llvm-project/clang/test/CodeGenCUDA/propagate-metadata.cu

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

88 lines
3.0 KiB
Plaintext
Raw Normal View History

// Check that when we link a bitcode module into a file using
// -mlink-builtin-bitcode, we apply the same attributes to the functions in that
// bitcode module as we apply to functions we generate.
//
// In particular, we check that ftz and unsafe-math are propagated into the
// bitcode library as appropriate.
//
// In addition, we set -ftrapping-math on the bitcode library, but then set
// -fno-trapping-math on the main compilations, and ensure that the latter flag
// overrides the flag on the bitcode library.
// Build the bitcode library. This is not built in CUDA mode, otherwise it
// might have incompatible attributes. This mirrors how libdevice is built.
// RUN: %clang_cc1 -x c++ -fconvergent-functions -emit-llvm-bc -ftrapping-math -DLIB \
// RUN: %s -o %t.bc -triple nvptx-unknown-unknown
// RUN: %clang_cc1 -x cuda %s -emit-llvm -mlink-builtin-bitcode %t.bc -o - \
// RUN: -fno-trapping-math -fcuda-is-device -triple nvptx-unknown-unknown \
// RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=NOFTZ --check-prefix=NOFAST
// RUN: %clang_cc1 -x cuda %s -emit-llvm -mlink-builtin-bitcode %t.bc \
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// RUN: -fno-trapping-math -fdenormal-fp-math-f32=preserve-sign -o - \
// RUN: -fcuda-is-device -triple nvptx-unknown-unknown \
// RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=FTZ \
// RUN: --check-prefix=NOFAST
// RUN: %clang_cc1 -x cuda %s -emit-llvm -mlink-builtin-bitcode %t.bc \
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// RUN: -fno-trapping-math -fdenormal-fp-math-f32=preserve-sign -o - \
// RUN: -fcuda-is-device -menable-unsafe-fp-math -triple nvptx-unknown-unknown \
// RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=FAST
// Wrap everything in extern "C" so we don't have to worry about name mangling
// in the IR.
extern "C" {
#ifdef LIB
// This function is defined in the library and only declared in the main
// compilation.
void lib_fn() {}
#else
#include "Inputs/cuda.h"
__device__ void lib_fn();
__global__ void kernel() { lib_fn(); }
#endif
}
// The kernel and lib function should have the same attributes.
// CHECK: define void @kernel() [[kattr:#[0-9]+]]
// CHECK: define internal void @lib_fn() [[fattr:#[0-9]+]]
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// FIXME: These -NOT checks do not work as intended and do not check on the same
// line.
// Check the attribute list for kernel.
// CHECK: attributes [[kattr]] = {
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// CHECK-SAME: convergent
// CHECK-SAME: norecurse
// FTZ-NOT: "denormal-fp-math"
// FTZ-SAME: "denormal-fp-math-f32"="preserve-sign,preserve-sign"
// NOFTZ-NOT: "denormal-fp-math-f32"
// CHECK-SAME: "no-trapping-math"="true"
// FAST-SAME: "unsafe-fp-math"="true"
// NOFAST-NOT: "unsafe-fp-math"="true"
// Check the attribute list for lib_fn.
// CHECK: attributes [[fattr]] = {
// CHECK-SAME: convergent
// CHECK-NOT: norecurse
// FTZ-NOT: "denormal-fp-math"
// NOFTZ-NOT: "denormal-fp-math"
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// FTZ-SAME: "denormal-fp-math-f32"="preserve-sign,preserve-sign"
// NOFTZ-NOT: "denormal-fp-math-f32"
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-02 08:57:29 +08:00
// CHECK-SAME: "no-trapping-math"="true"
// FAST-SAME: "unsafe-fp-math"="true"
// NOFAST-NOT: "unsafe-fp-math"="true"