llvm-project/llvm/lib/ExecutionEngine/Orc/CMakeLists.txt

37 lines
670 B
CMake
Raw Normal View History

add_llvm_library(LLVMOrcJIT
CompileOnDemandLayer.cpp
CompileUtils.cpp
Core.cpp
ExecutionUtils.cpp
IndirectionUtils.cpp
IRCompileLayer.cpp
IRTransformLayer.cpp
JITTargetMachineBuilder.cpp
LazyReexports.cpp
Legacy.cpp
Layer.cpp
LLJIT.cpp
NullResolver.cpp
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
ObjectLinkingLayer.cpp
ObjectTransformLayer.cpp
OrcABISupport.cpp
OrcCBindings.cpp
OrcError.cpp
OrcMCJITReplacement.cpp
RPCUtils.cpp
RTDyldObjectLinkingLayer.cpp
[ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent compilation of IR in the JIT. ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to lock that context when it needs to be accessed from multiple threads. ThreadSafeModule is a pair of a unique_ptr<Module> and a shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext to be managed automatically in terms of the ThreadSafeModules that refer to it: Once all modules using a ThreadSafeContext are destructed, and providing the client has not held on to a copy of shared context pointer, the context will be automatically destructed. This scheme is necessary due to the following constraits: (1) We need multiple contexts for multithreaded compilation (at least one per compile thread plus one to store any IR not currently being compiled, though one context per module is simpler). (2) We need to free contexts that are no longer being used so that the JIT does not leak memory over time. (3) Module lifetimes are not predictable (modules are compiled as needed depending on the flow of JIT'd code) so there is no single point where contexts could be reclaimed. JIT clients not using concurrency can safely use one ThreadSafeContext for all ThreadSafeModules. JIT clients who want to be able to compile concurrently should use a different ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their top-level IRLayer. The former reduces compile latency (since no clone step is needed) at the cost of additional memory overhead for uncompiled modules (as every uncompiled module will duplicate the LLVM types, constants and metadata that have been shared). llvm-svn: 343055
2018-09-26 09:24:12 +08:00
ThreadSafeModule.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/ExecutionEngine/Orc
DEPENDS
intrinsics_gen
)
target_link_libraries(LLVMOrcJIT
PRIVATE
LLVMBitReader
LLVMBitWriter
)