llvm-project/clang/lib/AST/ExprConstant.cpp

3644 lines
118 KiB
C++
Raw Normal View History

//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
2009-07-19 03:43:29 +08:00
#include "clang/AST/RecordLayout.h"
2008-07-08 15:23:12 +08:00
#include "clang/AST/StmtVisitor.h"
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
#include "clang/AST/TypeLoc.h"
#include "clang/AST/ASTDiagnostic.h"
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
#include "clang/AST/Expr.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include <cstring>
using namespace clang;
using llvm::APSInt;
using llvm::APFloat;
static bool IsParamLValue(const Expr *E);
/// EvalInfo - This is a private struct used by the evaluator to capture
/// information about a subexpression as it is folded. It retains information
/// about the AST context, but also maintains information about the folded
/// expression.
///
/// If an expression could be evaluated, it is still possible it is not a C
/// "integer constant expression" or constant expression. If not, this struct
/// captures information about how and why not.
///
/// One bit of information passed *into* the request for constant folding
/// indicates whether the subexpression is "evaluated" or not according to C
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
/// evaluate the expression regardless of what the RHS is, but C only allows
/// certain things in certain situations.
namespace {
struct CallStackFrame;
struct EvalInfo;
/// A core constant value. This can be the value of any constant expression,
/// or a pointer or reference to a non-static object or function parameter.
class CCValue : public APValue {
typedef llvm::APSInt APSInt;
typedef llvm::APFloat APFloat;
/// If the value is a DeclRefExpr lvalue referring to a ParmVarDecl, this is
/// the index of the corresponding function call.
unsigned CallIndex;
public:
CCValue() {}
explicit CCValue(const APSInt &I) : APValue(I) {}
explicit CCValue(const APFloat &F) : APValue(F) {}
CCValue(const APValue *E, unsigned N) : APValue(E, N) {}
CCValue(const APSInt &R, const APSInt &I) : APValue(R, I) {}
CCValue(const APFloat &R, const APFloat &I) : APValue(R, I) {}
CCValue(const CCValue &V) : APValue(V), CallIndex(V.CallIndex) {}
CCValue(const Expr *B, const CharUnits &O, unsigned I) :
APValue(B, O), CallIndex(I) {}
CCValue(const APValue &V, unsigned CallIndex) :
APValue(V), CallIndex(CallIndex) {}
enum { NoCallIndex = (unsigned)0 };
unsigned getLValueCallIndex() const {
assert(getKind() == LValue);
return CallIndex;
}
};
/// A stack frame in the constexpr call stack.
struct CallStackFrame {
EvalInfo &Info;
/// Parent - The caller of this stack frame.
CallStackFrame *Caller;
/// ParmBindings - Parameter bindings for this function call, indexed by
/// parameters' function scope indices.
const CCValue *Arguments;
/// CallIndex - The index of the current call. This is used to match lvalues
/// referring to parameters up with the corresponding stack frame, and to
/// detect when the parameter is no longer in scope.
unsigned CallIndex;
typedef llvm::DenseMap<const Expr*, CCValue> MapTy;
typedef MapTy::const_iterator temp_iterator;
/// Temporaries - Temporary lvalues materialized within this stack frame.
MapTy Temporaries;
CallStackFrame(EvalInfo &Info, const CCValue *Arguments);
~CallStackFrame();
};
struct EvalInfo {
const ASTContext &Ctx;
/// EvalStatus - Contains information about the evaluation.
Expr::EvalStatus &EvalStatus;
/// CurrentCall - The top of the constexpr call stack.
CallStackFrame *CurrentCall;
/// NumCalls - The number of calls we've evaluated so far.
unsigned NumCalls;
/// CallStackDepth - The number of calls in the call stack right now.
unsigned CallStackDepth;
typedef llvm::DenseMap<const OpaqueValueExpr*, CCValue> MapTy;
/// OpaqueValues - Values used as the common expression in a
/// BinaryConditionalOperator.
MapTy OpaqueValues;
/// BottomFrame - The frame in which evaluation started. This must be
/// initialized last.
CallStackFrame BottomFrame;
EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
: Ctx(C), EvalStatus(S), CurrentCall(0), NumCalls(0), CallStackDepth(0),
BottomFrame(*this, 0) {}
unsigned getCurrentCallIndex() const { return CurrentCall->CallIndex; }
CallStackFrame *getStackFrame(unsigned CallIndex) const;
const CCValue *getCallValue(unsigned CallIndex, unsigned ArgIndex) const;
const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
MapTy::const_iterator i = OpaqueValues.find(e);
if (i == OpaqueValues.end()) return 0;
return &i->second;
}
const LangOptions &getLangOpts() { return Ctx.getLangOptions(); }
};
CallStackFrame::CallStackFrame(EvalInfo &Info, const CCValue *Arguments)
: Info(Info), Caller(Info.CurrentCall), Arguments(Arguments),
CallIndex(Info.NumCalls++) {
Info.CurrentCall = this;
++Info.CallStackDepth;
}
CallStackFrame::~CallStackFrame() {
assert(Info.CurrentCall == this && "calls retired out of order");
--Info.CallStackDepth;
Info.CurrentCall = Caller;
}
CallStackFrame *EvalInfo::getStackFrame(unsigned CallIndex) const {
for (CallStackFrame *Frame = CurrentCall;
Frame && Frame->CallIndex >= CallIndex; Frame = Frame->Caller)
if (Frame->CallIndex == CallIndex)
return Frame;
return 0;
}
const CCValue *EvalInfo::getCallValue(unsigned CallIndex,
unsigned ArgIndex) const {
if (CallIndex == 0)
return 0;
if (CallStackFrame *Frame = getStackFrame(CallIndex))
return Frame->Arguments + ArgIndex;
return 0;
}
struct ComplexValue {
private:
bool IsInt;
public:
APSInt IntReal, IntImag;
APFloat FloatReal, FloatImag;
ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
void makeComplexFloat() { IsInt = false; }
bool isComplexFloat() const { return !IsInt; }
APFloat &getComplexFloatReal() { return FloatReal; }
APFloat &getComplexFloatImag() { return FloatImag; }
void makeComplexInt() { IsInt = true; }
bool isComplexInt() const { return IsInt; }
APSInt &getComplexIntReal() { return IntReal; }
APSInt &getComplexIntImag() { return IntImag; }
void moveInto(CCValue &v) const {
if (isComplexFloat())
v = CCValue(FloatReal, FloatImag);
else
v = CCValue(IntReal, IntImag);
}
void setFrom(const CCValue &v) {
assert(v.isComplexFloat() || v.isComplexInt());
if (v.isComplexFloat()) {
makeComplexFloat();
FloatReal = v.getComplexFloatReal();
FloatImag = v.getComplexFloatImag();
} else {
makeComplexInt();
IntReal = v.getComplexIntReal();
IntImag = v.getComplexIntImag();
}
}
};
struct LValue {
const Expr *Base;
CharUnits Offset;
unsigned CallIndex;
const Expr *getLValueBase() const { return Base; }
CharUnits &getLValueOffset() { return Offset; }
const CharUnits &getLValueOffset() const { return Offset; }
unsigned getLValueCallIndex() const { return CallIndex; }
void moveInto(CCValue &V) const {
V = CCValue(Base, Offset, CallIndex);
}
void setFrom(const CCValue &V) {
assert(V.isLValue());
Base = V.getLValueBase();
Offset = V.getLValueOffset();
CallIndex = V.getLValueCallIndex();
}
};
}
static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E);
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result,
EvalInfo &Info);
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
//===----------------------------------------------------------------------===//
// Misc utilities
//===----------------------------------------------------------------------===//
static bool IsGlobalLValue(const Expr* E) {
if (!E) return true;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (isa<FunctionDecl>(DRE->getDecl()))
return true;
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
return VD->hasGlobalStorage();
return false;
}
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E))
return CLE->isFileScope();
if (isa<MemberExpr>(E) || isa<MaterializeTemporaryExpr>(E))
return false;
return true;
}
static bool IsParamLValue(const Expr *E) {
if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
return isa<ParmVarDecl>(DRE->getDecl());
return false;
}
/// Check that this core constant expression value is a valid value for a
/// constant expression.
static bool CheckConstantExpression(const CCValue &Value) {
return !Value.isLValue() || IsGlobalLValue(Value.getLValueBase());
}
const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
if (!LVal.Base)
return 0;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVal.Base))
return DRE->getDecl();
// FIXME: Static data members accessed via a MemberExpr are represented as
// that MemberExpr. We should use the Decl directly instead.
if (const MemberExpr *ME = dyn_cast<MemberExpr>(LVal.Base)) {
assert(!isa<FieldDecl>(ME->getMemberDecl()) && "shouldn't see fields here");
return ME->getMemberDecl();
}
return 0;
}
static bool IsLiteralLValue(const LValue &Value) {
return Value.Base &&
!isa<DeclRefExpr>(Value.Base) &&
!isa<MemberExpr>(Value.Base) &&
!isa<MaterializeTemporaryExpr>(Value.Base);
}
static bool IsWeakLValue(const LValue &Value) {
const ValueDecl *Decl = GetLValueBaseDecl(Value);
if (!Decl)
return false;
return Decl->hasAttr<WeakAttr>() ||
Decl->hasAttr<WeakRefAttr>() ||
Decl->isWeakImported();
}
static bool EvalPointerValueAsBool(const LValue &Value, bool &Result) {
const Expr* Base = Value.Base;
// A null base expression indicates a null pointer. These are always
// evaluatable, and they are false unless the offset is zero.
if (!Base) {
Result = !Value.Offset.isZero();
return true;
}
// Require the base expression to be a global l-value.
// FIXME: C++11 requires such conversions. Remove this check.
if (!IsGlobalLValue(Base)) return false;
// We have a non-null base expression. These are generally known to
// be true, but if it'a decl-ref to a weak symbol it can be null at
// runtime.
Result = true;
return !IsWeakLValue(Value);
}
static bool HandleConversionToBool(const CCValue &Val, bool &Result) {
switch (Val.getKind()) {
case APValue::Uninitialized:
return false;
case APValue::Int:
Result = Val.getInt().getBoolValue();
return true;
case APValue::Float:
Result = !Val.getFloat().isZero();
return true;
case APValue::ComplexInt:
Result = Val.getComplexIntReal().getBoolValue() ||
Val.getComplexIntImag().getBoolValue();
return true;
case APValue::ComplexFloat:
Result = !Val.getComplexFloatReal().isZero() ||
!Val.getComplexFloatImag().isZero();
return true;
case APValue::LValue: {
LValue PointerResult;
PointerResult.setFrom(Val);
return EvalPointerValueAsBool(PointerResult, Result);
}
case APValue::Vector:
return false;
}
llvm_unreachable("unknown APValue kind");
}
static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
EvalInfo &Info) {
assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
CCValue Val;
if (!Evaluate(Val, Info, E))
return false;
return HandleConversionToBool(Val, Result);
}
static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
APFloat &Value, const ASTContext &Ctx) {
unsigned DestWidth = Ctx.getIntWidth(DestType);
// Determine whether we are converting to unsigned or signed.
bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
// FIXME: Warning for overflow.
APSInt Result(DestWidth, !DestSigned);
bool ignored;
(void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored);
return Result;
}
static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
APFloat &Value, const ASTContext &Ctx) {
bool ignored;
APFloat Result = Value;
Result.convert(Ctx.getFloatTypeSemantics(DestType),
APFloat::rmNearestTiesToEven, &ignored);
return Result;
}
static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
APSInt &Value, const ASTContext &Ctx) {
unsigned DestWidth = Ctx.getIntWidth(DestType);
APSInt Result = Value;
// Figure out if this is a truncate, extend or noop cast.
// If the input is signed, do a sign extend, noop, or truncate.
Result = Result.extOrTrunc(DestWidth);
Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
return Result;
}
static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
APSInt &Value, const ASTContext &Ctx) {
APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
Result.convertFromAPInt(Value, Value.isSigned(),
APFloat::rmNearestTiesToEven);
return Result;
}
/// Try to evaluate the initializer for a variable declaration.
static bool EvaluateVarDeclInit(EvalInfo &Info, const VarDecl *VD,
unsigned CallIndex, CCValue &Result) {
// If this is a parameter to an active constexpr function call, perform
// argument substitution.
if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
if (const CCValue *ArgValue =
Info.getCallValue(CallIndex, PVD->getFunctionScopeIndex())) {
Result = *ArgValue;
return true;
}
return false;
}
const Expr *Init = VD->getAnyInitializer();
if (!Init)
return false;
if (APValue *V = VD->getEvaluatedValue()) {
Result = CCValue(*V, CCValue::NoCallIndex);
return !Result.isUninit();
}
if (VD->isEvaluatingValue())
return false;
VD->setEvaluatingValue();
Expr::EvalStatus EStatus;
EvalInfo InitInfo(Info.Ctx, EStatus);
// FIXME: The caller will need to know whether the value was a constant
// expression. If not, we should propagate up a diagnostic.
if (!Evaluate(Result, InitInfo, Init) || !CheckConstantExpression(Result)) {
VD->setEvaluatedValue(APValue());
return false;
}
VD->setEvaluatedValue(Result);
return true;
}
static bool IsConstNonVolatile(QualType T) {
Qualifiers Quals = T.getQualifiers();
return Quals.hasConst() && !Quals.hasVolatile();
}
bool HandleLValueToRValueConversion(EvalInfo &Info, QualType Type,
const LValue &LVal, CCValue &RVal) {
const Expr *Base = LVal.Base;
unsigned CallIndex = LVal.CallIndex;
// FIXME: Indirection through a null pointer deserves a diagnostic.
if (!Base)
return false;
// FIXME: Support accessing subobjects of objects of literal types. A simple
// byte offset is insufficient for C++11 semantics: we need to know how the
// reference was formed (which union member was named, for instance).
// FIXME: Support subobjects of StringLiteral and PredefinedExpr.
if (!LVal.Offset.isZero())
return false;
if (const ValueDecl *D = GetLValueBaseDecl(LVal)) {
// If the lvalue has been cast to some other type, don't try to read it.
// FIXME: Could simulate a bitcast here.
if (!Info.Ctx.hasSameUnqualifiedType(Type, D->getType()))
return 0;
// In C++98, const, non-volatile integers initialized with ICEs are ICEs.
// In C++11, constexpr, non-volatile variables initialized with constant
// expressions are constant expressions too. Inside constexpr functions,
// parameters are constant expressions even if they're non-const.
// In C, such things can also be folded, although they are not ICEs.
//
// FIXME: volatile-qualified ParmVarDecls need special handling. A literal
// interpretation of C++11 suggests that volatile parameters are OK if
// they're never read (there's no prohibition against constructing volatile
// objects in constant expressions), but lvalue-to-rvalue conversions on
// them are not permitted.
const VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD || !(IsConstNonVolatile(VD->getType()) || isa<ParmVarDecl>(VD)) ||
!Type->isLiteralType() ||
!EvaluateVarDeclInit(Info, VD, CallIndex, RVal))
return false;
if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
return true;
// The declaration was initialized by an lvalue, with no lvalue-to-rvalue
// conversion. This happens when the declaration and the lvalue should be
// considered synonymous, for instance when initializing an array of char
// from a string literal. Continue as if the initializer lvalue was the
// value we were originally given.
if (!RVal.getLValueOffset().isZero())
return false;
Base = RVal.getLValueBase();
CallIndex = RVal.getLValueCallIndex();
}
// If this is an lvalue expression with a nontrivial initializer, grab the
// value from the relevant stack frame, if the object is still in scope.
if (isa<MaterializeTemporaryExpr>(Base)) {
if (CallStackFrame *Frame = Info.getStackFrame(CallIndex)) {
RVal = Frame->Temporaries[Base];
return true;
}
return false;
}
// In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
// initializer until now for such expressions. Such an expression can't be
// an ICE in C, so this only matters for fold.
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
return Evaluate(RVal, Info, CLE->getInitializer());
}
return false;
}
namespace {
enum EvalStmtResult {
/// Evaluation failed.
ESR_Failed,
/// Hit a 'return' statement.
ESR_Returned,
/// Evaluation succeeded.
ESR_Succeeded
};
}
// Evaluate a statement.
static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
const Stmt *S) {
switch (S->getStmtClass()) {
default:
return ESR_Failed;
case Stmt::NullStmtClass:
case Stmt::DeclStmtClass:
return ESR_Succeeded;
case Stmt::ReturnStmtClass:
if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue()))
return ESR_Returned;
return ESR_Failed;
case Stmt::CompoundStmtClass: {
const CompoundStmt *CS = cast<CompoundStmt>(S);
for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
BE = CS->body_end(); BI != BE; ++BI) {
EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
if (ESR != ESR_Succeeded)
return ESR;
}
return ESR_Succeeded;
}
}
}
/// Evaluate a function call.
static bool HandleFunctionCall(ArrayRef<const Expr*> Args, const Stmt *Body,
EvalInfo &Info, CCValue &Result) {
// FIXME: Implement a proper call limit, along with a command-line flag.
if (Info.NumCalls >= 1000000 || Info.CallStackDepth >= 512)
return false;
SmallVector<CCValue, 16> ArgValues(Args.size());
// FIXME: Deal with default arguments and 'this'.
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I)
if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
return false;
CallStackFrame Frame(Info, ArgValues.data());
return EvaluateStmt(Result, Info, Body) == ESR_Returned;
}
namespace {
class HasSideEffect
: public ConstStmtVisitor<HasSideEffect, bool> {
const ASTContext &Ctx;
public:
HasSideEffect(const ASTContext &C) : Ctx(C) {}
// Unhandled nodes conservatively default to having side effects.
bool VisitStmt(const Stmt *S) {
return true;
}
bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
return Visit(E->getResultExpr());
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
return true;
return false;
}
bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
return true;
return false;
}
bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) {
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
return true;
return false;
}
// We don't want to evaluate BlockExprs multiple times, as they generate
// a ton of code.
bool VisitBlockExpr(const BlockExpr *E) { return true; }
bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
{ return Visit(E->getInitializer()); }
bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
bool VisitStringLiteral(const StringLiteral *E) { return false; }
bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
{ return false; }
bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
bool VisitChooseExpr(const ChooseExpr *E)
{ return Visit(E->getChosenSubExpr(Ctx)); }
bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
bool VisitBinAssign(const BinaryOperator *E) { return true; }
bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
bool VisitBinaryOperator(const BinaryOperator *E)
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
bool VisitUnaryDeref(const UnaryOperator *E) {
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
return true;
return Visit(E->getSubExpr());
}
bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
// Has side effects if any element does.
bool VisitInitListExpr(const InitListExpr *E) {
for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
if (Visit(E->getInit(i))) return true;
if (const Expr *filler = E->getArrayFiller())
return Visit(filler);
return false;
}
bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
};
class OpaqueValueEvaluation {
EvalInfo &info;
OpaqueValueExpr *opaqueValue;
public:
OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
Expr *value)
: info(info), opaqueValue(opaqueValue) {
// If evaluation fails, fail immediately.
if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
this->opaqueValue = 0;
return;
}
}
bool hasError() const { return opaqueValue == 0; }
~OpaqueValueEvaluation() {
// FIXME: This will not work for recursive constexpr functions using opaque
// values. Restore the former value.
if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Generic Evaluation
//===----------------------------------------------------------------------===//
namespace {
template <class Derived, typename RetTy=void>
class ExprEvaluatorBase
: public ConstStmtVisitor<Derived, RetTy> {
private:
RetTy DerivedSuccess(const CCValue &V, const Expr *E) {
return static_cast<Derived*>(this)->Success(V, E);
}
RetTy DerivedError(const Expr *E) {
return static_cast<Derived*>(this)->Error(E);
}
RetTy DerivedValueInitialization(const Expr *E) {
return static_cast<Derived*>(this)->ValueInitialization(E);
}
protected:
EvalInfo &Info;
typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
RetTy ValueInitialization(const Expr *E) { return DerivedError(E); }
public:
ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
RetTy VisitStmt(const Stmt *) {
llvm_unreachable("Expression evaluator should not be called on stmts");
}
RetTy VisitExpr(const Expr *E) {
return DerivedError(E);
}
RetTy VisitParenExpr(const ParenExpr *E)
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
RetTy VisitUnaryExtension(const UnaryOperator *E)
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
RetTy VisitUnaryPlus(const UnaryOperator *E)
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
RetTy VisitChooseExpr(const ChooseExpr *E)
{ return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
{ return StmtVisitorTy::Visit(E->getResultExpr()); }
RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
{ return StmtVisitorTy::Visit(E->getReplacement()); }
RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
if (opaque.hasError())
return DerivedError(E);
bool cond;
if (!EvaluateAsBooleanCondition(E->getCond(), cond, Info))
return DerivedError(E);
return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr());
}
RetTy VisitConditionalOperator(const ConditionalOperator *E) {
bool BoolResult;
if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info))
return DerivedError(E);
Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
return StmtVisitorTy::Visit(EvalExpr);
}
RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
const CCValue *Value = Info.getOpaqueValue(E);
if (!Value)
return (E->getSourceExpr() ? StmtVisitorTy::Visit(E->getSourceExpr())
: DerivedError(E));
return DerivedSuccess(*Value, E);
}
RetTy VisitCallExpr(const CallExpr *E) {
const Expr *Callee = E->getCallee();
QualType CalleeType = Callee->getType();
// FIXME: Handle the case where Callee is a (parenthesized) MemberExpr for a
// non-static member function.
if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember))
return DerivedError(E);
if (!CalleeType->isFunctionType() && !CalleeType->isFunctionPointerType())
return DerivedError(E);
CCValue Call;
if (!Evaluate(Call, Info, Callee) || !Call.isLValue() ||
!Call.getLValueBase() || !Call.getLValueOffset().isZero())
return DerivedError(Callee);
const FunctionDecl *FD = 0;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Call.getLValueBase()))
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Call.getLValueBase()))
FD = dyn_cast<FunctionDecl>(ME->getMemberDecl());
if (!FD)
return DerivedError(Callee);
// Don't call function pointers which have been cast to some other type.
if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
return DerivedError(E);
const FunctionDecl *Definition;
Stmt *Body = FD->getBody(Definition);
CCValue Result;
llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
if (Body && Definition->isConstexpr() && !Definition->isInvalidDecl() &&
HandleFunctionCall(Args, Body, Info, Result))
return DerivedSuccess(Result, E);
return DerivedError(E);
}
RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
return StmtVisitorTy::Visit(E->getInitializer());
}
RetTy VisitInitListExpr(const InitListExpr *E) {
if (Info.getLangOpts().CPlusPlus0x) {
if (E->getNumInits() == 0)
return DerivedValueInitialization(E);
if (E->getNumInits() == 1)
return StmtVisitorTy::Visit(E->getInit(0));
}
return DerivedError(E);
}
RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
return DerivedValueInitialization(E);
}
RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
return DerivedValueInitialization(E);
}
RetTy VisitCastExpr(const CastExpr *E) {
switch (E->getCastKind()) {
default:
break;
case CK_NoOp:
return StmtVisitorTy::Visit(E->getSubExpr());
case CK_LValueToRValue: {
LValue LVal;
if (EvaluateLValue(E->getSubExpr(), LVal, Info)) {
CCValue RVal;
if (HandleLValueToRValueConversion(Info, E->getType(), LVal, RVal))
return DerivedSuccess(RVal, E);
}
break;
}
}
return DerivedError(E);
}
/// Visit a value which is evaluated, but whose value is ignored.
void VisitIgnoredValue(const Expr *E) {
CCValue Scratch;
if (!Evaluate(Scratch, Info, E))
Info.EvalStatus.HasSideEffects = true;
}
};
}
//===----------------------------------------------------------------------===//
// LValue Evaluation
//
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
// function designators (in C), decl references to void objects (in C), and
// temporaries (if building with -Wno-address-of-temporary).
//
// LValue evaluation produces values comprising a base expression of one of the
// following types:
// * DeclRefExpr
// * MemberExpr for a static member
// * MaterializeTemporaryExpr
// * CompoundLiteralExpr in C
// * StringLiteral
// * PredefinedExpr
// * ObjCEncodeExpr
// * AddrLabelExpr
// * BlockExpr
// * CallExpr for a MakeStringConstant builtin
// plus an offset in bytes.
//===----------------------------------------------------------------------===//
namespace {
class LValueExprEvaluator
: public ExprEvaluatorBase<LValueExprEvaluator, bool> {
LValue &Result;
const Decl *PrevDecl;
bool Success(const Expr *E) {
Result.Base = E;
Result.Offset = CharUnits::Zero();
Result.CallIndex = Info.getCurrentCallIndex();
return true;
}
public:
LValueExprEvaluator(EvalInfo &info, LValue &Result) :
ExprEvaluatorBaseTy(info), Result(Result), PrevDecl(0) {}
bool Success(const CCValue &V, const Expr *E) {
Result.setFrom(V);
return true;
}
bool Error(const Expr *E) {
return false;
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
bool VisitVarDecl(const Expr *E, const VarDecl *VD);
bool VisitDeclRefExpr(const DeclRefExpr *E);
bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
bool VisitMemberExpr(const MemberExpr *E);
bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
bool VisitUnaryDeref(const UnaryOperator *E);
bool VisitCastExpr(const CastExpr *E) {
switch (E->getCastKind()) {
default:
return ExprEvaluatorBaseTy::VisitCastExpr(E);
case CK_LValueBitCast:
return Visit(E->getSubExpr());
// FIXME: Support CK_DerivedToBase and CK_UncheckedDerivedToBase.
// Reuse PointerExprEvaluator::VisitCastExpr for these.
}
}
// FIXME: Missing: __real__, __imag__
};
} // end anonymous namespace
/// Evaluate an expression as an lvalue. This can be legitimately called on
/// expressions which are not glvalues, in a few cases:
/// * function designators in C,
/// * "extern void" objects,
/// * temporaries, if building with -Wno-address-of-temporary.
static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
assert((E->isGLValue() || E->getType()->isFunctionType() ||
E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
"can't evaluate expression as an lvalue");
return LValueExprEvaluator(Info, Result).Visit(E);
}
bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
if (isa<FunctionDecl>(E->getDecl()))
return Success(E);
if (const VarDecl* VD = dyn_cast<VarDecl>(E->getDecl()))
return VisitVarDecl(E, VD);
return Error(E);
}
bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
if (!VD->getType()->isReferenceType())
return Success(E);
CCValue V;
if (EvaluateVarDeclInit(Info, VD, Info.getCurrentCallIndex(), V))
return Success(V, E);
return Error(E);
}
bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *E) {
if (!Evaluate(Info.CurrentCall->Temporaries[E], Info, E->GetTemporaryExpr()))
return false;
return Success(E);
}
bool
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
// Defer visiting the literal until the lvalue-to-rvalue conversion. We can
// only see this when folding in C, so there's no standard to follow here.
return Success(E);
}
bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
// Handle static data members.
if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
VisitIgnoredValue(E->getBase());
return VisitVarDecl(E, VD);
}
// Handle static member functions.
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
if (MD->isStatic()) {
VisitIgnoredValue(E->getBase());
return Success(E);
}
}
QualType Ty;
if (E->isArrow()) {
if (!EvaluatePointer(E->getBase(), Result, Info))
return false;
Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
} else {
if (!Visit(E->getBase()))
return false;
Ty = E->getBase()->getType();
}
const RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
if (!FD) // FIXME: deal with other kinds of member expressions
return false;
if (FD->getType()->isReferenceType())
return false;
unsigned i = FD->getFieldIndex();
Result.Offset += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
return true;
}
bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
// FIXME: Deal with vectors as array subscript bases.
if (E->getBase()->getType()->isVectorType())
return false;
if (!EvaluatePointer(E->getBase(), Result, Info))
return false;
APSInt Index;
if (!EvaluateInteger(E->getIdx(), Index, Info))
return false;
CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType());
Result.Offset += Index.getSExtValue() * ElementSize;
return true;
}
bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
return EvaluatePointer(E->getSubExpr(), Result, Info);
}
//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//
2008-07-08 22:30:00 +08:00
namespace {
class PointerExprEvaluator
: public ExprEvaluatorBase<PointerExprEvaluator, bool> {
LValue &Result;
bool Success(const Expr *E) {
Result.Base = E;
Result.Offset = CharUnits::Zero();
Result.CallIndex = Info.getCurrentCallIndex();
return true;
}
2008-07-08 22:30:00 +08:00
public:
PointerExprEvaluator(EvalInfo &info, LValue &Result)
: ExprEvaluatorBaseTy(info), Result(Result) {}
bool Success(const CCValue &V, const Expr *E) {
Result.setFrom(V);
return true;
2008-07-08 22:30:00 +08:00
}
bool Error(const Stmt *S) {
return false;
}
bool ValueInitialization(const Expr *E) {
return Success((Expr*)0);
}
2008-07-08 22:30:00 +08:00
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitCastExpr(const CastExpr* E);
bool VisitUnaryAddrOf(const UnaryOperator *E);
bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
{ return Success(E); }
bool VisitAddrLabelExpr(const AddrLabelExpr *E)
{ return Success(E); }
bool VisitCallExpr(const CallExpr *E);
bool VisitBlockExpr(const BlockExpr *E) {
if (!E->getBlockDecl()->hasCaptures())
return Success(E);
return false;
}
bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E)
{ return ValueInitialization(E); }
// FIXME: Missing: @protocol, @selector
2008-07-08 22:30:00 +08:00
};
} // end anonymous namespace
2008-07-08 22:30:00 +08:00
static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
assert(E->isRValue() && E->getType()->hasPointerRepresentation());
return PointerExprEvaluator(Info, Result).Visit(E);
}
bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() != BO_Add &&
E->getOpcode() != BO_Sub)
return false;
const Expr *PExp = E->getLHS();
const Expr *IExp = E->getRHS();
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
if (!EvaluatePointer(PExp, Result, Info))
return false;
llvm::APSInt Offset;
if (!EvaluateInteger(IExp, Offset, Info))
return false;
int64_t AdditionalOffset
= Offset.isSigned() ? Offset.getSExtValue()
: static_cast<int64_t>(Offset.getZExtValue());
// Compute the new offset in the appropriate width.
QualType PointeeType =
PExp->getType()->getAs<PointerType>()->getPointeeType();
CharUnits SizeOfPointee;
// Explicitly handle GNU void* and function pointer arithmetic extensions.
if (PointeeType->isVoidType() || PointeeType->isFunctionType())
SizeOfPointee = CharUnits::One();
else
SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType);
if (E->getOpcode() == BO_Add)
Result.Offset += AdditionalOffset * SizeOfPointee;
else
Result.Offset -= AdditionalOffset * SizeOfPointee;
return true;
}
bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
return EvaluateLValue(E->getSubExpr(), Result, Info);
}
bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
const Expr* SubExpr = E->getSubExpr();
switch (E->getCastKind()) {
default:
break;
case CK_BitCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
return Visit(SubExpr);
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase: {
if (!EvaluatePointer(E->getSubExpr(), Result, Info))
return false;
// Now figure out the necessary offset to add to the baseLV to get from
// the derived class to the base class.
CharUnits Offset = CharUnits::Zero();
QualType Ty = E->getSubExpr()->getType();
const CXXRecordDecl *DerivedDecl =
Ty->getAs<PointerType>()->getPointeeType()->getAsCXXRecordDecl();
for (CastExpr::path_const_iterator PathI = E->path_begin(),
PathE = E->path_end(); PathI != PathE; ++PathI) {
const CXXBaseSpecifier *Base = *PathI;
// FIXME: If the base is virtual, we'd need to determine the type of the
// most derived class and we don't support that right now.
if (Base->isVirtual())
return false;
const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
Result.getLValueOffset() += Layout.getBaseClassOffset(BaseDecl);
DerivedDecl = BaseDecl;
}
return true;
}
case CK_NullToPointer:
return ValueInitialization(E);
case CK_IntegralToPointer: {
CCValue Value;
if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
break;
if (Value.isInt()) {
unsigned Size = Info.Ctx.getTypeSize(E->getType());
uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
Result.Base = 0;
Result.Offset = CharUnits::fromQuantity(N);
Result.CallIndex = CCValue::NoCallIndex;
return true;
} else {
// Cast is of an lvalue, no need to change value.
Result.setFrom(Value);
return true;
}
}
case CK_ArrayToPointerDecay:
// FIXME: Support array-to-pointer decay on array rvalues.
if (!SubExpr->isGLValue())
return Error(E);
return EvaluateLValue(SubExpr, Result, Info);
case CK_FunctionToPointerDecay:
return EvaluateLValue(SubExpr, Result, Info);
}
return ExprEvaluatorBaseTy::VisitCastExpr(E);
}
bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
if (E->isBuiltinCall(Info.Ctx) ==
Builtin::BI__builtin___CFStringMakeConstantString ||
E->isBuiltinCall(Info.Ctx) ==
Builtin::BI__builtin___NSStringMakeConstantString)
return Success(E);
return ExprEvaluatorBaseTy::VisitCallExpr(E);
}
//===----------------------------------------------------------------------===//
// Vector Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VectorExprEvaluator
: public ExprEvaluatorBase<VectorExprEvaluator, bool> {
APValue &Result;
public:
VectorExprEvaluator(EvalInfo &info, APValue &Result)
: ExprEvaluatorBaseTy(info), Result(Result) {}
bool Success(const ArrayRef<APValue> &V, const Expr *E) {
assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
// FIXME: remove this APValue copy.
Result = APValue(V.data(), V.size());
return true;
}
bool Success(const APValue &V, const Expr *E) {
Result = V;
return true;
}
bool Error(const Expr *E) { return false; }
bool ValueInitialization(const Expr *E);
bool VisitUnaryReal(const UnaryOperator *E)
{ return Visit(E->getSubExpr()); }
bool VisitCastExpr(const CastExpr* E);
bool VisitInitListExpr(const InitListExpr *E);
bool VisitUnaryImag(const UnaryOperator *E);
// FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
// binary comparisons, binary and/or/xor,
// shufflevector, ExtVectorElementExpr
// (Note that these require implementing conversions
// between vector types.)
};
} // end anonymous namespace
static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
return VectorExprEvaluator(Info, Result).Visit(E);
}
bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
const VectorType *VTy = E->getType()->castAs<VectorType>();
QualType EltTy = VTy->getElementType();
unsigned NElts = VTy->getNumElements();
unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
const Expr* SE = E->getSubExpr();
QualType SETy = SE->getType();
switch (E->getCastKind()) {
case CK_VectorSplat: {
APValue Val = APValue();
if (SETy->isIntegerType()) {
APSInt IntResult;
if (!EvaluateInteger(SE, IntResult, Info))
return Error(E);
Val = APValue(IntResult);
} else if (SETy->isRealFloatingType()) {
APFloat F(0.0);
if (!EvaluateFloat(SE, F, Info))
return Error(E);
Val = APValue(F);
} else {
return Error(E);
}
// Splat and create vector APValue.
SmallVector<APValue, 4> Elts(NElts, Val);
return Success(Elts, E);
}
case CK_BitCast: {
// FIXME: this is wrong for any cast other than a no-op cast.
if (SETy->isVectorType())
return Visit(SE);
if (!SETy->isIntegerType())
return Error(E);
APSInt Init;
if (!EvaluateInteger(SE, Init, Info))
return Error(E);
assert((EltTy->isIntegerType() || EltTy->isRealFloatingType()) &&
"Vectors must be composed of ints or floats");
SmallVector<APValue, 4> Elts;
for (unsigned i = 0; i != NElts; ++i) {
APSInt Tmp = Init.extOrTrunc(EltWidth);
if (EltTy->isIntegerType())
Elts.push_back(APValue(Tmp));
else
Elts.push_back(APValue(APFloat(Tmp)));
Init >>= EltWidth;
}
return Success(Elts, E);
}
default:
return ExprEvaluatorBaseTy::VisitCastExpr(E);
}
}
bool
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
const VectorType *VT = E->getType()->castAs<VectorType>();
unsigned NumInits = E->getNumInits();
unsigned NumElements = VT->getNumElements();
QualType EltTy = VT->getElementType();
SmallVector<APValue, 4> Elements;
// If a vector is initialized with a single element, that value
// becomes every element of the vector, not just the first.
// This is the behavior described in the IBM AltiVec documentation.
if (NumInits == 1) {
// Handle the case where the vector is initialized by another
// vector (OpenCL 6.1.6).
if (E->getInit(0)->getType()->isVectorType())
return Visit(E->getInit(0));
APValue InitValue;
if (EltTy->isIntegerType()) {
llvm::APSInt sInt(32);
if (!EvaluateInteger(E->getInit(0), sInt, Info))
return Error(E);
InitValue = APValue(sInt);
} else {
llvm::APFloat f(0.0);
if (!EvaluateFloat(E->getInit(0), f, Info))
return Error(E);
InitValue = APValue(f);
}
for (unsigned i = 0; i < NumElements; i++) {
Elements.push_back(InitValue);
}
} else {
for (unsigned i = 0; i < NumElements; i++) {
if (EltTy->isIntegerType()) {
llvm::APSInt sInt(32);
if (i < NumInits) {
if (!EvaluateInteger(E->getInit(i), sInt, Info))
return Error(E);
} else {
sInt = Info.Ctx.MakeIntValue(0, EltTy);
}
Elements.push_back(APValue(sInt));
} else {
llvm::APFloat f(0.0);
if (i < NumInits) {
if (!EvaluateFloat(E->getInit(i), f, Info))
return Error(E);
} else {
f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
}
Elements.push_back(APValue(f));
}
}
}
return Success(Elements, E);
}
bool
VectorExprEvaluator::ValueInitialization(const Expr *E) {
const VectorType *VT = E->getType()->getAs<VectorType>();
QualType EltTy = VT->getElementType();
APValue ZeroElement;
if (EltTy->isIntegerType())
ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
else
ZeroElement =
APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
return Success(Elements, E);
}
bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
VisitIgnoredValue(E->getSubExpr());
return ValueInitialization(E);
}
//===----------------------------------------------------------------------===//
// Integer Evaluation
//
// As a GNU extension, we support casting pointers to sufficiently-wide integer
// types and back in constant folding. Integer values are thus represented
// either as an integer-valued APValue, or as an lvalue-valued APValue.
//===----------------------------------------------------------------------===//
namespace {
class IntExprEvaluator
: public ExprEvaluatorBase<IntExprEvaluator, bool> {
CCValue &Result;
public:
IntExprEvaluator(EvalInfo &info, CCValue &result)
: ExprEvaluatorBaseTy(info), Result(result) {}
bool Success(const llvm::APSInt &SI, const Expr *E) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
"Invalid evaluation result.");
assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.");
Result = CCValue(SI);
return true;
}
bool Success(const llvm::APInt &I, const Expr *E) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.");
Result = CCValue(APSInt(I));
Result.getInt().setIsUnsigned(
E->getType()->isUnsignedIntegerOrEnumerationType());
return true;
}
bool Success(uint64_t Value, const Expr *E) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
Result = CCValue(Info.Ctx.MakeIntValue(Value, E->getType()));
return true;
}
bool Success(CharUnits Size, const Expr *E) {
return Success(Size.getQuantity(), E);
}
bool Error(SourceLocation L, diag::kind D, const Expr *E) {
// Take the first error.
if (Info.EvalStatus.Diag == 0) {
Info.EvalStatus.DiagLoc = L;
Info.EvalStatus.Diag = D;
Info.EvalStatus.DiagExpr = E;
}
return false;
}
bool Success(const CCValue &V, const Expr *E) {
if (V.isLValue()) {
Result = V;
return true;
}
return Success(V.getInt(), E);
}
bool Error(const Expr *E) {
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
}
bool ValueInitialization(const Expr *E) { return Success(0, E); }
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
bool VisitIntegerLiteral(const IntegerLiteral *E) {
return Success(E->getValue(), E);
}
bool VisitCharacterLiteral(const CharacterLiteral *E) {
return Success(E->getValue(), E);
}
bool CheckReferencedDecl(const Expr *E, const Decl *D);
bool VisitDeclRefExpr(const DeclRefExpr *E) {
if (CheckReferencedDecl(E, E->getDecl()))
return true;
return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
}
bool VisitMemberExpr(const MemberExpr *E) {
if (CheckReferencedDecl(E, E->getMemberDecl())) {
VisitIgnoredValue(E->getBase());
return true;
}
return ExprEvaluatorBaseTy::VisitMemberExpr(E);
}
bool VisitCallExpr(const CallExpr *E);
bool VisitBinaryOperator(const BinaryOperator *E);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
bool VisitOffsetOfExpr(const OffsetOfExpr *E);
bool VisitUnaryOperator(const UnaryOperator *E);
bool VisitCastExpr(const CastExpr* E);
bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
return Success(E->getValue(), E);
}
// Note, GNU defines __null as an integer, not a pointer.
bool VisitGNUNullExpr(const GNUNullExpr *E) {
return ValueInitialization(E);
}
bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
return Success(E->getValue(), E);
}
bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
return Success(E->getValue(), E);
}
bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
return Success(E->getValue(), E);
}
bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
return Success(E->getValue(), E);
}
bool VisitUnaryReal(const UnaryOperator *E);
bool VisitUnaryImag(const UnaryOperator *E);
bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
private:
CharUnits GetAlignOfExpr(const Expr *E);
CharUnits GetAlignOfType(QualType T);
static QualType GetObjectType(const Expr *E);
bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
// FIXME: Missing: array subscript of vector, member of vector
};
} // end anonymous namespace
/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
/// produce either the integer value or a pointer.
///
/// GCC has a heinous extension which folds casts between pointer types and
/// pointer-sized integral types. We support this by allowing the evaluation of
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
/// Some simple arithmetic on such values is supported (they are treated much
/// like char*).
static bool EvaluateIntegerOrLValue(const Expr* E, CCValue &Result,
EvalInfo &Info) {
assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
return IntExprEvaluator(Info, Result).Visit(E);
}
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
CCValue Val;
if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt())
return false;
Result = Val.getInt();
return true;
}
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
// Enums are integer constant exprs.
if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
// Check for signedness/width mismatches between E type and ECD value.
bool SameSign = (ECD->getInitVal().isSigned()
== E->getType()->isSignedIntegerOrEnumerationType());
bool SameWidth = (ECD->getInitVal().getBitWidth()
== Info.Ctx.getIntWidth(E->getType()));
if (SameSign && SameWidth)
return Success(ECD->getInitVal(), E);
else {
// Get rid of mismatch (otherwise Success assertions will fail)
// by computing a new value matching the type of E.
llvm::APSInt Val = ECD->getInitVal();
if (!SameSign)
Val.setIsSigned(!ECD->getInitVal().isSigned());
if (!SameWidth)
Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
return Success(Val, E);
}
}
return false;
}
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
/// as GCC.
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
// The following enum mimics the values returned by GCC.
// FIXME: Does GCC differ between lvalue and rvalue references here?
enum gcc_type_class {
no_type_class = -1,
void_type_class, integer_type_class, char_type_class,
enumeral_type_class, boolean_type_class,
pointer_type_class, reference_type_class, offset_type_class,
real_type_class, complex_type_class,
function_type_class, method_type_class,
record_type_class, union_type_class,
array_type_class, string_type_class,
lang_type_class
};
// If no argument was supplied, default to "no_type_class". This isn't
// ideal, however it is what gcc does.
if (E->getNumArgs() == 0)
return no_type_class;
QualType ArgTy = E->getArg(0)->getType();
if (ArgTy->isVoidType())
return void_type_class;
else if (ArgTy->isEnumeralType())
return enumeral_type_class;
else if (ArgTy->isBooleanType())
return boolean_type_class;
else if (ArgTy->isCharType())
return string_type_class; // gcc doesn't appear to use char_type_class
else if (ArgTy->isIntegerType())
return integer_type_class;
else if (ArgTy->isPointerType())
return pointer_type_class;
else if (ArgTy->isReferenceType())
return reference_type_class;
else if (ArgTy->isRealType())
return real_type_class;
else if (ArgTy->isComplexType())
return complex_type_class;
else if (ArgTy->isFunctionType())
return function_type_class;
else if (ArgTy->isStructureOrClassType())
return record_type_class;
else if (ArgTy->isUnionType())
return union_type_class;
else if (ArgTy->isArrayType())
return array_type_class;
else if (ArgTy->isUnionType())
return union_type_class;
else // FIXME: offset_type_class, method_type_class, & lang_type_class?
llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
return -1;
}
/// Retrieves the "underlying object type" of the given expression,
/// as used by __builtin_object_size.
QualType IntExprEvaluator::GetObjectType(const Expr *E) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
return VD->getType();
} else if (isa<CompoundLiteralExpr>(E)) {
return E->getType();
}
return QualType();
}
bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
// TODO: Perhaps we should let LLVM lower this?
LValue Base;
if (!EvaluatePointer(E->getArg(0), Base, Info))
return false;
// If we can prove the base is null, lower to zero now.
const Expr *LVBase = Base.getLValueBase();
if (!LVBase) return Success(0, E);
QualType T = GetObjectType(LVBase);
if (T.isNull() ||
T->isIncompleteType() ||
T->isFunctionType() ||
T->isVariablyModifiedType() ||
T->isDependentType())
return false;
CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
CharUnits Offset = Base.getLValueOffset();
if (!Offset.isNegative() && Offset <= Size)
Size -= Offset;
else
Size = CharUnits::Zero();
return Success(Size, E);
}
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
switch (E->isBuiltinCall(Info.Ctx)) {
default:
return ExprEvaluatorBaseTy::VisitCallExpr(E);
case Builtin::BI__builtin_object_size: {
if (TryEvaluateBuiltinObjectSize(E))
return true;
// If evaluating the argument has side-effects we can't determine
// the size of the object and lower it to unknown now.
if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
2009-11-04 03:48:51 +08:00
return Success(-1ULL, E);
return Success(0, E);
}
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
}
case Builtin::BI__builtin_classify_type:
return Success(EvaluateBuiltinClassifyType(E), E);
case Builtin::BI__builtin_constant_p:
// __builtin_constant_p always has one operand: it returns true if that
// operand can be folded, false otherwise.
return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E);
case Builtin::BI__builtin_eh_return_data_regno: {
int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
return Success(Operand, E);
}
case Builtin::BI__builtin_expect:
return Visit(E->getArg(0));
case Builtin::BIstrlen:
case Builtin::BI__builtin_strlen:
// As an extension, we support strlen() and __builtin_strlen() as constant
// expressions when the argument is a string literal.
if (const StringLiteral *S
= dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
// The string literal may have embedded null characters. Find the first
// one and truncate there.
StringRef Str = S->getString();
StringRef::size_type Pos = Str.find(0);
if (Pos != StringRef::npos)
Str = Str.substr(0, Pos);
return Success(Str.size(), E);
}
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
case Builtin::BI__atomic_is_lock_free: {
APSInt SizeVal;
if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
return false;
// For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
// of two less than the maximum inline atomic width, we know it is
// lock-free. If the size isn't a power of two, or greater than the
// maximum alignment where we promote atomics, we know it is not lock-free
// (at least not in the sense of atomic_is_lock_free). Otherwise,
// the answer can only be determined at runtime; for example, 16-byte
// atomics have lock-free implementations on some, but not all,
// x86-64 processors.
// Check power-of-two.
CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
if (!Size.isPowerOfTwo())
#if 0
// FIXME: Suppress this folding until the ABI for the promotion width
// settles.
return Success(0, E);
#else
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
#endif
#if 0
// Check against promotion width.
// FIXME: Suppress this folding until the ABI for the promotion width
// settles.
unsigned PromoteWidthBits =
Info.Ctx.getTargetInfo().getMaxAtomicPromoteWidth();
if (Size > Info.Ctx.toCharUnitsFromBits(PromoteWidthBits))
return Success(0, E);
#endif
// Check against inlining width.
unsigned InlineWidthBits =
Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits))
return Success(1, E);
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
}
}
}
static bool HasSameBase(const LValue &A, const LValue &B) {
if (!A.getLValueBase())
return !B.getLValueBase();
if (!B.getLValueBase())
return false;
if (A.getLValueBase() != B.getLValueBase()) {
const Decl *ADecl = GetLValueBaseDecl(A);
if (!ADecl)
return false;
const Decl *BDecl = GetLValueBaseDecl(B);
if (ADecl != BDecl)
return false;
}
return IsGlobalLValue(A.getLValueBase()) ||
A.getLValueCallIndex() == B.getLValueCallIndex();
}
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->isAssignmentOp())
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
if (E->getOpcode() == BO_Comma) {
VisitIgnoredValue(E->getLHS());
return Visit(E->getRHS());
}
if (E->isLogicalOp()) {
// These need to be handled specially because the operands aren't
// necessarily integral
bool lhsResult, rhsResult;
if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) {
// We were able to evaluate the LHS, see if we can get away with not
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
if (lhsResult == (E->getOpcode() == BO_LOr))
return Success(lhsResult, E);
if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
if (E->getOpcode() == BO_LOr)
return Success(lhsResult || rhsResult, E);
else
return Success(lhsResult && rhsResult, E);
}
} else {
if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
// We can't evaluate the LHS; however, sometimes the result
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
if (rhsResult == (E->getOpcode() == BO_LOr) ||
!rhsResult == (E->getOpcode() == BO_LAnd)) {
// Since we weren't able to evaluate the left hand side, it
// must have had side effects.
Info.EvalStatus.HasSideEffects = true;
return Success(rhsResult, E);
}
}
}
return false;
}
QualType LHSTy = E->getLHS()->getType();
QualType RHSTy = E->getRHS()->getType();
if (LHSTy->isAnyComplexType()) {
assert(RHSTy->isAnyComplexType() && "Invalid comparison");
ComplexValue LHS, RHS;
if (!EvaluateComplex(E->getLHS(), LHS, Info))
return false;
if (!EvaluateComplex(E->getRHS(), RHS, Info))
return false;
if (LHS.isComplexFloat()) {
APFloat::cmpResult CR_r =
LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
APFloat::cmpResult CR_i =
LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
if (E->getOpcode() == BO_EQ)
return Success((CR_r == APFloat::cmpEqual &&
CR_i == APFloat::cmpEqual), E);
else {
assert(E->getOpcode() == BO_NE &&
"Invalid complex comparison.");
return Success(((CR_r == APFloat::cmpGreaterThan ||
CR_r == APFloat::cmpLessThan ||
CR_r == APFloat::cmpUnordered) ||
(CR_i == APFloat::cmpGreaterThan ||
CR_i == APFloat::cmpLessThan ||
CR_i == APFloat::cmpUnordered)), E);
}
} else {
if (E->getOpcode() == BO_EQ)
return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
else {
assert(E->getOpcode() == BO_NE &&
"Invalid compex comparison.");
return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
}
}
}
if (LHSTy->isRealFloatingType() &&
RHSTy->isRealFloatingType()) {
APFloat RHS(0.0), LHS(0.0);
if (!EvaluateFloat(E->getRHS(), RHS, Info))
return false;
if (!EvaluateFloat(E->getLHS(), LHS, Info))
return false;
APFloat::cmpResult CR = LHS.compare(RHS);
switch (E->getOpcode()) {
default:
llvm_unreachable("Invalid binary operator!");
case BO_LT:
return Success(CR == APFloat::cmpLessThan, E);
case BO_GT:
return Success(CR == APFloat::cmpGreaterThan, E);
case BO_LE:
return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
case BO_GE:
return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
E);
case BO_EQ:
return Success(CR == APFloat::cmpEqual, E);
case BO_NE:
return Success(CR == APFloat::cmpGreaterThan
|| CR == APFloat::cmpLessThan
|| CR == APFloat::cmpUnordered, E);
}
}
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
LValue LHSValue;
if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
return false;
LValue RHSValue;
if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
return false;
// Reject differing bases from the normal codepath; we special-case
// comparisons to null.
if (!HasSameBase(LHSValue, RHSValue)) {
// Inequalities and subtractions between unrelated pointers have
// unspecified or undefined behavior.
if (!E->isEqualityOp())
return false;
// A constant address may compare equal to the address of a symbol.
// The one exception is that address of an object cannot compare equal
// to the null pointer.
if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
(!RHSValue.Base && !RHSValue.Offset.isZero()))
return false;
// It's implementation-defined whether distinct literals will have
// distinct addresses. We define it to be unspecified.
if (IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue))
return false;
// We can't tell whether weak symbols will end up pointing to the same
// object.
if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
return false;
// Pointers with different bases cannot represent the same object.
return Success(E->getOpcode() == BO_NE, E);
}
if (E->getOpcode() == BO_Sub) {
QualType Type = E->getLHS()->getType();
QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
CharUnits ElementSize = CharUnits::One();
2009-06-05 04:23:20 +08:00
if (!ElementType->isVoidType() && !ElementType->isFunctionType())
ElementSize = Info.Ctx.getTypeSizeInChars(ElementType);
CharUnits Diff = LHSValue.getLValueOffset() -
RHSValue.getLValueOffset();
return Success(Diff / ElementSize, E);
}
const CharUnits &LHSOffset = LHSValue.getLValueOffset();
const CharUnits &RHSOffset = RHSValue.getLValueOffset();
switch (E->getOpcode()) {
default: llvm_unreachable("missing comparison operator");
case BO_LT: return Success(LHSOffset < RHSOffset, E);
case BO_GT: return Success(LHSOffset > RHSOffset, E);
case BO_LE: return Success(LHSOffset <= RHSOffset, E);
case BO_GE: return Success(LHSOffset >= RHSOffset, E);
case BO_EQ: return Success(LHSOffset == RHSOffset, E);
case BO_NE: return Success(LHSOffset != RHSOffset, E);
}
}
}
if (!LHSTy->isIntegralOrEnumerationType() ||
!RHSTy->isIntegralOrEnumerationType()) {
// We can't continue from here for non-integral types, and they
// could potentially confuse the following operations.
return false;
}
// The LHS of a constant expr is always evaluated and needed.
CCValue LHSVal;
if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info))
return false; // error in subexpression.
if (!Visit(E->getRHS()))
return false;
CCValue &RHSVal = Result;
// Handle cases like (unsigned long)&a + 4.
if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
CharUnits AdditionalOffset = CharUnits::fromQuantity(
RHSVal.getInt().getZExtValue());
if (E->getOpcode() == BO_Add)
LHSVal.getLValueOffset() += AdditionalOffset;
else
LHSVal.getLValueOffset() -= AdditionalOffset;
Result = LHSVal;
return true;
}
// Handle cases like 4 + (unsigned long)&a
if (E->getOpcode() == BO_Add &&
RHSVal.isLValue() && LHSVal.isInt()) {
RHSVal.getLValueOffset() += CharUnits::fromQuantity(
LHSVal.getInt().getZExtValue());
// Note that RHSVal is Result.
return true;
}
// All the following cases expect both operands to be an integer
if (!LHSVal.isInt() || !RHSVal.isInt())
return false;
APSInt &LHS = LHSVal.getInt();
APSInt &RHS = RHSVal.getInt();
2008-07-08 22:35:21 +08:00
switch (E->getOpcode()) {
default:
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
case BO_Mul: return Success(LHS * RHS, E);
case BO_Add: return Success(LHS + RHS, E);
case BO_Sub: return Success(LHS - RHS, E);
case BO_And: return Success(LHS & RHS, E);
case BO_Xor: return Success(LHS ^ RHS, E);
case BO_Or: return Success(LHS | RHS, E);
case BO_Div:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
return Success(LHS / RHS, E);
case BO_Rem:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
return Success(LHS % RHS, E);
case BO_Shl: {
// During constant-folding, a negative shift is an opposite shift.
if (RHS.isSigned() && RHS.isNegative()) {
RHS = -RHS;
goto shift_right;
}
shift_left:
unsigned SA
= (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
return Success(LHS << SA, E);
}
case BO_Shr: {
// During constant-folding, a negative shift is an opposite shift.
if (RHS.isSigned() && RHS.isNegative()) {
RHS = -RHS;
goto shift_left;
}
shift_right:
unsigned SA =
(unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
return Success(LHS >> SA, E);
}
case BO_LT: return Success(LHS < RHS, E);
case BO_GT: return Success(LHS > RHS, E);
case BO_LE: return Success(LHS <= RHS, E);
case BO_GE: return Success(LHS >= RHS, E);
case BO_EQ: return Success(LHS == RHS, E);
case BO_NE: return Success(LHS != RHS, E);
}
2008-07-08 22:35:21 +08:00
}
CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
// __alignof is defined to return the preferred alignment.
return Info.Ctx.toCharUnitsFromBits(
Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
}
CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
E = E->IgnoreParens();
// alignof decl is always accepted, even if it doesn't make sense: we default
// to 1 in those cases.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return Info.Ctx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/true);
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/true);
return GetAlignOfType(E->getType());
}
/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
/// a result as the expression's type.
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
switch(E->getKind()) {
case UETT_AlignOf: {
if (E->isArgumentType())
return Success(GetAlignOfType(E->getArgumentType()), E);
else
return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
}
case UETT_VecStep: {
QualType Ty = E->getTypeOfArgument();
if (Ty->isVectorType()) {
unsigned n = Ty->getAs<VectorType>()->getNumElements();
// The vec_step built-in functions that take a 3-component
// vector return 4. (OpenCL 1.1 spec 6.11.12)
if (n == 3)
n = 4;
return Success(n, E);
} else
return Success(1, E);
}
case UETT_SizeOf: {
QualType SrcTy = E->getTypeOfArgument();
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
SrcTy = Ref->getPointeeType();
// sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
// extension.
if (SrcTy->isVoidType() || SrcTy->isFunctionType())
return Success(1, E);
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
if (!SrcTy->isConstantSizeType())
return false;
// Get information about the size.
return Success(Info.Ctx.getTypeSizeInChars(SrcTy), E);
}
}
llvm_unreachable("unknown expr/type trait");
return false;
}
bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
CharUnits Result;
unsigned n = OOE->getNumComponents();
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
if (n == 0)
return false;
QualType CurrentType = OOE->getTypeSourceInfo()->getType();
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
for (unsigned i = 0; i != n; ++i) {
OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
switch (ON.getKind()) {
case OffsetOfExpr::OffsetOfNode::Array: {
const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
APSInt IdxResult;
if (!EvaluateInteger(Idx, IdxResult, Info))
return false;
const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
if (!AT)
return false;
CurrentType = AT->getElementType();
CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
Result += IdxResult.getSExtValue() * ElementSize;
break;
}
case OffsetOfExpr::OffsetOfNode::Field: {
FieldDecl *MemberDecl = ON.getField();
const RecordType *RT = CurrentType->getAs<RecordType>();
if (!RT)
return false;
RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
unsigned i = MemberDecl->getFieldIndex();
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
CurrentType = MemberDecl->getType().getNonReferenceType();
break;
}
case OffsetOfExpr::OffsetOfNode::Identifier:
llvm_unreachable("dependent __builtin_offsetof");
return false;
case OffsetOfExpr::OffsetOfNode::Base: {
CXXBaseSpecifier *BaseSpec = ON.getBase();
if (BaseSpec->isVirtual())
return false;
// Find the layout of the class whose base we are looking into.
const RecordType *RT = CurrentType->getAs<RecordType>();
if (!RT)
return false;
RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
// Find the base class itself.
CurrentType = BaseSpec->getType();
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
if (!BaseRT)
return false;
// Add the offset to the base.
Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
break;
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
}
}
return Success(Result, OOE);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
}
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
if (E->getOpcode() == UO_LNot) {
// LNot's operand isn't necessarily an integer, so we handle it specially.
bool bres;
if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
return false;
return Success(!bres, E);
}
// Only handle integral operations...
if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType())
return false;
// Get the operand value.
CCValue Val;
if (!Evaluate(Val, Info, E->getSubExpr()))
return false;
2008-07-08 22:35:21 +08:00
switch (E->getOpcode()) {
default:
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
case UO_Extension:
// FIXME: Should extension allow i-c-e extension expressions in its scope?
// If so, we could clear the diagnostic ID.
return Success(Val, E);
case UO_Plus:
// The result is just the value.
return Success(Val, E);
case UO_Minus:
if (!Val.isInt()) return false;
return Success(-Val.getInt(), E);
case UO_Not:
if (!Val.isInt()) return false;
return Success(~Val.getInt(), E);
}
2008-07-08 22:35:21 +08:00
}
/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
const Expr *SubExpr = E->getSubExpr();
QualType DestType = E->getType();
QualType SrcType = SubExpr->getType();
switch (E->getCastKind()) {
case CK_BaseToDerived:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToPointer:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralToFloating:
case CK_FloatingCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
llvm_unreachable("invalid cast kind for integral value");
case CK_BitCast:
case CK_Dependent:
case CK_GetObjCProperty:
case CK_LValueBitCast:
case CK_UserDefinedConversion:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
return false;
case CK_LValueToRValue:
case CK_NoOp:
return ExprEvaluatorBaseTy::VisitCastExpr(E);
case CK_MemberPointerToBoolean:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_FloatingToBoolean:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToBoolean: {
bool BoolResult;
if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
return false;
return Success(BoolResult, E);
}
case CK_IntegralCast: {
if (!Visit(SubExpr))
return false;
if (!Result.isInt()) {
// Only allow casts of lvalues if they are lossless.
return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
}
return Success(HandleIntToIntCast(DestType, SrcType,
Result.getInt(), Info.Ctx), E);
}
case CK_PointerToIntegral: {
LValue LV;
if (!EvaluatePointer(SubExpr, LV, Info))
return false;
if (LV.getLValueBase()) {
// Only allow based lvalue casts if they are lossless.
if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
return false;
LV.moveInto(Result);
return true;
}
APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
SrcType);
return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
2008-07-08 22:30:00 +08:00
}
case CK_IntegralComplexToReal: {
ComplexValue C;
if (!EvaluateComplex(SubExpr, C, Info))
return false;
return Success(C.getComplexIntReal(), E);
}
case CK_FloatingToIntegral: {
APFloat F(0.0);
if (!EvaluateFloat(SubExpr, F, Info))
return false;
return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
}
}
llvm_unreachable("unknown cast resulting in integral value");
return false;
2008-07-08 22:35:21 +08:00
}
2008-07-08 22:30:00 +08:00
bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
if (E->getSubExpr()->getType()->isAnyComplexType()) {
ComplexValue LV;
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
return Success(LV.getComplexIntReal(), E);
}
return Visit(E->getSubExpr());
}
bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
if (E->getSubExpr()->getType()->isComplexIntegerType()) {
ComplexValue LV;
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
return Success(LV.getComplexIntImag(), E);
}
VisitIgnoredValue(E->getSubExpr());
return Success(0, E);
}
bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
return Success(E->getPackLength(), E);
}
bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
return Success(E->getValue(), E);
}
//===----------------------------------------------------------------------===//
// Float Evaluation
//===----------------------------------------------------------------------===//
namespace {
class FloatExprEvaluator
: public ExprEvaluatorBase<FloatExprEvaluator, bool> {
APFloat &Result;
public:
FloatExprEvaluator(EvalInfo &info, APFloat &result)
: ExprEvaluatorBaseTy(info), Result(result) {}
bool Success(const CCValue &V, const Expr *e) {
Result = V.getFloat();
return true;
}
bool Error(const Stmt *S) {
return false;
}
bool ValueInitialization(const Expr *E) {
Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
return true;
}
bool VisitCallExpr(const CallExpr *E);
bool VisitUnaryOperator(const UnaryOperator *E);
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitFloatingLiteral(const FloatingLiteral *E);
bool VisitCastExpr(const CastExpr *E);
bool VisitUnaryReal(const UnaryOperator *E);
bool VisitUnaryImag(const UnaryOperator *E);
// FIXME: Missing: array subscript of vector, member of vector,
// ImplicitValueInitExpr
};
} // end anonymous namespace
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
assert(E->isRValue() && E->getType()->isRealFloatingType());
return FloatExprEvaluator(Info, Result).Visit(E);
}
static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
QualType ResultTy,
const Expr *Arg,
bool SNaN,
llvm::APFloat &Result) {
const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
if (!S) return false;
const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
llvm::APInt fill;
// Treat empty strings as if they were zero.
if (S->getString().empty())
fill = llvm::APInt(32, 0);
else if (S->getString().getAsInteger(0, fill))
return false;
if (SNaN)
Result = llvm::APFloat::getSNaN(Sem, false, &fill);
else
Result = llvm::APFloat::getQNaN(Sem, false, &fill);
return true;
}
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
switch (E->isBuiltinCall(Info.Ctx)) {
default:
return ExprEvaluatorBaseTy::VisitCallExpr(E);
case Builtin::BI__builtin_huge_val:
case Builtin::BI__builtin_huge_valf:
case Builtin::BI__builtin_huge_vall:
case Builtin::BI__builtin_inf:
case Builtin::BI__builtin_inff:
case Builtin::BI__builtin_infl: {
const llvm::fltSemantics &Sem =
Info.Ctx.getFloatTypeSemantics(E->getType());
Result = llvm::APFloat::getInf(Sem);
return true;
}
case Builtin::BI__builtin_nans:
case Builtin::BI__builtin_nansf:
case Builtin::BI__builtin_nansl:
return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
true, Result);
case Builtin::BI__builtin_nan:
case Builtin::BI__builtin_nanf:
case Builtin::BI__builtin_nanl:
// If this is __builtin_nan() turn this into a nan, otherwise we
// can't constant fold it.
return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
false, Result);
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsl:
if (!EvaluateFloat(E->getArg(0), Result, Info))
return false;
if (Result.isNegative())
Result.changeSign();
return true;
case Builtin::BI__builtin_copysign:
case Builtin::BI__builtin_copysignf:
case Builtin::BI__builtin_copysignl: {
APFloat RHS(0.);
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
!EvaluateFloat(E->getArg(1), RHS, Info))
return false;
Result.copySign(RHS);
return true;
}
}
}
bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
if (E->getSubExpr()->getType()->isAnyComplexType()) {
ComplexValue CV;
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
return false;
Result = CV.FloatReal;
return true;
}
return Visit(E->getSubExpr());
}
bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
if (E->getSubExpr()->getType()->isAnyComplexType()) {
ComplexValue CV;
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
return false;
Result = CV.FloatImag;
return true;
}
VisitIgnoredValue(E->getSubExpr());
const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
Result = llvm::APFloat::getZero(Sem);
return true;
}
bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
switch (E->getOpcode()) {
default: return false;
case UO_Plus:
return EvaluateFloat(E->getSubExpr(), Result, Info);
case UO_Minus:
if (!EvaluateFloat(E->getSubExpr(), Result, Info))
return false;
Result.changeSign();
return true;
}
}
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() == BO_Comma) {
VisitIgnoredValue(E->getLHS());
return Visit(E->getRHS());
}
// We can't evaluate pointer-to-member operations or assignments.
if (E->isPtrMemOp() || E->isAssignmentOp())
return false;
// FIXME: Diagnostics? I really don't understand how the warnings
// and errors are supposed to work.
APFloat RHS(0.0);
if (!EvaluateFloat(E->getLHS(), Result, Info))
return false;
if (!EvaluateFloat(E->getRHS(), RHS, Info))
return false;
switch (E->getOpcode()) {
default: return false;
case BO_Mul:
Result.multiply(RHS, APFloat::rmNearestTiesToEven);
return true;
case BO_Add:
Result.add(RHS, APFloat::rmNearestTiesToEven);
return true;
case BO_Sub:
Result.subtract(RHS, APFloat::rmNearestTiesToEven);
return true;
case BO_Div:
Result.divide(RHS, APFloat::rmNearestTiesToEven);
return true;
}
}
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
Result = E->getValue();
return true;
}
bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
const Expr* SubExpr = E->getSubExpr();
switch (E->getCastKind()) {
default:
return ExprEvaluatorBaseTy::VisitCastExpr(E);
case CK_IntegralToFloating: {
APSInt IntResult;
if (!EvaluateInteger(SubExpr, IntResult, Info))
return false;
Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
IntResult, Info.Ctx);
return true;
}
case CK_FloatingCast: {
if (!Visit(SubExpr))
return false;
Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
Result, Info.Ctx);
return true;
}
case CK_FloatingComplexToReal: {
ComplexValue V;
if (!EvaluateComplex(SubExpr, V, Info))
return false;
Result = V.getComplexFloatReal();
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Complex Evaluation (for float and integer)
//===----------------------------------------------------------------------===//
namespace {
class ComplexExprEvaluator
: public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
ComplexValue &Result;
public:
ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
: ExprEvaluatorBaseTy(info), Result(Result) {}
bool Success(const CCValue &V, const Expr *e) {
Result.setFrom(V);
return true;
}
bool Error(const Expr *E) {
return false;
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
bool VisitCastExpr(const CastExpr *E);
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitUnaryOperator(const UnaryOperator *E);
// FIXME Missing: ImplicitValueInitExpr, InitListExpr
};
} // end anonymous namespace
static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
EvalInfo &Info) {
assert(E->isRValue() && E->getType()->isAnyComplexType());
return ComplexExprEvaluator(Info, Result).Visit(E);
}
bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
const Expr* SubExpr = E->getSubExpr();
if (SubExpr->getType()->isRealFloatingType()) {
Result.makeComplexFloat();
APFloat &Imag = Result.FloatImag;
if (!EvaluateFloat(SubExpr, Imag, Info))
return false;
Result.FloatReal = APFloat(Imag.getSemantics());
return true;
} else {
assert(SubExpr->getType()->isIntegerType() &&
"Unexpected imaginary literal.");
Result.makeComplexInt();
APSInt &Imag = Result.IntImag;
if (!EvaluateInteger(SubExpr, Imag, Info))
return false;
Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
return true;
}
}
bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
switch (E->getCastKind()) {
case CK_BitCast:
case CK_BaseToDerived:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToPointer:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_MemberPointerToBoolean:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_PointerToBoolean:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_FloatingCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
llvm_unreachable("invalid cast kind for complex value");
case CK_LValueToRValue:
case CK_NoOp:
return ExprEvaluatorBaseTy::VisitCastExpr(E);
case CK_Dependent:
case CK_GetObjCProperty:
case CK_LValueBitCast:
case CK_UserDefinedConversion:
return false;
case CK_FloatingRealToComplex: {
APFloat &Real = Result.FloatReal;
if (!EvaluateFloat(E->getSubExpr(), Real, Info))
return false;
Result.makeComplexFloat();
Result.FloatImag = APFloat(Real.getSemantics());
return true;
}
case CK_FloatingComplexCast: {
if (!Visit(E->getSubExpr()))
return false;
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.FloatReal
= HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
Result.FloatImag
= HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
return true;
}
case CK_FloatingComplexToIntegralComplex: {
if (!Visit(E->getSubExpr()))
return false;
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.makeComplexInt();
Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
return true;
}
case CK_IntegralRealToComplex: {
APSInt &Real = Result.IntReal;
if (!EvaluateInteger(E->getSubExpr(), Real, Info))
return false;
Result.makeComplexInt();
Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
return true;
}
case CK_IntegralComplexCast: {
if (!Visit(E->getSubExpr()))
return false;
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx);
Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx);
return true;
}
case CK_IntegralComplexToFloatingComplex: {
if (!Visit(E->getSubExpr()))
return false;
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.makeComplexFloat();
Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
return true;
}
}
llvm_unreachable("unknown cast resulting in complex value");
return false;
}
bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() == BO_Comma) {
VisitIgnoredValue(E->getLHS());
return Visit(E->getRHS());
}
if (!Visit(E->getLHS()))
return false;
ComplexValue RHS;
if (!EvaluateComplex(E->getRHS(), RHS, Info))
return false;
assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
"Invalid operands to binary operator.");
switch (E->getOpcode()) {
default: return false;
case BO_Add:
if (Result.isComplexFloat()) {
Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
APFloat::rmNearestTiesToEven);
Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
APFloat::rmNearestTiesToEven);
} else {
Result.getComplexIntReal() += RHS.getComplexIntReal();
Result.getComplexIntImag() += RHS.getComplexIntImag();
}
break;
case BO_Sub:
if (Result.isComplexFloat()) {
Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
APFloat::rmNearestTiesToEven);
Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
APFloat::rmNearestTiesToEven);
} else {
Result.getComplexIntReal() -= RHS.getComplexIntReal();
Result.getComplexIntImag() -= RHS.getComplexIntImag();
}
break;
case BO_Mul:
if (Result.isComplexFloat()) {
ComplexValue LHS = Result;
APFloat &LHS_r = LHS.getComplexFloatReal();
APFloat &LHS_i = LHS.getComplexFloatImag();
APFloat &RHS_r = RHS.getComplexFloatReal();
APFloat &RHS_i = RHS.getComplexFloatImag();
APFloat Tmp = LHS_r;
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
Result.getComplexFloatReal() = Tmp;
Tmp = LHS_i;
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
Tmp = LHS_r;
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
Result.getComplexFloatImag() = Tmp;
Tmp = LHS_i;
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
} else {
ComplexValue LHS = Result;
Result.getComplexIntReal() =
(LHS.getComplexIntReal() * RHS.getComplexIntReal() -
LHS.getComplexIntImag() * RHS.getComplexIntImag());
Result.getComplexIntImag() =
(LHS.getComplexIntReal() * RHS.getComplexIntImag() +
LHS.getComplexIntImag() * RHS.getComplexIntReal());
}
break;
case BO_Div:
if (Result.isComplexFloat()) {
ComplexValue LHS = Result;
APFloat &LHS_r = LHS.getComplexFloatReal();
APFloat &LHS_i = LHS.getComplexFloatImag();
APFloat &RHS_r = RHS.getComplexFloatReal();
APFloat &RHS_i = RHS.getComplexFloatImag();
APFloat &Res_r = Result.getComplexFloatReal();
APFloat &Res_i = Result.getComplexFloatImag();
APFloat Den = RHS_r;
Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
APFloat Tmp = RHS_i;
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
Den.add(Tmp, APFloat::rmNearestTiesToEven);
Res_r = LHS_r;
Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
Tmp = LHS_i;
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
Res_r.divide(Den, APFloat::rmNearestTiesToEven);
Res_i = LHS_i;
Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
Tmp = LHS_r;
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
Res_i.divide(Den, APFloat::rmNearestTiesToEven);
} else {
if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) {
// FIXME: what about diagnostics?
return false;
}
ComplexValue LHS = Result;
APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
RHS.getComplexIntImag() * RHS.getComplexIntImag();
Result.getComplexIntReal() =
(LHS.getComplexIntReal() * RHS.getComplexIntReal() +
LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
Result.getComplexIntImag() =
(LHS.getComplexIntImag() * RHS.getComplexIntReal() -
LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
}
break;
}
return true;
}
bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
// Get the operand value into 'Result'.
if (!Visit(E->getSubExpr()))
return false;
switch (E->getOpcode()) {
default:
// FIXME: what about diagnostics?
return false;
case UO_Extension:
return true;
case UO_Plus:
// The result is always just the subexpr.
return true;
case UO_Minus:
if (Result.isComplexFloat()) {
Result.getComplexFloatReal().changeSign();
Result.getComplexFloatImag().changeSign();
}
else {
Result.getComplexIntReal() = -Result.getComplexIntReal();
Result.getComplexIntImag() = -Result.getComplexIntImag();
}
return true;
case UO_Not:
if (Result.isComplexFloat())
Result.getComplexFloatImag().changeSign();
else
Result.getComplexIntImag() = -Result.getComplexIntImag();
return true;
}
}
//===----------------------------------------------------------------------===//
// Top level Expr::EvaluateAsRValue method.
//===----------------------------------------------------------------------===//
static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
// In C, function designators are not lvalues, but we evaluate them as if they
// are.
if (E->isGLValue() || E->getType()->isFunctionType()) {
LValue LV;
if (!EvaluateLValue(E, LV, Info))
return false;
LV.moveInto(Result);
} else if (E->getType()->isVectorType()) {
if (!EvaluateVector(E, Result, Info))
return false;
} else if (E->getType()->isIntegralOrEnumerationType()) {
if (!IntExprEvaluator(Info, Result).Visit(E))
return false;
} else if (E->getType()->hasPointerRepresentation()) {
LValue LV;
if (!EvaluatePointer(E, LV, Info))
return false;
LV.moveInto(Result);
} else if (E->getType()->isRealFloatingType()) {
llvm::APFloat F(0.0);
if (!EvaluateFloat(E, F, Info))
return false;
Result = CCValue(F);
} else if (E->getType()->isAnyComplexType()) {
ComplexValue C;
if (!EvaluateComplex(E, C, Info))
return false;
C.moveInto(Result);
} else
return false;
return true;
}
/// EvaluateAsRValue - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// we want to. If this function returns true, it returns the folded constant
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
/// will be applied to the result.
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
EvalInfo Info(Ctx, Result);
CCValue Value;
if (!::Evaluate(Value, Info, this))
return false;
if (isGLValue()) {
LValue LV;
LV.setFrom(Value);
if (!HandleLValueToRValueConversion(Info, getType(), LV, Value))
return false;
}
// Check this core constant expression is a constant expression, and if so,
// slice it down to one.
if (!CheckConstantExpression(Value))
return false;
Result.Val = Value;
return true;
}
bool Expr::EvaluateAsBooleanCondition(bool &Result,
const ASTContext &Ctx) const {
EvalResult Scratch;
return EvaluateAsRValue(Scratch, Ctx) &&
HandleConversionToBool(CCValue(Scratch.Val, CCValue::NoCallIndex),
Result);
}
bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx) const {
EvalResult ExprResult;
if (!EvaluateAsRValue(ExprResult, Ctx) || ExprResult.HasSideEffects ||
!ExprResult.Val.isInt()) {
return false;
}
Result = ExprResult.Val.getInt();
return true;
}
bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
EvalInfo Info(Ctx, Result);
LValue LV;
if (EvaluateLValue(this, LV, Info) && !Result.HasSideEffects &&
IsGlobalLValue(LV.Base)) {
Result.Val = APValue(LV.Base, LV.Offset);
return true;
}
return false;
}
bool Expr::EvaluateAsAnyLValue(EvalResult &Result,
const ASTContext &Ctx) const {
EvalInfo Info(Ctx, Result);
LValue LV;
// Don't allow references to out-of-scope function parameters to escape.
if (EvaluateLValue(this, LV, Info) &&
(!IsParamLValue(LV.Base) || LV.CallIndex == CCValue::NoCallIndex)) {
Result.Val = APValue(LV.Base, LV.Offset);
return true;
}
return false;
}
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded, but discard the result.
bool Expr::isEvaluatable(const ASTContext &Ctx) const {
EvalResult Result;
return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
}
bool Expr::HasSideEffects(const ASTContext &Ctx) const {
return HasSideEffect(Ctx).Visit(this);
}
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
EvalResult EvalResult;
bool Result = EvaluateAsRValue(EvalResult, Ctx);
(void)Result;
assert(Result && "Could not evaluate expression");
assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
return EvalResult.Val.getInt();
}
bool Expr::EvalResult::isGlobalLValue() const {
assert(Val.isLValue());
return IsGlobalLValue(Val.getLValueBase());
}
/// isIntegerConstantExpr - this recursive routine will test if an expression is
/// an integer constant expression.
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
/// comma, etc
///
/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
/// cast+dereference.
// CheckICE - This function does the fundamental ICE checking: the returned
// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
// Note that to reduce code duplication, this helper does no evaluation
// itself; the caller checks whether the expression is evaluatable, and
// in the rare cases where CheckICE actually cares about the evaluated
// value, it calls into Evalute.
//
// Meanings of Val:
// 0: This expression is an ICE.
// 1: This expression is not an ICE, but if it isn't evaluated, it's
// a legal subexpression for an ICE. This return value is used to handle
// the comma operator in C99 mode.
// 2: This expression is not an ICE, and is not a legal subexpression for one.
namespace {
struct ICEDiag {
unsigned Val;
SourceLocation Loc;
public:
ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
ICEDiag() : Val(0) {}
};
}
static ICEDiag NoDiag() { return ICEDiag(); }
static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
Expr::EvalResult EVResult;
if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
!EVResult.Val.isInt()) {
return ICEDiag(2, E->getLocStart());
}
return NoDiag();
}
static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
assert(!E->isValueDependent() && "Should not see value dependent exprs!");
if (!E->getType()->isIntegralOrEnumerationType()) {
return ICEDiag(2, E->getLocStart());
}
switch (E->getStmtClass()) {
#define ABSTRACT_STMT(Node)
#define STMT(Node, Base) case Expr::Node##Class:
#define EXPR(Node, Base)
#include "clang/AST/StmtNodes.inc"
case Expr::PredefinedExprClass:
case Expr::FloatingLiteralClass:
case Expr::ImaginaryLiteralClass:
case Expr::StringLiteralClass:
case Expr::ArraySubscriptExprClass:
case Expr::MemberExprClass:
case Expr::CompoundAssignOperatorClass:
case Expr::CompoundLiteralExprClass:
case Expr::ExtVectorElementExprClass:
case Expr::DesignatedInitExprClass:
case Expr::ImplicitValueInitExprClass:
case Expr::ParenListExprClass:
case Expr::VAArgExprClass:
case Expr::AddrLabelExprClass:
case Expr::StmtExprClass:
case Expr::CXXMemberCallExprClass:
case Expr::CUDAKernelCallExprClass:
case Expr::CXXDynamicCastExprClass:
case Expr::CXXTypeidExprClass:
case Expr::CXXUuidofExprClass:
case Expr::CXXNullPtrLiteralExprClass:
case Expr::CXXThisExprClass:
case Expr::CXXThrowExprClass:
case Expr::CXXNewExprClass:
case Expr::CXXDeleteExprClass:
case Expr::CXXPseudoDestructorExprClass:
case Expr::UnresolvedLookupExprClass:
case Expr::DependentScopeDeclRefExprClass:
case Expr::CXXConstructExprClass:
case Expr::CXXBindTemporaryExprClass:
case Expr::ExprWithCleanupsClass:
case Expr::CXXTemporaryObjectExprClass:
case Expr::CXXUnresolvedConstructExprClass:
case Expr::CXXDependentScopeMemberExprClass:
case Expr::UnresolvedMemberExprClass:
case Expr::ObjCStringLiteralClass:
case Expr::ObjCEncodeExprClass:
case Expr::ObjCMessageExprClass:
case Expr::ObjCSelectorExprClass:
case Expr::ObjCProtocolExprClass:
case Expr::ObjCIvarRefExprClass:
case Expr::ObjCPropertyRefExprClass:
case Expr::ObjCIsaExprClass:
case Expr::ShuffleVectorExprClass:
case Expr::BlockExprClass:
case Expr::BlockDeclRefExprClass:
case Expr::NoStmtClass:
case Expr::OpaqueValueExprClass:
case Expr::PackExpansionExprClass:
case Expr::SubstNonTypeTemplateParmPackExprClass:
case Expr::AsTypeExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::MaterializeTemporaryExprClass:
case Expr::AtomicExprClass:
return ICEDiag(2, E->getLocStart());
case Expr::InitListExprClass:
if (Ctx.getLangOptions().CPlusPlus0x) {
const InitListExpr *ILE = cast<InitListExpr>(E);
if (ILE->getNumInits() == 0)
return NoDiag();
if (ILE->getNumInits() == 1)
return CheckICE(ILE->getInit(0), Ctx);
// Fall through for more than 1 expression.
}
return ICEDiag(2, E->getLocStart());
case Expr::SizeOfPackExprClass:
case Expr::GNUNullExprClass:
// GCC considers the GNU __null value to be an integral constant expression.
return NoDiag();
case Expr::SubstNonTypeTemplateParmExprClass:
return
CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
case Expr::ParenExprClass:
return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
case Expr::GenericSelectionExprClass:
return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
case Expr::IntegerLiteralClass:
case Expr::CharacterLiteralClass:
case Expr::CXXBoolLiteralExprClass:
case Expr::CXXScalarValueInitExprClass:
case Expr::UnaryTypeTraitExprClass:
case Expr::BinaryTypeTraitExprClass:
case Expr::ArrayTypeTraitExprClass:
case Expr::ExpressionTraitExprClass:
case Expr::CXXNoexceptExprClass:
return NoDiag();
case Expr::CallExprClass:
case Expr::CXXOperatorCallExprClass: {
// C99 6.6/3 allows function calls within unevaluated subexpressions of
// constant expressions, but they can never be ICEs because an ICE cannot
// contain an operand of (pointer to) function type.
const CallExpr *CE = cast<CallExpr>(E);
if (CE->isBuiltinCall(Ctx))
return CheckEvalInICE(E, Ctx);
return ICEDiag(2, E->getLocStart());
}
case Expr::DeclRefExprClass:
if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
return NoDiag();
if (Ctx.getLangOptions().CPlusPlus && IsConstNonVolatile(E->getType())) {
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
// Parameter variables are never constants. Without this check,
// getAnyInitializer() can find a default argument, which leads
// to chaos.
if (isa<ParmVarDecl>(D))
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
// C++ 7.1.5.1p2
// A variable of non-volatile const-qualified integral or enumeration
// type initialized by an ICE can be used in ICEs.
if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
// Look for a declaration of this variable that has an initializer.
const VarDecl *ID = 0;
const Expr *Init = Dcl->getAnyInitializer(ID);
if (Init) {
if (ID->isInitKnownICE()) {
// We have already checked whether this subexpression is an
// integral constant expression.
if (ID->isInitICE())
return NoDiag();
else
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
}
// It's an ICE whether or not the definition we found is
// out-of-line. See DR 721 and the discussion in Clang PR
// 6206 for details.
if (Dcl->isCheckingICE()) {
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
}
Dcl->setCheckingICE();
ICEDiag Result = CheckICE(Init, Ctx);
// Cache the result of the ICE test.
Dcl->setInitKnownICE(Result.Val == 0);
return Result;
}
}
}
return ICEDiag(2, E->getLocStart());
case Expr::UnaryOperatorClass: {
const UnaryOperator *Exp = cast<UnaryOperator>(E);
switch (Exp->getOpcode()) {
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec:
case UO_AddrOf:
case UO_Deref:
// C99 6.6/3 allows increment and decrement within unevaluated
// subexpressions of constant expressions, but they can never be ICEs
// because an ICE cannot contain an lvalue operand.
return ICEDiag(2, E->getLocStart());
case UO_Extension:
case UO_LNot:
case UO_Plus:
case UO_Minus:
case UO_Not:
case UO_Real:
case UO_Imag:
return CheckICE(Exp->getSubExpr(), Ctx);
}
// OffsetOf falls through here.
}
case Expr::OffsetOfExprClass: {
// Note that per C99, offsetof must be an ICE. And AFAIK, using
// EvaluateAsRValue matches the proposed gcc behavior for cases like
// "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
// compliance: we should warn earlier for offsetof expressions with
// array subscripts that aren't ICEs, and if the array subscripts
// are ICEs, the value of the offsetof must be an integer constant.
return CheckEvalInICE(E, Ctx);
}
case Expr::UnaryExprOrTypeTraitExprClass: {
const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
if ((Exp->getKind() == UETT_SizeOf) &&
Exp->getTypeOfArgument()->isVariableArrayType())
return ICEDiag(2, E->getLocStart());
return NoDiag();
}
case Expr::BinaryOperatorClass: {
const BinaryOperator *Exp = cast<BinaryOperator>(E);
switch (Exp->getOpcode()) {
case BO_PtrMemD:
case BO_PtrMemI:
case BO_Assign:
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_AddAssign:
case BO_SubAssign:
case BO_ShlAssign:
case BO_ShrAssign:
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
// C99 6.6/3 allows assignments within unevaluated subexpressions of
// constant expressions, but they can never be ICEs because an ICE cannot
// contain an lvalue operand.
return ICEDiag(2, E->getLocStart());
case BO_Mul:
case BO_Div:
case BO_Rem:
case BO_Add:
case BO_Sub:
case BO_Shl:
case BO_Shr:
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
case BO_And:
case BO_Xor:
case BO_Or:
case BO_Comma: {
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
if (Exp->getOpcode() == BO_Div ||
Exp->getOpcode() == BO_Rem) {
// EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
// we don't evaluate one.
if (LHSResult.Val == 0 && RHSResult.Val == 0) {
llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
if (REval == 0)
return ICEDiag(1, E->getLocStart());
if (REval.isSigned() && REval.isAllOnesValue()) {
llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
if (LEval.isMinSignedValue())
return ICEDiag(1, E->getLocStart());
}
}
}
if (Exp->getOpcode() == BO_Comma) {
if (Ctx.getLangOptions().C99) {
// C99 6.6p3 introduces a strange edge case: comma can be in an ICE
// if it isn't evaluated.
if (LHSResult.Val == 0 && RHSResult.Val == 0)
return ICEDiag(1, E->getLocStart());
} else {
// In both C89 and C++, commas in ICEs are illegal.
return ICEDiag(2, E->getLocStart());
}
}
if (LHSResult.Val >= RHSResult.Val)
return LHSResult;
return RHSResult;
}
case BO_LAnd:
case BO_LOr: {
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
// C++0x [expr.const]p2:
// [...] subexpressions of logical AND (5.14), logical OR
// (5.15), and condi- tional (5.16) operations that are not
// evaluated are not considered.
if (Ctx.getLangOptions().CPlusPlus0x && LHSResult.Val == 0) {
if (Exp->getOpcode() == BO_LAnd &&
Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)
return LHSResult;
if (Exp->getOpcode() == BO_LOr &&
Exp->getLHS()->EvaluateKnownConstInt(Ctx) != 0)
return LHSResult;
}
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
if (LHSResult.Val == 0 && RHSResult.Val == 1) {
// Rare case where the RHS has a comma "side-effect"; we need
// to actually check the condition to see whether the side
// with the comma is evaluated.
if ((Exp->getOpcode() == BO_LAnd) !=
(Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
return RHSResult;
return NoDiag();
}
if (LHSResult.Val >= RHSResult.Val)
return LHSResult;
return RHSResult;
}
}
}
case Expr::ImplicitCastExprClass:
case Expr::CStyleCastExprClass:
case Expr::CXXFunctionalCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXConstCastExprClass:
case Expr::ObjCBridgedCastExprClass: {
const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
if (isa<ExplicitCastExpr>(E) &&
isa<FloatingLiteral>(SubExpr->IgnoreParenImpCasts()))
return NoDiag();
switch (cast<CastExpr>(E)->getCastKind()) {
case CK_LValueToRValue:
case CK_NoOp:
case CK_IntegralToBoolean:
case CK_IntegralCast:
return CheckICE(SubExpr, Ctx);
default:
return ICEDiag(2, E->getLocStart());
}
}
case Expr::BinaryConditionalOperatorClass: {
const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
if (CommonResult.Val == 2) return CommonResult;
ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
if (FalseResult.Val == 2) return FalseResult;
if (CommonResult.Val == 1) return CommonResult;
if (FalseResult.Val == 1 &&
Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
return FalseResult;
}
case Expr::ConditionalOperatorClass: {
const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
// If the condition (ignoring parens) is a __builtin_constant_p call,
// then only the true side is actually considered in an integer constant
// expression, and it is fully evaluated. This is an important GNU
// extension. See GCC PR38377 for discussion.
if (const CallExpr *CallCE
= dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
Expr::EvalResult EVResult;
if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
!EVResult.Val.isInt()) {
return ICEDiag(2, E->getLocStart());
}
return NoDiag();
}
ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
if (CondResult.Val == 2)
return CondResult;
// C++0x [expr.const]p2:
// subexpressions of [...] conditional (5.16) operations that
// are not evaluated are not considered
bool TrueBranch = Ctx.getLangOptions().CPlusPlus0x
? Exp->getCond()->EvaluateKnownConstInt(Ctx) != 0
: false;
ICEDiag TrueResult = NoDiag();
if (!Ctx.getLangOptions().CPlusPlus0x || TrueBranch)
TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
ICEDiag FalseResult = NoDiag();
if (!Ctx.getLangOptions().CPlusPlus0x || !TrueBranch)
FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
if (TrueResult.Val == 2)
return TrueResult;
if (FalseResult.Val == 2)
return FalseResult;
if (CondResult.Val == 1)
return CondResult;
if (TrueResult.Val == 0 && FalseResult.Val == 0)
return NoDiag();
// Rare case where the diagnostics depend on which side is evaluated
// Note that if we get here, CondResult is 0, and at least one of
// TrueResult and FalseResult is non-zero.
if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
return FalseResult;
}
return TrueResult;
}
case Expr::CXXDefaultArgExprClass:
return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
case Expr::ChooseExprClass: {
return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
}
}
// Silence a GCC warning
return ICEDiag(2, E->getLocStart());
}
bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
SourceLocation *Loc, bool isEvaluated) const {
ICEDiag d = CheckICE(this, Ctx);
if (d.Val != 0) {
if (Loc) *Loc = d.Loc;
return false;
}
if (!EvaluateAsInt(Result, Ctx))
llvm_unreachable("ICE cannot be evaluated!");
return true;
}