dst instruction is the best candidate first.
SUnit *Best = nullptr;
SUnit *DstBest = nullptr;
SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
// Check that Src doesn't have a better candidate.
DstBest = getZeroLatency(Src, Src->Succs);
if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
Best = Dst;
}
if (Best != Dst)
return false;
// The caller frequently adds the same dependence twice. If so, then
// return true for this case too.
if ((Src == SrcBest && Dst == DstBest ) ||
(SrcBest == nullptr && Dst == DstBest) ||
(Src == SrcBest && Dst == nullptr))
return true;
// Reassign the latency for the previous bests, which requires setting
// the dependence edge in both directions.
if (SrcBest != nullptr) {
if (!hasV60Ops())
changeLatency(SrcBest, Dst, 1);
else
restoreLatency(SrcBest, Dst);
}
if (DstBest != nullptr) {
if (!hasV60Ops())
changeLatency(Src, DstBest, 1);
else
restoreLatency(Src, DstBest);
}
// Attempt to find another opprotunity for zero latency in a different
// dependence.
if (SrcBest && DstBest)
// If there is an edge from SrcBest to DstBst, then try to change that
// to 0 now.
changeLatency(SrcBest, DstBest, 0);
else if (DstBest) {
// Check if the previous best destination instruction has a new zero
// latency dependence opportunity.
ExclSrc.insert(Src);
for (auto &I : DstBest->Preds)
if (ExclSrc.count(I.getSUnit()) == 0 &&
isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
changeLatency(I.getSUnit(), DstBest, 0);
} else if (SrcBest) {
// Check if previous best source instruction has a new zero latency
// dependence opportunity.
ExclDst.insert(Dst);
for (auto &I : SrcBest->Succs)
if (ExclDst.count(I.getSUnit()) == 0 &&
isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
changeLatency(SrcBest, I.getSUnit(), 0);
}
return true;
}
unsigned HexagonSubtarget::getL1CacheLineSize() const {
return 32;
}
unsigned HexagonSubtarget::getL1PrefetchDistance() const {
return 32;
}
bool HexagonSubtarget::enableSubRegLiveness() const {
return EnableSubregLiveness;
}