llvm-project/llvm/lib/Transforms/Utils/SSAUpdater.cpp

493 lines
17 KiB
C++
Raw Normal View History

//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <cassert>
#include <utility>
using namespace llvm;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "ssaupdater"
using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
static AvailableValsTy &getAvailableVals(void *AV) {
return *static_cast<AvailableValsTy*>(AV);
}
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
: InsertedPHIs(NewPHI) {}
SSAUpdater::~SSAUpdater() {
delete static_cast<AvailableValsTy*>(AV);
}
void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
if (!AV)
AV = new AvailableValsTy();
else
getAvailableVals(AV).clear();
ProtoType = Ty;
ProtoName = Name;
}
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
return getAvailableVals(AV).count(BB);
}
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
2014-04-28 12:05:08 +08:00
assert(ProtoType && "Need to initialize SSAUpdater");
assert(ProtoType == V->getType() &&
"All rewritten values must have the same type");
getAvailableVals(AV)[BB] = V;
}
static bool IsEquivalentPHI(PHINode *PHI,
SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
unsigned PHINumValues = PHI->getNumIncomingValues();
if (PHINumValues != ValueMapping.size())
return false;
// Scan the phi to see if it matches.
for (unsigned i = 0, e = PHINumValues; i != e; ++i)
if (ValueMapping[PHI->getIncomingBlock(i)] !=
PHI->getIncomingValue(i)) {
return false;
}
return true;
}
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
Value *Res = GetValueAtEndOfBlockInternal(BB);
return Res;
}
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// If there is no definition of the renamed variable in this block, just use
// GetValueAtEndOfBlock to do our work.
if (!HasValueForBlock(BB))
return GetValueAtEndOfBlock(BB);
// Otherwise, we have the hard case. Get the live-in values for each
// predecessor.
SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
Value *SingularValue = nullptr;
// We can get our predecessor info by walking the pred_iterator list, but it
// is relatively slow. If we already have PHI nodes in this block, walk one
// of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (i == 0)
SingularValue = PredVal;
else if (PredVal != SingularValue)
SingularValue = nullptr;
}
} else {
bool isFirstPred = true;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBB = *PI;
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (isFirstPred) {
SingularValue = PredVal;
isFirstPred = false;
} else if (PredVal != SingularValue)
SingularValue = nullptr;
}
}
// If there are no predecessors, just return undef.
if (PredValues.empty())
return UndefValue::get(ProtoType);
// Otherwise, if all the merged values are the same, just use it.
if (SingularValue)
return SingularValue;
// Otherwise, we do need a PHI: check to see if we already have one available
// in this block that produces the right value.
if (isa<PHINode>(BB->begin())) {
SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
PredValues.end());
for (PHINode &SomePHI : BB->phis()) {
if (IsEquivalentPHI(&SomePHI, ValueMapping))
return &SomePHI;
}
}
// Ok, we have no way out, insert a new one now.
PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
ProtoName, &BB->front());
// Fill in all the predecessors of the PHI.
for (const auto &PredValue : PredValues)
InsertedPHI->addIncoming(PredValue.second, PredValue.first);
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
if (Value *V =
SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
InsertedPHI->eraseFromParent();
return V;
}
// Set the DebugLoc of the inserted PHI, if available.
DebugLoc DL;
if (const Instruction *I = BB->getFirstNonPHI())
DL = I->getDebugLoc();
InsertedPHI->setDebugLoc(DL);
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI;
}
void SSAUpdater::RewriteUse(Use &U) {
Instruction *User = cast<Instruction>(U.getUser());
Value *V;
if (PHINode *UserPN = dyn_cast<PHINode>(User))
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
else
V = GetValueInMiddleOfBlock(User->getParent());
// Notify that users of the existing value that it is being replaced.
Value *OldVal = U.get();
if (OldVal != V && OldVal->hasValueHandle())
ValueHandleBase::ValueIsRAUWd(OldVal, V);
U.set(V);
}
void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
Instruction *User = cast<Instruction>(U.getUser());
Value *V;
if (PHINode *UserPN = dyn_cast<PHINode>(User))
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
else
V = GetValueAtEndOfBlock(User->getParent());
U.set(V);
}
namespace llvm {
template<>
class SSAUpdaterTraits<SSAUpdater> {
public:
using BlkT = BasicBlock;
using ValT = Value *;
using PhiT = PHINode;
using BlkSucc_iterator = succ_iterator;
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
class PHI_iterator {
private:
PHINode *PHI;
unsigned idx;
public:
explicit PHI_iterator(PHINode *P) // begin iterator
: PHI(P), idx(0) {}
PHI_iterator(PHINode *P, bool) // end iterator
: PHI(P), idx(PHI->getNumIncomingValues()) {}
PHI_iterator &operator++() { ++idx; return *this; }
bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
};
static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
static PHI_iterator PHI_end(PhiT *PHI) {
return PHI_iterator(PHI, true);
}
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
static void FindPredecessorBlocks(BasicBlock *BB,
SmallVectorImpl<BasicBlock *> *Preds) {
// We can get our predecessor info by walking the pred_iterator list,
// but it is relatively slow. If we already have PHI nodes in this
// block, walk one of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
Preds->append(SomePhi->block_begin(), SomePhi->block_end());
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Preds->push_back(*PI);
}
}
/// GetUndefVal - Get an undefined value of the same type as the value
/// being handled.
static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
return UndefValue::get(Updater->ProtoType);
}
/// CreateEmptyPHI - Create a new PHI instruction in the specified block.
/// Reserve space for the operands but do not fill them in yet.
static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
SSAUpdater *Updater) {
PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
Updater->ProtoName, &BB->front());
return PHI;
}
/// AddPHIOperand - Add the specified value as an operand of the PHI for
/// the specified predecessor block.
static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
PHI->addIncoming(Val, Pred);
}
/// InstrIsPHI - Check if an instruction is a PHI.
///
static PHINode *InstrIsPHI(Instruction *I) {
return dyn_cast<PHINode>(I);
}
/// ValueIsPHI - Check if a value is a PHI.
static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
return dyn_cast<PHINode>(Val);
}
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
/// operands, i.e., it was just added.
static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
PHINode *PHI = ValueIsPHI(Val, Updater);
if (PHI && PHI->getNumIncomingValues() == 0)
return PHI;
return nullptr;
}
/// GetPHIValue - For the specified PHI instruction, return the value
/// that it defines.
static Value *GetPHIValue(PHINode *PHI) {
return PHI;
}
};
} // end namespace llvm
/// Check to see if AvailableVals has an entry for the specified BB and if so,
/// return it. If not, construct SSA form by first calculating the required
/// placement of PHIs and then inserting new PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
if (Value *V = AvailableVals[BB])
return V;
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
return Impl.GetValue(BB);
}
//===----------------------------------------------------------------------===//
// LoadAndStorePromoter Implementation
//===----------------------------------------------------------------------===//
LoadAndStorePromoter::
LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
SSAUpdater &S, StringRef BaseName) : SSA(S) {
if (Insts.empty()) return;
const Value *SomeVal;
if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
SomeVal = LI;
else
SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
if (BaseName.empty())
BaseName = SomeVal->getName();
SSA.Initialize(SomeVal->getType(), BaseName);
}
void LoadAndStorePromoter::
run(const SmallVectorImpl<Instruction *> &Insts) const {
// First step: bucket up uses of the alloca by the block they occur in.
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
for (Instruction *User : Insts)
UsesByBlock[User->getParent()].push_back(User);
// Okay, now we can iterate over all the blocks in the function with uses,
// processing them. Keep track of which loads are loading a live-in value.
// Walk the uses in the use-list order to be determinstic.
SmallVector<LoadInst *, 32> LiveInLoads;
DenseMap<Value *, Value *> ReplacedLoads;
for (Instruction *User : Insts) {
BasicBlock *BB = User->getParent();
TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
// If this block has already been processed, ignore this repeat use.
if (BlockUses.empty()) continue;
// Okay, this is the first use in the block. If this block just has a
// single user in it, we can rewrite it trivially.
if (BlockUses.size() == 1) {
// If it is a store, it is a trivial def of the value in the block.
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
updateDebugInfo(SI);
SSA.AddAvailableValue(BB, SI->getOperand(0));
} else
// Otherwise it is a load, queue it to rewrite as a live-in load.
LiveInLoads.push_back(cast<LoadInst>(User));
BlockUses.clear();
continue;
}
// Otherwise, check to see if this block is all loads.
bool HasStore = false;
for (Instruction *I : BlockUses) {
if (isa<StoreInst>(I)) {
HasStore = true;
break;
}
}
// If so, we can queue them all as live in loads. We don't have an
// efficient way to tell which on is first in the block and don't want to
// scan large blocks, so just add all loads as live ins.
if (!HasStore) {
for (Instruction *I : BlockUses)
LiveInLoads.push_back(cast<LoadInst>(I));
BlockUses.clear();
continue;
}
// Otherwise, we have mixed loads and stores (or just a bunch of stores).
// Since SSAUpdater is purely for cross-block values, we need to determine
// the order of these instructions in the block. If the first use in the
// block is a load, then it uses the live in value. The last store defines
// the live out value. We handle this by doing a linear scan of the block.
Value *StoredValue = nullptr;
for (Instruction &I : *BB) {
if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
// If this is a load from an unrelated pointer, ignore it.
if (!isInstInList(L, Insts)) continue;
// If we haven't seen a store yet, this is a live in use, otherwise
// use the stored value.
if (StoredValue) {
replaceLoadWithValue(L, StoredValue);
L->replaceAllUsesWith(StoredValue);
ReplacedLoads[L] = StoredValue;
} else {
LiveInLoads.push_back(L);
}
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
// If this is a store to an unrelated pointer, ignore it.
if (!isInstInList(SI, Insts)) continue;
updateDebugInfo(SI);
// Remember that this is the active value in the block.
StoredValue = SI->getOperand(0);
}
}
// The last stored value that happened is the live-out for the block.
assert(StoredValue && "Already checked that there is a store in block");
SSA.AddAvailableValue(BB, StoredValue);
BlockUses.clear();
}
// Okay, now we rewrite all loads that use live-in values in the loop,
// inserting PHI nodes as necessary.
for (LoadInst *ALoad : LiveInLoads) {
Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
replaceLoadWithValue(ALoad, NewVal);
// Avoid assertions in unreachable code.
if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
ALoad->replaceAllUsesWith(NewVal);
ReplacedLoads[ALoad] = NewVal;
}
// Allow the client to do stuff before we start nuking things.
doExtraRewritesBeforeFinalDeletion();
// Now that everything is rewritten, delete the old instructions from the
// function. They should all be dead now.
for (Instruction *User : Insts) {
// If this is a load that still has uses, then the load must have been added
// as a live value in the SSAUpdate data structure for a block (e.g. because
// the loaded value was stored later). In this case, we need to recursively
// propagate the updates until we get to the real value.
if (!User->use_empty()) {
Value *NewVal = ReplacedLoads[User];
assert(NewVal && "not a replaced load?");
// Propagate down to the ultimate replacee. The intermediately loads
// could theoretically already have been deleted, so we don't want to
// dereference the Value*'s.
DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
while (RLI != ReplacedLoads.end()) {
NewVal = RLI->second;
RLI = ReplacedLoads.find(NewVal);
}
replaceLoadWithValue(cast<LoadInst>(User), NewVal);
User->replaceAllUsesWith(NewVal);
}
instructionDeleted(User);
User->eraseFromParent();
}
}
bool
LoadAndStorePromoter::isInstInList(Instruction *I,
const SmallVectorImpl<Instruction *> &Insts)
const {
return is_contained(Insts, I);
}