llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_coverage_fuchsia.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

252 lines
10 KiB
C++
Raw Normal View History

//===-- sanitizer_coverage_fuchsia.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
//
// This Fuchsia-specific implementation uses the same basic scheme and the
// same simple '.sancov' file format as the generic implementation. The
// difference is that we just produce a single blob of output for the whole
// program, not a separate one per DSO. We do not sort the PC table and do
// not prune the zeros, so the resulting file is always as large as it
// would be to report 100% coverage. Implicit tracing information about
// the address ranges of DSOs allows offline tools to split the one big
// blob into separate files that the 'sancov' tool can understand.
//
// Unlike the traditional implementation that uses an atexit hook to write
// out data files at the end, the results on Fuchsia do not go into a file
// per se. The 'coverage_dir' option is ignored. Instead, they are stored
// directly into a shared memory object (a Zircon VMO). At exit, that VMO
// is handed over to a system service that's responsible for getting the
// data out to somewhere that it can be fed into the sancov tool (where and
// how is not our problem).
#include "sanitizer_platform.h"
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/sanitizer.h>
#include <zircon/syscalls.h>
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_symbolizer_fuchsia.h"
using namespace __sanitizer;
namespace __sancov {
namespace {
// TODO(mcgrathr): Move the constant into a header shared with other impls.
constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
constexpr const char kSancovSinkName[] = "sancov";
// Collects trace-pc guard coverage.
// This class relies on zero-initialization.
class TracePcGuardController final {
public:
// For each PC location being tracked, there is a u32 reserved in global
// data called the "guard". At startup, we assign each guard slot a
// unique index into the big results array. Later during runtime, the
// first call to TracePcGuard (below) will store the corresponding PC at
// that index in the array. (Each later call with the same guard slot is
// presumed to be from the same PC.) Then it clears the guard slot back
// to zero, which tells the compiler not to bother calling in again. At
// the end of the run, we have a big array where each element is either
// zero or is a tracked PC location that was hit in the trace.
// This is called from global constructors. Each translation unit has a
// contiguous array of guard slots, and a constructor that calls here
// with the bounds of its array. Those constructors are allowed to call
// here more than once for the same array. Usually all of these
// constructors run in the initial thread, but it's possible that a
// dlopen call on a secondary thread will run constructors that get here.
void InitTracePcGuard(u32 *start, u32 *end) {
if (end > start && *start == 0 && common_flags()->coverage) {
// Complete the setup before filling in any guards with indices.
// This avoids the possibility of code called from Setup reentering
// TracePcGuard.
u32 idx = Setup(end - start);
for (u32 *p = start; p < end; ++p) {
*p = idx++;
}
}
}
void TracePcGuard(u32 *guard, uptr pc) {
atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
if (idx > 0)
array_[idx] = pc;
}
void Dump() {
BlockingMutexLock locked(&setup_lock_);
if (array_) {
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
// Publish the VMO to the system, where it can be collected and
// analyzed after this process exits. This always consumes the VMO
// handle. Any failure is just logged and not indicated to us.
__sanitizer_publish_data(kSancovSinkName, vmo_);
vmo_ = ZX_HANDLE_INVALID;
// This will route to __sanitizer_log_write, which will ensure that
// information about shared libraries is written out. This message
// uses the `dumpfile` symbolizer markup element to highlight the
// dump. See the explanation for this in:
// https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n",
kSancovSinkName, vmo_name_, next_index_ - 1);
}
}
private:
// We map in the largest possible view into the VMO: one word
// for every possible 32-bit index value. This avoids the need
// to change the mapping when increasing the size of the VMO.
// We can always spare the 32G of address space.
static constexpr size_t MappingSize = sizeof(uptr) << 32;
BlockingMutex setup_lock_ = BlockingMutex(LINKER_INITIALIZED);
uptr *array_ = nullptr;
u32 next_index_ = 0;
zx_handle_t vmo_ = {};
char vmo_name_[ZX_MAX_NAME_LEN] = {};
size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
u32 Setup(u32 num_guards) {
BlockingMutexLock locked(&setup_lock_);
DCHECK(common_flags()->coverage);
if (next_index_ == 0) {
CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
CHECK_EQ(array_, nullptr);
// The first sample goes at [1] to reserve [0] for the magic number.
next_index_ = 1 + num_guards;
zx_status_t status = _zx_vmo_create(DataSize(), ZX_VMO_RESIZABLE, &vmo_);
CHECK_EQ(status, ZX_OK);
// Give the VMO a name including our process KOID so it's easy to spot.
internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
internal_getpid());
_zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
internal_strlen(vmo_name_));
uint64_t size = DataSize();
status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size,
sizeof(size));
CHECK_EQ(status, ZX_OK);
// Map the largest possible view we might need into the VMO. Later
// we might need to increase the VMO's size before we can use larger
// indices, but we'll never move the mapping address so we don't have
// any multi-thread synchronization issues with that.
uintptr_t mapping;
status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, vmo_, 0, MappingSize, &mapping);
CHECK_EQ(status, ZX_OK);
// Hereafter other threads are free to start storing into
// elements [1, next_index_) of the big array.
array_ = reinterpret_cast<uptr *>(mapping);
// Store the magic number.
// Hereafter, the VMO serves as the contents of the '.sancov' file.
array_[0] = Magic64;
return 1;
} else {
// The VMO is already mapped in, but it's not big enough to use the
// new indices. So increase the size to cover the new maximum index.
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
CHECK_NE(array_, nullptr);
uint32_t first_index = next_index_;
next_index_ += num_guards;
zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
CHECK_EQ(status, ZX_OK);
uint64_t size = DataSize();
status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size,
sizeof(size));
CHECK_EQ(status, ZX_OK);
return first_index;
}
}
};
static TracePcGuardController pc_guard_controller;
} // namespace
} // namespace __sancov
namespace __sanitizer {
void InitializeCoverage(bool enabled, const char *dir) {
CHECK_EQ(enabled, common_flags()->coverage);
CHECK_EQ(dir, common_flags()->coverage_dir);
static bool coverage_enabled = false;
if (!coverage_enabled) {
coverage_enabled = enabled;
Atexit(__sanitizer_cov_dump);
AddDieCallback(__sanitizer_cov_dump);
}
}
} // namespace __sanitizer
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage(const uptr *pcs,
uptr len) {
UNIMPLEMENTED();
}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
if (!*guard)
return;
__sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
u32 *start, u32 *end) {
if (start == end || *start)
return;
__sancov::pc_guard_controller.InitTracePcGuard(start, end);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
__sancov::pc_guard_controller.Dump();
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
__sanitizer_dump_trace_pc_guard_coverage();
}
// Default empty implementations (weak). Users should redefine them.
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
} // extern "C"
#endif // !SANITIZER_FUCHSIA