llvm-project/llvm/test/CodeGen/AMDGPU/partial-sgpr-to-vgpr-spills.ll

610 lines
25 KiB
LLVM
Raw Normal View History

; RUN: llc -O0 -march=amdgcn -mcpu=hawaii -verify-machineinstrs < %s | FileCheck -check-prefix=ALL -check-prefix=VGPR -check-prefix=GCN %s
; FIXME: we should disable sdwa peephole because dead-code elimination, that
; runs after peephole, ruins this test (different register numbers)
; Spill all SGPRs so multiple VGPRs are required for spilling all of them.
; Ideally we only need 2 VGPRs for all spilling. The VGPRs are
; allocated per-frame index, so it's possible to get up with more.
; GCN-LABEL: {{^}}spill_sgprs_to_multiple_vgprs:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: def s[4:11]
; GCN: def s[12:19]
; GCN: def s[20:27]
; GCN: def s[28:35]
; GCN: def s[36:43]
; GCN: def s[44:51]
; GCN: def s[52:59]
; GCN: def s[60:67]
; GCN: def s[68:75]
; GCN: def s[76:83]
; GCN: def s[84:91]
; GCN: v_writelane_b32 v0, s4, 0
; GCN-NEXT: v_writelane_b32 v0, s5, 1
; GCN-NEXT: v_writelane_b32 v0, s6, 2
; GCN-NEXT: v_writelane_b32 v0, s7, 3
; GCN-NEXT: v_writelane_b32 v0, s8, 4
; GCN-NEXT: v_writelane_b32 v0, s9, 5
; GCN-NEXT: v_writelane_b32 v0, s10, 6
; GCN-NEXT: v_writelane_b32 v0, s11, 7
; GCN: def s{{\[}}[[TMP_LO:[0-9]+]]:[[TMP_HI:[0-9]+]]{{\]}}
; GCN: v_writelane_b32 v0, s[[TMP_LO]], 8
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 9
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 10
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 11
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 12
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-NEXT: v_writelane_b32 v0, s9, 13
; GCN-NEXT: v_writelane_b32 v0, s10, 14
; GCN-NEXT: v_writelane_b32 v0, s[[TMP_HI]], 15
; GCN: def s{{\[}}[[TMP_LO]]:[[TMP_HI]]{{\]}}
; GCN: v_writelane_b32 v0, s[[TMP_LO]], 16
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 17
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 18
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 19
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 20
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-NEXT: v_writelane_b32 v0, s9, 21
; GCN-NEXT: v_writelane_b32 v0, s10, 22
; GCN-NEXT: v_writelane_b32 v0, s[[TMP_HI]], 23
; GCN: def s{{\[}}[[TMP_LO]]:[[TMP_HI]]{{\]}}
; GCN: v_writelane_b32 v0, s[[TMP_LO]], 24
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 25
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 26
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 27
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 28
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-NEXT: v_writelane_b32 v0, s9, 29
; GCN-NEXT: v_writelane_b32 v0, s10, 30
; GCN-NEXT: v_writelane_b32 v0, s[[TMP_HI]], 31
; GCN: def s{{\[}}[[TMP_LO]]:[[TMP_HI]]{{\]}}
; GCN: v_writelane_b32 v0, s[[TMP_LO]], 32
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 33
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 34
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 35
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 36
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-NEXT: v_writelane_b32 v0, s9, 37
; GCN-NEXT: v_writelane_b32 v0, s10, 38
; GCN-NEXT: v_writelane_b32 v0, s[[TMP_HI]], 39
; GCN: def s{{\[}}[[TMP_LO]]:[[TMP_HI]]{{\]}}
; GCN: v_writelane_b32 v0, s[[TMP_LO]], 40
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 41
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 42
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 43
; GCN-NEXT: v_writelane_b32 v0, s{{[0-9]+}}, 44
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-NEXT: v_writelane_b32 v0, s9, 45
; GCN-NEXT: v_writelane_b32 v0, s10, 46
; GCN-NEXT: v_writelane_b32 v0, s[[TMP_HI]], 47
; GCN: def s{{\[}}[[TMP_LO]]:[[TMP_HI]]{{\]}}
; GCN: v_writelane_b32 v0, s12, 48
; GCN-NEXT: v_writelane_b32 v0, s13, 49
; GCN-NEXT: v_writelane_b32 v0, s14, 50
; GCN-NEXT: v_writelane_b32 v0, s15, 51
; GCN-NEXT: v_writelane_b32 v0, s16, 52
; GCN-NEXT: v_writelane_b32 v0, s17, 53
; GCN-NEXT: v_writelane_b32 v0, s18, 54
; GCN-NEXT: v_writelane_b32 v0, s19, 55
; GCN-NEXT: v_writelane_b32 v0, s20, 56
; GCN-NEXT: v_writelane_b32 v0, s21, 57
; GCN-NEXT: v_writelane_b32 v0, s22, 58
; GCN-NEXT: v_writelane_b32 v0, s23, 59
; GCN-NEXT: v_writelane_b32 v0, s24, 60
; GCN-NEXT: v_writelane_b32 v0, s25, 61
; GCN-NEXT: v_writelane_b32 v0, s26, 62
; GCN-NEXT: v_writelane_b32 v0, s27, 63
; GCN-NEXT: v_writelane_b32 v1, s28, 0
; GCN-NEXT: v_writelane_b32 v1, s29, 1
; GCN-NEXT: v_writelane_b32 v1, s30, 2
; GCN-NEXT: v_writelane_b32 v1, s31, 3
; GCN-NEXT: v_writelane_b32 v1, s32, 4
; GCN-NEXT: v_writelane_b32 v1, s33, 5
; GCN-NEXT: v_writelane_b32 v1, s34, 6
; GCN-NEXT: v_writelane_b32 v1, s35, 7
; GCN-NEXT: v_writelane_b32 v1, s36, 8
; GCN-NEXT: v_writelane_b32 v1, s37, 9
; GCN-NEXT: v_writelane_b32 v1, s38, 10
; GCN-NEXT: v_writelane_b32 v1, s39, 11
; GCN-NEXT: v_writelane_b32 v1, s40, 12
; GCN-NEXT: v_writelane_b32 v1, s41, 13
; GCN-NEXT: v_writelane_b32 v1, s42, 14
; GCN-NEXT: v_writelane_b32 v1, s43, 15
; GCN-NEXT: v_writelane_b32 v1, s44, 16
; GCN-NEXT: v_writelane_b32 v1, s45, 17
; GCN-NEXT: v_writelane_b32 v1, s46, 18
; GCN-NEXT: v_writelane_b32 v1, s47, 19
; GCN-NEXT: v_writelane_b32 v1, s48, 20
; GCN-NEXT: v_writelane_b32 v1, s49, 21
; GCN-NEXT: v_writelane_b32 v1, s50, 22
; GCN-NEXT: v_writelane_b32 v1, s51, 23
; GCN-NEXT: v_writelane_b32 v1, s52, 24
; GCN-NEXT: v_writelane_b32 v1, s53, 25
; GCN-NEXT: v_writelane_b32 v1, s54, 26
; GCN-NEXT: v_writelane_b32 v1, s55, 27
; GCN-NEXT: v_writelane_b32 v1, s56, 28
; GCN-NEXT: v_writelane_b32 v1, s57, 29
; GCN-NEXT: v_writelane_b32 v1, s58, 30
; GCN-NEXT: v_writelane_b32 v1, s59, 31
; GCN-NEXT: v_writelane_b32 v1, s60, 32
; GCN-NEXT: v_writelane_b32 v1, s61, 33
; GCN-NEXT: v_writelane_b32 v1, s62, 34
; GCN-NEXT: v_writelane_b32 v1, s63, 35
; GCN-NEXT: v_writelane_b32 v1, s64, 36
; GCN-NEXT: v_writelane_b32 v1, s65, 37
; GCN-NEXT: v_writelane_b32 v1, s66, 38
; GCN-NEXT: v_writelane_b32 v1, s67, 39
; GCN-NEXT: v_writelane_b32 v1, s68, 40
; GCN-NEXT: v_writelane_b32 v1, s69, 41
; GCN-NEXT: v_writelane_b32 v1, s70, 42
; GCN-NEXT: v_writelane_b32 v1, s71, 43
; GCN-NEXT: v_writelane_b32 v1, s72, 44
; GCN-NEXT: v_writelane_b32 v1, s73, 45
; GCN-NEXT: v_writelane_b32 v1, s74, 46
; GCN-NEXT: v_writelane_b32 v1, s75, 47
; GCN-NEXT: v_writelane_b32 v1, s76, 48
; GCN-NEXT: v_writelane_b32 v1, s77, 49
; GCN-NEXT: v_writelane_b32 v1, s78, 50
; GCN-NEXT: v_writelane_b32 v1, s79, 51
; GCN-NEXT: v_writelane_b32 v1, s80, 52
; GCN-NEXT: v_writelane_b32 v1, s81, 53
; GCN-NEXT: v_writelane_b32 v1, s82, 54
; GCN-NEXT: v_writelane_b32 v1, s83, 55
; GCN-NEXT: v_writelane_b32 v1, s84, 56
; GCN-NEXT: v_writelane_b32 v1, s85, 57
; GCN-NEXT: v_writelane_b32 v1, s86, 58
; GCN-NEXT: v_writelane_b32 v1, s87, 59
; GCN-NEXT: v_writelane_b32 v1, s88, 60
; GCN-NEXT: v_writelane_b32 v1, s89, 61
; GCN-NEXT: v_writelane_b32 v1, s90, 62
; GCN-NEXT: v_writelane_b32 v1, s91, 63
; GCN-NEXT: v_writelane_b32 v2, s4, 0
; GCN-NEXT: v_writelane_b32 v2, s5, 1
; GCN-NEXT: v_writelane_b32 v2, s6, 2
; GCN-NEXT: v_writelane_b32 v2, s7, 3
; GCN-NEXT: v_writelane_b32 v2, s8, 4
; GCN-NEXT: v_writelane_b32 v2, s9, 5
; GCN-NEXT: v_writelane_b32 v2, s10, 6
; GCN-NEXT: v_writelane_b32 v2, s11, 7
; GCN: s_cbranch_scc1
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v0, 0
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 1
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 2
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 3
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 4
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 5
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 6
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v0, 7
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v0, 48
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 49
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 50
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 51
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 52
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 53
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 54
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v0, 55
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v0, 56
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 57
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 58
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 59
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 60
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 61
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 62
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v0, 63
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 0
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 1
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 2
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 3
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 4
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 5
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 6
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 7
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 8
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 9
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 10
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 11
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 12
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 13
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 14
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 15
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 16
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 17
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 18
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 19
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 20
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 21
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 22
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 23
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 24
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 25
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 26
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 27
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 28
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 29
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 30
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 31
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 32
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 33
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 34
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 35
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 36
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 37
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 38
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 39
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 40
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 41
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 42
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 43
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 44
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 45
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 46
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 47
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 48
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 49
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 50
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 51
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 52
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 53
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 54
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 55
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO]], v1, 56
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 57
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 58
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 59
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 60
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 61
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v1, 62
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI]], v1, 63
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v0, 8
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 9
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 10
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 11
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 12
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 13
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 14
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 15
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v0, 16
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 17
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 18
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 19
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 20
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 21
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 22
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 23
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v0, 24
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 25
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 26
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 27
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 28
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 29
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 30
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 31
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v0, 32
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 33
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 34
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 35
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 36
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 37
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 38
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 39
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v0, 40
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 41
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 42
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 43
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 44
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 45
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 46
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v0, 47
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s{{[0-9]+}}, v2, 0
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 1
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 2
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 3
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 4
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 5
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 6
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v2, 7
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
define amdgpu_kernel void @spill_sgprs_to_multiple_vgprs(i32 addrspace(1)* %out, i32 %in) #0 {
%wide.sgpr0 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr1 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr2 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr3 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr4 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr5 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr6 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr7 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr8 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr9 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr10 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr11 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr12 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr13 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr14 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr15 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr16 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%cmp = icmp eq i32 %in, 0
br i1 %cmp, label %bb0, label %ret
bb0:
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr0) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr1) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr2) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr3) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr4) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr5) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr6) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr7) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr8) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr9) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr10) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr11) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr12) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr13) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr14) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr15) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr16) #0
br label %ret
ret:
ret void
}
; Some of the lanes of an SGPR spill are in one VGPR and some forced
; into the next available VGPR.
; GCN-LABEL: {{^}}split_sgpr_spill_2_vgprs:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: def s[4:19]
; GCN: def s[20:35]
; GCN: v_writelane_b32 v0, s4, 48
; GCN-NEXT: v_writelane_b32 v0, s5, 49
; GCN-NEXT: v_writelane_b32 v0, s6, 50
; GCN-NEXT: v_writelane_b32 v0, s7, 51
; GCN-NEXT: v_writelane_b32 v0, s8, 52
; GCN-NEXT: v_writelane_b32 v0, s9, 53
; GCN-NEXT: v_writelane_b32 v0, s10, 54
; GCN-NEXT: v_writelane_b32 v0, s11, 55
; GCN-NEXT: v_writelane_b32 v0, s12, 56
; GCN-NEXT: v_writelane_b32 v0, s13, 57
; GCN-NEXT: v_writelane_b32 v0, s14, 58
; GCN-NEXT: v_writelane_b32 v0, s15, 59
; GCN-NEXT: v_writelane_b32 v0, s16, 60
; GCN-NEXT: v_writelane_b32 v0, s17, 61
; GCN-NEXT: v_writelane_b32 v0, s18, 62
; GCN-NEXT: v_writelane_b32 v0, s19, 63
; GCN: v_readlane_b32 s4, v0, 48
; GCN-NEXT: v_readlane_b32 s5, v0, 49
; GCN-NEXT: v_readlane_b32 s6, v0, 50
; GCN-NEXT: v_readlane_b32 s7, v0, 51
; GCN-NEXT: v_readlane_b32 s8, v0, 52
; GCN-NEXT: v_readlane_b32 s9, v0, 53
; GCN-NEXT: v_readlane_b32 s10, v0, 54
; GCN-NEXT: v_readlane_b32 s11, v0, 55
; GCN-NEXT: v_readlane_b32 s12, v0, 56
; GCN-NEXT: v_readlane_b32 s13, v0, 57
; GCN-NEXT: v_readlane_b32 s14, v0, 58
; GCN-NEXT: v_readlane_b32 s15, v0, 59
; GCN-NEXT: v_readlane_b32 s16, v0, 60
; GCN-NEXT: v_readlane_b32 s17, v0, 61
; GCN-NEXT: v_readlane_b32 s18, v0, 62
; GCN-NEXT: v_readlane_b32 s19, v0, 63
define amdgpu_kernel void @split_sgpr_spill_2_vgprs(i32 addrspace(1)* %out, i32 %in) #1 {
%wide.sgpr0 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr1 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr2 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr5 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr3 = call <8 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr4 = call <2 x i32> asm sideeffect "; def $0", "=s" () #0
%cmp = icmp eq i32 %in, 0
br i1 %cmp, label %bb0, label %ret
bb0:
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr0) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr1) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr2) #0
call void asm sideeffect "; use $0", "s"(<8 x i32> %wide.sgpr3) #0
call void asm sideeffect "; use $0", "s"(<2 x i32> %wide.sgpr4) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr5) #0
br label %ret
ret:
ret void
}
; The first 64 SGPR spills can go to a VGPR, but there isn't a second
; so some spills must be to memory. The last 16 element spill runs out of lanes at the 15th element.
; GCN-LABEL: {{^}}no_vgprs_last_sgpr_spill:
; GCN: v_writelane_b32 v23, s{{[0-9]+}}, 0
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 1
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 2
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 3
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 4
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 5
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 6
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 7
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 8
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 9
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 10
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 11
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 12
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 13
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 14
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 15
; GCN: v_writelane_b32 v23, s{{[0-9]+}}, 16
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 17
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 18
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 19
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 20
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 21
; GCN-NEXT: v_writelane_b32 v23, s{{[0-9]+}}, 22
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 23
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 24
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 25
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 26
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 27
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 28
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 29
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 30
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 31
; GCN: def s[0:1]
; GCN: v_writelane_b32 v23, s20, 32
; GCN-NEXT: v_writelane_b32 v23, s21, 33
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 34
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 35
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 36
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 37
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 38
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 39
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 40
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 41
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 42
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 43
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 44
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 45
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 46
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 47
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 48
; GCN-NEXT: v_writelane_b32 v23, s{{[[0-9]+}}, 49
; GCN: buffer_store_dword v{{[0-9]+}}, off, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}}
; GCN: buffer_store_dword v{{[0-9]+}}, off, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}}
; GCN: s_cbranch_scc1
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v23, 0
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 1
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 2
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 3
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 4
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 5
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 6
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 7
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 8
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 9
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 10
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 11
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 12
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 13
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 14
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v23, 15
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v23, 32
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 33
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 34
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 35
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 36
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 37
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 38
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 39
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 40
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 41
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 42
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 43
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 44
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 45
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 46
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v23, 47
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: v_readlane_b32 s[[USE_TMP_LO:[0-9]+]], v23, 16
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 17
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 18
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 19
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 20
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 21
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 22
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 23
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 24
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 25
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 26
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 27
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 28
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 29
; GCN-NEXT: v_readlane_b32 s{{[0-9]+}}, v23, 30
; GCN-NEXT: v_readlane_b32 s[[USE_TMP_HI:[0-9]+]], v23, 31
; GCN: ; use s{{\[}}[[USE_TMP_LO]]:[[USE_TMP_HI]]{{\]}}
; GCN: buffer_load_dword v{{[0-9]+}}, off, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}}
; GCN: buffer_load_dword v{{[0-9]+}}, off, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}}
; GCN: v_readfirstlane_b32 s1, v0
; GCN: ;;#ASMSTART
; GCN: ; use s[0:1]
define amdgpu_kernel void @no_vgprs_last_sgpr_spill(i32 addrspace(1)* %out, i32 %in) #1 {
call void asm sideeffect "", "~{v[0:7]}" () #0
call void asm sideeffect "", "~{v[8:15]}" () #0
call void asm sideeffect "", "~{v[16:19]}"() #0
call void asm sideeffect "", "~{v[20:21]}"() #0
call void asm sideeffect "", "~{v22}"() #0
%wide.sgpr0 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr1 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr2 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr3 = call <16 x i32> asm sideeffect "; def $0", "=s" () #0
%wide.sgpr4 = call <2 x i32> asm sideeffect "; def $0", "=s" () #0
%cmp = icmp eq i32 %in, 0
br i1 %cmp, label %bb0, label %ret
bb0:
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr0) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr1) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr2) #0
call void asm sideeffect "; use $0", "s"(<16 x i32> %wide.sgpr3) #0
call void asm sideeffect "; use $0", "s"(<2 x i32> %wide.sgpr4) #0
br label %ret
ret:
ret void
}
attributes #0 = { nounwind }
attributes #1 = { nounwind "amdgpu-waves-per-eu"="10,10" }