llvm-project/clang/lib/Checker/IdempotentOperationChecker.cpp

455 lines
14 KiB
C++
Raw Normal View History

//==- IdempotentOperationChecker.cpp - Idempotent Operations ----*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a set of path-sensitive checks for idempotent and/or
// tautological operations. Each potential operation is checked along all paths
// to see if every path results in a pointless operation.
// +-------------------------------------------+
// |Table of idempotent/tautological operations|
// +-------------------------------------------+
//+--------------------------------------------------------------------------+
//|Operator | x op x | x op 1 | 1 op x | x op 0 | 0 op x | x op ~0 | ~0 op x |
//+--------------------------------------------------------------------------+
// +, += | | | | x | x | |
// -, -= | | | | x | -x | |
// *, *= | | x | x | 0 | 0 | |
// /, /= | 1 | x | | N/A | 0 | |
// &, &= | x | | | 0 | 0 | x | x
// |, |= | x | | | x | x | ~0 | ~0
// ^, ^= | 0 | | | x | x | |
// <<, <<= | | | | x | 0 | |
// >>, >>= | | | | x | 0 | |
// || | 1 | 1 | 1 | x | x | 1 | 1
// && | 1 | x | x | 0 | 0 | x | x
// = | x | | | | | |
// == | 1 | | | | | |
// >= | 1 | | | | | |
// <= | 1 | | | | | |
// > | 0 | | | | | |
// < | 0 | | | | | |
// != | 0 | | | | | |
//===----------------------------------------------------------------------===//
//
// Ways to reduce false positives (that need to be implemented):
// - Don't flag downsizing casts
// - Improved handling of static/global variables
// - Per-block marking of incomplete analysis
// - Handling ~0 values
// - False positives involving silencing unused variable warnings
//
// Other things TODO:
// - Improved error messages
// - Handle mixed assumptions (which assumptions can belong together?)
// - Finer grained false positive control (levels)
#include "GRExprEngineExperimentalChecks.h"
#include "clang/Checker/BugReporter/BugType.h"
#include "clang/Checker/PathSensitive/CheckerVisitor.h"
#include "clang/Checker/PathSensitive/SVals.h"
#include "clang/AST/Stmt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
namespace {
class IdempotentOperationChecker
: public CheckerVisitor<IdempotentOperationChecker> {
public:
static void *getTag();
void PreVisitBinaryOperator(CheckerContext &C, const BinaryOperator *B);
void VisitEndAnalysis(ExplodedGraph &G, BugReporter &B,
bool hasWorkRemaining);
private:
// Our assumption about a particular operation.
enum Assumption { Possible, Impossible, Equal, LHSis1, RHSis1, LHSis0,
RHSis0 };
void UpdateAssumption(Assumption &A, const Assumption &New);
/// contains* - Useful recursive methods to see if a statement contains an
/// element somewhere. Used in static analysis to reduce false positives.
static bool containsMacro(const Stmt *S);
static bool containsEnum(const Stmt *S);
static bool containsBuiltinOffsetOf(const Stmt *S);
static bool containsZeroConstant(const Stmt *S);
static bool containsOneConstant(const Stmt *S);
template <class T> static bool containsStmt(const Stmt *S) {
if (isa<T>(S))
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsStmt<T>(child))
return true;
return false;
}
// Hash table
typedef llvm::DenseMap<const BinaryOperator *, Assumption> AssumptionMap;
AssumptionMap hash;
};
}
void *IdempotentOperationChecker::getTag() {
static int x = 0;
return &x;
}
void clang::RegisterIdempotentOperationChecker(GRExprEngine &Eng) {
Eng.registerCheck(new IdempotentOperationChecker());
}
void IdempotentOperationChecker::PreVisitBinaryOperator(
CheckerContext &C,
const BinaryOperator *B) {
// Find or create an entry in the hash for this BinaryOperator instance
AssumptionMap::iterator i = hash.find(B);
Assumption &A = i == hash.end() ? hash[B] : i->second;
// If we had to create an entry, initialise the value to Possible
if (i == hash.end())
A = Possible;
// If we already have visited this node on a path that does not contain an
// idempotent operation, return immediately.
if (A == Impossible)
return;
// Skip binary operators containing common false positives
if (containsMacro(B) || containsEnum(B) || containsStmt<SizeOfAlignOfExpr>(B)
|| containsZeroConstant(B) || containsOneConstant(B)
|| containsBuiltinOffsetOf(B)) {
A = Impossible;
return;
}
const Expr *LHS = B->getLHS();
const Expr *RHS = B->getRHS();
const GRState *state = C.getState();
SVal LHSVal = state->getSVal(LHS);
SVal RHSVal = state->getSVal(RHS);
// If either value is unknown, we can't be 100% sure of all paths.
if (LHSVal.isUnknownOrUndef() || RHSVal.isUnknownOrUndef()) {
A = Impossible;
return;
}
BinaryOperator::Opcode Op = B->getOpcode();
// Dereference the LHS SVal if this is an assign operation
switch (Op) {
default:
break;
// Fall through intentional
case BinaryOperator::AddAssign:
case BinaryOperator::SubAssign:
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
case BinaryOperator::AndAssign:
case BinaryOperator::OrAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::ShlAssign:
case BinaryOperator::ShrAssign:
case BinaryOperator::Assign:
// Assign statements have one extra level of indirection
if (!isa<Loc>(LHSVal)) {
A = Impossible;
return;
}
LHSVal = state->getSVal(cast<Loc>(LHSVal));
}
// We now check for various cases which result in an idempotent operation.
// x op x
switch (Op) {
default:
break; // We don't care about any other operators.
// Fall through intentional
case BinaryOperator::SubAssign:
case BinaryOperator::DivAssign:
case BinaryOperator::AndAssign:
case BinaryOperator::OrAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::Assign:
case BinaryOperator::Sub:
case BinaryOperator::Div:
case BinaryOperator::And:
case BinaryOperator::Or:
case BinaryOperator::Xor:
case BinaryOperator::LOr:
case BinaryOperator::LAnd:
if (LHSVal != RHSVal)
break;
UpdateAssumption(A, Equal);
return;
}
// x op 1
switch (Op) {
default:
break; // We don't care about any other operators.
// Fall through intentional
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
case BinaryOperator::Mul:
case BinaryOperator::Div:
case BinaryOperator::LOr:
case BinaryOperator::LAnd:
if (!RHSVal.isConstant(1))
break;
UpdateAssumption(A, RHSis1);
return;
}
// 1 op x
switch (Op) {
default:
break; // We don't care about any other operators.
// Fall through intentional
case BinaryOperator::MulAssign:
case BinaryOperator::Mul:
case BinaryOperator::LOr:
case BinaryOperator::LAnd:
if (!LHSVal.isConstant(1))
break;
UpdateAssumption(A, LHSis1);
return;
}
// x op 0
switch (Op) {
default:
break; // We don't care about any other operators.
// Fall through intentional
case BinaryOperator::AddAssign:
case BinaryOperator::SubAssign:
case BinaryOperator::MulAssign:
case BinaryOperator::AndAssign:
case BinaryOperator::OrAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::Add:
case BinaryOperator::Sub:
case BinaryOperator::Mul:
case BinaryOperator::And:
case BinaryOperator::Or:
case BinaryOperator::Xor:
case BinaryOperator::Shl:
case BinaryOperator::Shr:
case BinaryOperator::LOr:
case BinaryOperator::LAnd:
if (!RHSVal.isConstant(0))
break;
UpdateAssumption(A, RHSis0);
return;
}
// 0 op x
switch (Op) {
default:
break; // We don't care about any other operators.
// Fall through intentional
//case BinaryOperator::AddAssign: // Common false positive
case BinaryOperator::SubAssign: // Check only if unsigned
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
case BinaryOperator::AndAssign:
//case BinaryOperator::OrAssign: // Common false positive
//case BinaryOperator::XorAssign: // Common false positive
case BinaryOperator::ShlAssign:
case BinaryOperator::ShrAssign:
case BinaryOperator::Add:
case BinaryOperator::Sub:
case BinaryOperator::Mul:
case BinaryOperator::Div:
case BinaryOperator::And:
case BinaryOperator::Or:
case BinaryOperator::Xor:
case BinaryOperator::Shl:
case BinaryOperator::Shr:
case BinaryOperator::LOr:
case BinaryOperator::LAnd:
if (!LHSVal.isConstant(0))
break;
UpdateAssumption(A, LHSis0);
return;
}
// If we get to this point, there has been a valid use of this operation.
A = Impossible;
}
void IdempotentOperationChecker::VisitEndAnalysis(ExplodedGraph &G,
BugReporter &B,
bool hasWorkRemaining) {
// If there is any work remaining we cannot be 100% sure about our warnings
if (hasWorkRemaining)
return;
// Iterate over the hash to see if we have any paths with definite
// idempotent operations.
for (AssumptionMap::const_iterator i =
hash.begin(); i != hash.end(); ++i) {
if (i->second != Impossible) {
// Select the error message.
const char *msg;
switch (i->second) {
case Equal:
msg = "idempotent operation; both operands are always equal in value";
break;
case LHSis1:
msg = "idempotent operation; the left operand is always 1";
break;
case RHSis1:
msg = "idempotent operation; the right operand is always 1";
break;
case LHSis0:
msg = "idempotent operation; the left operand is always 0";
break;
case RHSis0:
msg = "idempotent operation; the right operand is always 0";
break;
case Impossible:
break;
case Possible:
llvm_unreachable("Operation was never marked with an assumption");
}
// Create the SourceRange Arrays
SourceRange S[2] = { i->first->getLHS()->getSourceRange(),
i->first->getRHS()->getSourceRange() };
B.EmitBasicReport("Idempotent operation", msg, i->first->getOperatorLoc(),
S, 2);
}
}
}
// Updates the current assumption given the new assumption
inline void IdempotentOperationChecker::UpdateAssumption(Assumption &A,
const Assumption &New) {
switch (A) {
// If we don't currently have an assumption, set it
case Possible:
A = New;
return;
// If we have determined that a valid state happened, ignore the new
// assumption.
case Impossible:
return;
// Any other case means that we had a different assumption last time. We don't
// currently support mixing assumptions for diagnostic reasons, so we set
// our assumption to be impossible.
default:
A = Impossible;
return;
}
}
// Recursively find any substatements containing macros
bool IdempotentOperationChecker::containsMacro(const Stmt *S) {
if (S->getLocStart().isMacroID())
return true;
if (S->getLocEnd().isMacroID())
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsMacro(child))
return true;
return false;
}
// Recursively find any substatements containing enum constants
bool IdempotentOperationChecker::containsEnum(const Stmt *S) {
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
if (DR && isa<EnumConstantDecl>(DR->getDecl()))
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsEnum(child))
return true;
return false;
}
// Recursively find any substatements containing __builtin_offset_of
bool IdempotentOperationChecker::containsBuiltinOffsetOf(const Stmt *S) {
const UnaryOperator *UO = dyn_cast<UnaryOperator>(S);
if (UO && UO->getOpcode() == UnaryOperator::OffsetOf)
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsBuiltinOffsetOf(child))
return true;
return false;
}
bool IdempotentOperationChecker::containsZeroConstant(const Stmt *S) {
const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(S);
if (IL && IL->getValue() == 0)
return true;
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(S);
if (FL && FL->getValue().isZero())
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsZeroConstant(child))
return true;
return false;
}
bool IdempotentOperationChecker::containsOneConstant(const Stmt *S) {
const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(S);
if (IL && IL->getValue() == 1)
return true;
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(S);
const llvm::APFloat one(1.0);
if (FL && FL->getValue().compare(one) == llvm::APFloat::cmpEqual)
return true;
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
++I)
if (const Stmt *child = *I)
if (containsOneConstant(child))
return true;
return false;
}