2010-01-10 20:58:08 +08:00
|
|
|
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
|
2009-06-06 06:08:42 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// These classes wrap the information about a call or function
|
|
|
|
// definition used to handle ABI compliancy.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
#include "TargetInfo.h"
|
2009-06-06 06:08:42 +08:00
|
|
|
#include "ABIInfo.h"
|
|
|
|
#include "CodeGenFunction.h"
|
2009-07-19 03:43:29 +08:00
|
|
|
#include "clang/AST/RecordLayout.h"
|
2011-04-05 08:23:47 +08:00
|
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
2009-06-06 06:08:42 +08:00
|
|
|
#include "llvm/Type.h"
|
2012-10-09 00:25:52 +08:00
|
|
|
#include "llvm/DataLayout.h"
|
2009-08-24 16:52:16 +08:00
|
|
|
#include "llvm/ADT/Triple.h"
|
2009-12-03 17:13:49 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2009-06-06 06:08:42 +08:00
|
|
|
using namespace clang;
|
|
|
|
using namespace CodeGen;
|
|
|
|
|
2010-05-27 14:19:26 +08:00
|
|
|
static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
|
|
|
|
llvm::Value *Array,
|
|
|
|
llvm::Value *Value,
|
|
|
|
unsigned FirstIndex,
|
|
|
|
unsigned LastIndex) {
|
|
|
|
// Alternatively, we could emit this as a loop in the source.
|
|
|
|
for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
|
|
|
|
llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
|
|
|
|
Builder.CreateStore(Value, Cell);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-08-22 18:59:02 +08:00
|
|
|
static bool isAggregateTypeForABI(QualType T) {
|
|
|
|
return CodeGenFunction::hasAggregateLLVMType(T) ||
|
|
|
|
T->isMemberFunctionPointerType();
|
|
|
|
}
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
ABIInfo::~ABIInfo() {}
|
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
ASTContext &ABIInfo::getContext() const {
|
|
|
|
return CGT.getContext();
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::LLVMContext &ABIInfo::getVMContext() const {
|
|
|
|
return CGT.getLLVMContext();
|
|
|
|
}
|
|
|
|
|
2012-10-09 00:25:52 +08:00
|
|
|
const llvm::DataLayout &ABIInfo::getDataLayout() const {
|
|
|
|
return CGT.getDataLayout();
|
2010-07-29 10:01:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
void ABIArgInfo::dump() const {
|
2011-07-23 18:55:15 +08:00
|
|
|
raw_ostream &OS = llvm::errs();
|
2009-12-03 17:13:49 +08:00
|
|
|
OS << "(ABIArgInfo Kind=";
|
2009-06-06 06:08:42 +08:00
|
|
|
switch (TheKind) {
|
|
|
|
case Direct:
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
OS << "Direct Type=";
|
2011-07-18 12:24:23 +08:00
|
|
|
if (llvm::Type *Ty = getCoerceToType())
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
Ty->print(OS);
|
|
|
|
else
|
|
|
|
OS << "null";
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
2009-06-06 17:36:29 +08:00
|
|
|
case Extend:
|
2009-12-03 17:13:49 +08:00
|
|
|
OS << "Extend";
|
2009-06-06 17:36:29 +08:00
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
case Ignore:
|
2009-12-03 17:13:49 +08:00
|
|
|
OS << "Ignore";
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
case Indirect:
|
2010-04-22 03:10:51 +08:00
|
|
|
OS << "Indirect Align=" << getIndirectAlign()
|
2011-07-16 02:23:44 +08:00
|
|
|
<< " ByVal=" << getIndirectByVal()
|
2010-09-17 04:42:02 +08:00
|
|
|
<< " Realign=" << getIndirectRealign();
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
case Expand:
|
2009-12-03 17:13:49 +08:00
|
|
|
OS << "Expand";
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
}
|
2009-12-03 17:13:49 +08:00
|
|
|
OS << ")\n";
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
|
|
|
|
|
2011-08-30 09:42:09 +08:00
|
|
|
// If someone can figure out a general rule for this, that would be great.
|
|
|
|
// It's probably just doomed to be platform-dependent, though.
|
|
|
|
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
|
|
|
|
// Verified for:
|
|
|
|
// x86-64 FreeBSD, Linux, Darwin
|
|
|
|
// x86-32 FreeBSD, Linux, Darwin
|
|
|
|
// PowerPC Linux, Darwin
|
|
|
|
// ARM Darwin (*not* EABI)
|
|
|
|
return 32;
|
|
|
|
}
|
|
|
|
|
2012-02-17 11:33:10 +08:00
|
|
|
bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
|
|
|
|
const FunctionNoProtoType *fnType) const {
|
2011-09-21 16:08:30 +08:00
|
|
|
// The following conventions are known to require this to be false:
|
|
|
|
// x86_stdcall
|
|
|
|
// MIPS
|
|
|
|
// For everything else, we just prefer false unless we opt out.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2012-09-27 18:16:10 +08:00
|
|
|
/// isEmptyField - Return true iff a the field is "empty", that is it
|
2009-06-06 06:08:42 +08:00
|
|
|
/// is an unnamed bit-field or an (array of) empty record(s).
|
2009-09-13 16:03:58 +08:00
|
|
|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
|
|
|
|
bool AllowArrays) {
|
2009-06-06 06:08:42 +08:00
|
|
|
if (FD->isUnnamedBitfield())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
QualType FT = FD->getType();
|
|
|
|
|
2011-11-18 11:47:20 +08:00
|
|
|
// Constant arrays of empty records count as empty, strip them off.
|
|
|
|
// Constant arrays of zero length always count as empty.
|
2009-09-13 16:03:58 +08:00
|
|
|
if (AllowArrays)
|
2011-11-18 11:47:20 +08:00
|
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
|
|
if (AT->getSize() == 0)
|
|
|
|
return true;
|
2009-09-13 16:03:58 +08:00
|
|
|
FT = AT->getElementType();
|
2011-11-18 11:47:20 +08:00
|
|
|
}
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2010-05-18 00:46:00 +08:00
|
|
|
const RecordType *RT = FT->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// C++ record fields are never empty, at least in the Itanium ABI.
|
|
|
|
//
|
|
|
|
// FIXME: We should use a predicate for whether this behavior is true in the
|
|
|
|
// current ABI.
|
|
|
|
if (isa<CXXRecordDecl>(RT->getDecl()))
|
|
|
|
return false;
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
return isEmptyRecord(Context, FT, AllowArrays);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2012-09-27 18:16:10 +08:00
|
|
|
/// isEmptyRecord - Return true iff a structure contains only empty
|
2009-06-06 06:08:42 +08:00
|
|
|
/// fields. Note that a structure with a flexible array member is not
|
|
|
|
/// considered empty.
|
2009-09-13 16:03:58 +08:00
|
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
|
2009-07-30 05:53:49 +08:00
|
|
|
const RecordType *RT = T->getAs<RecordType>();
|
2009-06-06 06:08:42 +08:00
|
|
|
if (!RT)
|
|
|
|
return 0;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
if (RD->hasFlexibleArrayMember())
|
|
|
|
return false;
|
2010-05-18 00:46:00 +08:00
|
|
|
|
2011-05-17 10:17:52 +08:00
|
|
|
// If this is a C++ record, check the bases first.
|
2010-05-18 00:46:00 +08:00
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
2011-05-17 10:17:52 +08:00
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
|
|
e = CXXRD->bases_end(); i != e; ++i)
|
|
|
|
if (!isEmptyRecord(Context, i->getType(), true))
|
|
|
|
return false;
|
2010-05-18 00:46:00 +08:00
|
|
|
|
2009-06-30 10:36:12 +08:00
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i)
|
2012-06-07 04:45:41 +08:00
|
|
|
if (!isEmptyField(Context, *i, AllowArrays))
|
2009-06-06 06:08:42 +08:00
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-09-16 23:53:40 +08:00
|
|
|
/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
|
|
|
|
/// a non-trivial destructor or a non-trivial copy constructor.
|
|
|
|
static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
|
|
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
if (!RD)
|
|
|
|
return false;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-09-16 23:53:40 +08:00
|
|
|
return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
|
|
|
|
/// a record type with either a non-trivial destructor or a non-trivial copy
|
|
|
|
/// constructor.
|
|
|
|
static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
|
|
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return hasNonTrivialDestructorOrCopyConstructor(RT);
|
|
|
|
}
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
/// isSingleElementStruct - Determine if a structure is a "single
|
|
|
|
/// element struct", i.e. it has exactly one non-empty field or
|
|
|
|
/// exactly one field which is itself a single element
|
|
|
|
/// struct. Structures with flexible array members are never
|
|
|
|
/// considered single element structs.
|
|
|
|
///
|
|
|
|
/// \return The field declaration for the single non-empty field, if
|
|
|
|
/// it exists.
|
|
|
|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
|
|
|
|
const RecordType *RT = T->getAsStructureType();
|
|
|
|
if (!RT)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
if (RD->hasFlexibleArrayMember())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
const Type *Found = 0;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-05-12 05:15:36 +08:00
|
|
|
// If this is a C++ record, check the bases first.
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
|
|
e = CXXRD->bases_end(); i != e; ++i) {
|
|
|
|
// Ignore empty records.
|
2010-05-18 00:46:00 +08:00
|
|
|
if (isEmptyRecord(Context, i->getType(), true))
|
2010-05-12 05:15:36 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// If we already found an element then this isn't a single-element struct.
|
|
|
|
if (Found)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// If this is non-empty and not a single element struct, the composite
|
|
|
|
// cannot be a single element struct.
|
|
|
|
Found = isSingleElementStruct(i->getType(), Context);
|
|
|
|
if (!Found)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for single element.
|
2009-06-30 10:36:12 +08:00
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl *FD = *i;
|
2009-06-06 06:08:42 +08:00
|
|
|
QualType FT = FD->getType();
|
|
|
|
|
|
|
|
// Ignore empty fields.
|
2009-09-13 16:03:58 +08:00
|
|
|
if (isEmptyField(Context, FD, true))
|
2009-06-06 06:08:42 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// If we already found an element then this isn't a single-element
|
|
|
|
// struct.
|
|
|
|
if (Found)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// Treat single element arrays as the element.
|
|
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
|
|
if (AT->getSize().getZExtValue() != 1)
|
|
|
|
break;
|
|
|
|
FT = AT->getElementType();
|
|
|
|
}
|
|
|
|
|
2010-08-22 18:59:02 +08:00
|
|
|
if (!isAggregateTypeForABI(FT)) {
|
2009-06-06 06:08:42 +08:00
|
|
|
Found = FT.getTypePtr();
|
|
|
|
} else {
|
|
|
|
Found = isSingleElementStruct(FT, Context);
|
|
|
|
if (!Found)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-11-18 09:25:50 +08:00
|
|
|
// We don't consider a struct a single-element struct if it has
|
|
|
|
// padding beyond the element type.
|
|
|
|
if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
|
|
|
|
return 0;
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
return Found;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
2010-05-14 11:40:53 +08:00
|
|
|
if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
|
2009-09-24 13:12:36 +08:00
|
|
|
!Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
|
|
|
|
!Ty->isBlockPointerType())
|
2009-06-06 06:08:42 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
return Size == 32 || Size == 64;
|
|
|
|
}
|
|
|
|
|
2009-11-09 09:33:53 +08:00
|
|
|
/// canExpandIndirectArgument - Test whether an argument type which is to be
|
|
|
|
/// passed indirectly (on the stack) would have the equivalent layout if it was
|
|
|
|
/// expanded into separate arguments. If so, we prefer to do the latter to avoid
|
|
|
|
/// inhibiting optimizations.
|
|
|
|
///
|
|
|
|
// FIXME: This predicate is missing many cases, currently it just follows
|
|
|
|
// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
|
|
|
|
// should probably make this smarter, or better yet make the LLVM backend
|
|
|
|
// capable of handling it.
|
|
|
|
static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
|
|
|
|
// We can only expand structure types.
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// We can only expand (C) structures.
|
|
|
|
//
|
|
|
|
// FIXME: This needs to be generalized to handle classes as well.
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
|
|
|
|
return false;
|
|
|
|
|
2011-11-18 09:32:26 +08:00
|
|
|
uint64_t Size = 0;
|
|
|
|
|
2009-06-30 10:36:12 +08:00
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl *FD = *i;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
if (!is32Or64BitBasicType(FD->getType(), Context))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
|
|
|
// how to expand them yet, and the predicate for telling if a bitfield still
|
|
|
|
// counts as "basic" is more complicated than what we were doing previously.
|
|
|
|
if (FD->isBitField())
|
|
|
|
return false;
|
2011-11-18 09:32:26 +08:00
|
|
|
|
|
|
|
Size += Context.getTypeSize(FD->getType());
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2011-11-18 09:32:26 +08:00
|
|
|
// Make sure there are not any holes in the struct.
|
|
|
|
if (Size != Context.getTypeSize(Ty))
|
|
|
|
return false;
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// DefaultABIInfo - The default implementation for ABI specific
|
|
|
|
/// details. This implementation provides information which results in
|
|
|
|
/// self-consistent and sensible LLVM IR generation, but does not
|
|
|
|
/// conform to any particular ABI.
|
|
|
|
class DefaultABIInfo : public ABIInfo {
|
2010-07-29 10:01:43 +08:00
|
|
|
public:
|
|
|
|
DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-29 10:31:05 +08:00
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const {
|
2010-07-29 10:16:43 +08:00
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
2009-06-06 06:08:42 +08:00
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
2010-07-29 10:16:43 +08:00
|
|
|
it->info = classifyArgumentType(it->type);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
2010-07-29 10:01:43 +08:00
|
|
|
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
2010-01-10 20:58:08 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
|
2011-11-03 08:59:44 +08:00
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
|
|
// Records with non trivial destructors/constructors should not be passed
|
|
|
|
// by value.
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
return ABIArgInfo::getIndirect(0);
|
2011-11-03 08:59:44 +08:00
|
|
|
}
|
2010-04-22 03:10:51 +08:00
|
|
|
|
2010-03-12 02:19:55 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
2010-02-03 04:10:50 +08:00
|
|
|
|
2010-03-12 02:19:55 +08:00
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2010-01-10 20:58:08 +08:00
|
|
|
}
|
|
|
|
|
2011-01-11 07:54:17 +08:00
|
|
|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
|
|
|
|
if (RetTy->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
2012-09-07 01:37:28 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// le32/PNaCl bitcode ABI Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
class PNaClABIInfo : public ABIInfo {
|
|
|
|
public:
|
|
|
|
PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
|
|
|
|
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
|
|
|
|
unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
|
|
|
|
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classifyArgumentType(it->type, FreeRegs);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
|
|
|
|
unsigned &FreeRegs) const {
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
|
|
// Records with non trivial destructors/constructors should not be passed
|
|
|
|
// by value.
|
|
|
|
FreeRegs = 0;
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
|
|
|
|
// Regparm regs hold 32 bits.
|
|
|
|
unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
|
|
if (SizeInRegs == 0) return BaseInfo;
|
|
|
|
if (SizeInRegs > FreeRegs) {
|
|
|
|
FreeRegs = 0;
|
|
|
|
return BaseInfo;
|
|
|
|
}
|
|
|
|
FreeRegs -= SizeInRegs;
|
|
|
|
return BaseInfo.isDirect() ?
|
|
|
|
ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
|
|
|
|
ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
|
|
|
|
if (RetTy->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
2012-01-26 06:46:34 +08:00
|
|
|
/// UseX86_MMXType - Return true if this is an MMX type that should use the
|
|
|
|
/// special x86_mmx type.
|
2011-07-18 12:24:23 +08:00
|
|
|
bool UseX86_MMXType(llvm::Type *IRType) {
|
2010-10-18 11:41:31 +08:00
|
|
|
// If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
|
|
|
|
// special x86_mmx type.
|
|
|
|
return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
|
|
|
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
|
|
|
|
IRType->getScalarSizeInBits() != 64;
|
|
|
|
}
|
|
|
|
|
2011-07-11 17:56:20 +08:00
|
|
|
static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
2011-07-23 18:55:15 +08:00
|
|
|
StringRef Constraint,
|
2011-07-11 17:56:20 +08:00
|
|
|
llvm::Type* Ty) {
|
2011-03-08 06:47:14 +08:00
|
|
|
if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
|
2011-02-20 07:03:58 +08:00
|
|
|
return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
|
|
|
|
return Ty;
|
|
|
|
}
|
|
|
|
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// X86-32 ABI Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
/// X86_32ABIInfo - The X86-32 ABI information.
|
|
|
|
class X86_32ABIInfo : public ABIInfo {
|
2012-07-31 10:44:24 +08:00
|
|
|
enum Class {
|
|
|
|
Integer,
|
|
|
|
Float
|
|
|
|
};
|
|
|
|
|
2010-09-17 04:41:56 +08:00
|
|
|
static const unsigned MinABIStackAlignInBytes = 4;
|
|
|
|
|
2009-08-18 07:08:21 +08:00
|
|
|
bool IsDarwinVectorABI;
|
|
|
|
bool IsSmallStructInRegABI;
|
2011-07-09 07:31:17 +08:00
|
|
|
bool IsMMXDisabled;
|
2012-01-26 06:46:34 +08:00
|
|
|
bool IsWin32FloatStructABI;
|
2012-07-31 10:44:24 +08:00
|
|
|
unsigned DefaultNumRegisterParameters;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
static bool isRegisterSize(unsigned Size) {
|
|
|
|
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
|
|
|
}
|
|
|
|
|
2012-02-22 11:04:13 +08:00
|
|
|
static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
|
|
|
|
unsigned callingConvention);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-04-22 03:10:51 +08:00
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
|
|
/// such that the argument will be passed in memory.
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
|
2010-04-22 03:10:51 +08:00
|
|
|
|
2010-09-17 04:41:56 +08:00
|
|
|
/// \brief Return the alignment to use for the given type on the stack.
|
2010-09-17 04:42:06 +08:00
|
|
|
unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
|
2010-09-17 04:41:56 +08:00
|
|
|
|
2012-07-31 10:44:24 +08:00
|
|
|
Class classify(QualType Ty) const;
|
2012-07-24 07:30:29 +08:00
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
2012-02-22 11:04:13 +08:00
|
|
|
unsigned callingConvention) const;
|
2012-07-31 10:44:24 +08:00
|
|
|
ABIArgInfo classifyArgumentTypeWithReg(QualType RetTy,
|
|
|
|
unsigned &FreeRegs) const;
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2012-07-24 07:30:29 +08:00
|
|
|
public:
|
|
|
|
|
2012-07-24 08:01:07 +08:00
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
|
2012-07-31 10:44:24 +08:00
|
|
|
X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
|
|
|
|
unsigned r)
|
2011-07-09 07:31:17 +08:00
|
|
|
: ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
|
2012-07-31 10:44:24 +08:00
|
|
|
IsMMXDisabled(m), IsWin32FloatStructABI(w),
|
|
|
|
DefaultNumRegisterParameters(r) {}
|
2009-06-06 06:08:42 +08:00
|
|
|
};
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
2012-01-26 06:46:34 +08:00
|
|
|
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
2012-07-31 10:44:24 +08:00
|
|
|
bool d, bool p, bool m, bool w, unsigned r)
|
|
|
|
:TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
|
2010-02-13 23:54:06 +08:00
|
|
|
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &CGM) const;
|
2010-03-06 08:35:14 +08:00
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
|
|
|
// Darwin uses different dwarf register numbers for EH.
|
|
|
|
if (CGM.isTargetDarwin()) return 5;
|
|
|
|
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const;
|
2011-02-20 07:03:58 +08:00
|
|
|
|
2011-07-11 17:56:20 +08:00
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
2011-07-23 18:55:15 +08:00
|
|
|
StringRef Constraint,
|
2011-07-11 17:56:20 +08:00
|
|
|
llvm::Type* Ty) const {
|
2011-02-20 07:03:58 +08:00
|
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
|
|
}
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
/// shouldReturnTypeInRegister - Determine if the given type should be
|
|
|
|
/// passed in a register (for the Darwin ABI).
|
|
|
|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
2012-02-22 11:04:13 +08:00
|
|
|
ASTContext &Context,
|
|
|
|
unsigned callingConvention) {
|
2009-06-06 06:08:42 +08:00
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
|
|
|
|
// Type must be register sized.
|
|
|
|
if (!isRegisterSize(Size))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Ty->isVectorType()) {
|
|
|
|
// 64- and 128- bit vectors inside structures are not returned in
|
|
|
|
// registers.
|
|
|
|
if (Size == 64 || Size == 128)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-05-15 08:00:30 +08:00
|
|
|
// If this is a builtin, pointer, enum, complex type, member pointer, or
|
|
|
|
// member function pointer it is ok.
|
2010-05-14 11:40:53 +08:00
|
|
|
if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
|
2009-09-24 13:12:36 +08:00
|
|
|
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
2010-05-15 08:00:30 +08:00
|
|
|
Ty->isBlockPointerType() || Ty->isMemberPointerType())
|
2009-06-06 06:08:42 +08:00
|
|
|
return true;
|
|
|
|
|
|
|
|
// Arrays are treated like records.
|
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
2012-02-22 11:04:13 +08:00
|
|
|
return shouldReturnTypeInRegister(AT->getElementType(), Context,
|
|
|
|
callingConvention);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Otherwise, it must be a record type.
|
2009-07-30 05:53:49 +08:00
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
2009-06-06 06:08:42 +08:00
|
|
|
if (!RT) return false;
|
|
|
|
|
2010-01-27 11:25:19 +08:00
|
|
|
// FIXME: Traverse bases here too.
|
|
|
|
|
2012-02-22 11:04:13 +08:00
|
|
|
// For thiscall conventions, structures will never be returned in
|
|
|
|
// a register. This is for compatibility with the MSVC ABI
|
|
|
|
if (callingConvention == llvm::CallingConv::X86_ThisCall &&
|
|
|
|
RT->isStructureType()) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
// Structure types are passed in register if all fields would be
|
|
|
|
// passed in a register.
|
2009-06-30 10:36:12 +08:00
|
|
|
for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
|
|
|
|
e = RT->getDecl()->field_end(); i != e; ++i) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl *FD = *i;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Empty fields are ignored.
|
2009-09-13 16:03:58 +08:00
|
|
|
if (isEmptyField(Context, FD, true))
|
2009-06-06 06:08:42 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Check fields recursively.
|
2012-02-22 11:04:13 +08:00
|
|
|
if (!shouldReturnTypeInRegister(FD->getType(), Context,
|
|
|
|
callingConvention))
|
2009-06-06 06:08:42 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2012-02-22 11:04:13 +08:00
|
|
|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
|
|
|
|
unsigned callingConvention) const {
|
2010-07-29 10:16:43 +08:00
|
|
|
if (RetTy->isVoidType())
|
2009-06-06 06:08:42 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
2009-06-06 06:08:42 +08:00
|
|
|
// On Darwin, some vectors are returned in registers.
|
2009-08-18 07:08:21 +08:00
|
|
|
if (IsDarwinVectorABI) {
|
2010-07-29 10:16:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// 128-bit vectors are a special case; they are returned in
|
|
|
|
// registers and we need to make sure to pick a type the LLVM
|
|
|
|
// backend will like.
|
|
|
|
if (Size == 128)
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::VectorType::get(
|
2010-07-29 10:16:43 +08:00
|
|
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Always return in register if it fits in a general purpose
|
|
|
|
// register, or if it is 64 bits and has a single element.
|
|
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
|
|
(Size == 64 && VT->getNumElements() == 1))
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
2010-07-29 10:16:43 +08:00
|
|
|
Size));
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ABIArgInfo::getDirect();
|
2010-07-29 10:16:43 +08:00
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-08-22 18:59:02 +08:00
|
|
|
if (isAggregateTypeForABI(RetTy)) {
|
2010-01-27 11:25:19 +08:00
|
|
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
2009-10-21 06:07:59 +08:00
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-10-21 06:07:59 +08:00
|
|
|
// Structures with flexible arrays are always indirect.
|
2009-06-06 06:08:42 +08:00
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
2009-10-21 06:07:59 +08:00
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-08-18 07:08:21 +08:00
|
|
|
// If specified, structs and unions are always indirect.
|
|
|
|
if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
|
2009-06-06 06:08:42 +08:00
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
// Small structures which are register sized are generally returned
|
|
|
|
// in a register.
|
2012-02-22 11:04:13 +08:00
|
|
|
if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
|
|
|
|
callingConvention)) {
|
2010-07-29 10:16:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
2011-11-18 09:25:50 +08:00
|
|
|
|
|
|
|
// As a special-case, if the struct is a "single-element" struct, and
|
|
|
|
// the field is of type "float" or "double", return it in a
|
2012-01-26 06:46:34 +08:00
|
|
|
// floating-point register. (MSVC does not apply this special case.)
|
|
|
|
// We apply a similar transformation for pointer types to improve the
|
|
|
|
// quality of the generated IR.
|
2011-11-18 09:25:50 +08:00
|
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
2012-01-26 06:46:34 +08:00
|
|
|
if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
|
|
|
|
|| SeltTy->hasPointerRepresentation())
|
2011-11-18 09:25:50 +08:00
|
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
|
|
|
|
|
|
// FIXME: We should be able to narrow this integer in cases with dead
|
|
|
|
// padding.
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2012-06-06 03:40:46 +08:00
|
|
|
static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
|
|
|
|
return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
|
|
|
|
}
|
|
|
|
|
2010-09-17 04:42:00 +08:00
|
|
|
static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return 0;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
|
|
e = CXXRD->bases_end(); i != e; ++i)
|
|
|
|
if (!isRecordWithSSEVectorType(Context, i->getType()))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i) {
|
|
|
|
QualType FT = i->getType();
|
|
|
|
|
2012-06-06 03:40:46 +08:00
|
|
|
if (isSSEVectorType(Context, FT))
|
2010-09-17 04:42:00 +08:00
|
|
|
return true;
|
|
|
|
|
|
|
|
if (isRecordWithSSEVectorType(Context, FT))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-09-17 04:42:06 +08:00
|
|
|
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
|
|
|
|
unsigned Align) const {
|
|
|
|
// Otherwise, if the alignment is less than or equal to the minimum ABI
|
|
|
|
// alignment, just use the default; the backend will handle this.
|
2010-09-17 04:41:56 +08:00
|
|
|
if (Align <= MinABIStackAlignInBytes)
|
2010-09-17 04:42:06 +08:00
|
|
|
return 0; // Use default alignment.
|
|
|
|
|
|
|
|
// On non-Darwin, the stack type alignment is always 4.
|
|
|
|
if (!IsDarwinVectorABI) {
|
|
|
|
// Set explicit alignment, since we may need to realign the top.
|
2010-09-17 04:41:56 +08:00
|
|
|
return MinABIStackAlignInBytes;
|
2010-09-17 04:42:06 +08:00
|
|
|
}
|
2010-09-17 04:41:56 +08:00
|
|
|
|
2010-09-17 04:42:00 +08:00
|
|
|
// Otherwise, if the type contains an SSE vector type, the alignment is 16.
|
2012-06-06 03:40:46 +08:00
|
|
|
if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
|
|
|
|
isRecordWithSSEVectorType(getContext(), Ty)))
|
2010-09-17 04:42:00 +08:00
|
|
|
return 16;
|
|
|
|
|
|
|
|
return MinABIStackAlignInBytes;
|
2010-09-17 04:41:56 +08:00
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
|
2010-04-22 03:49:55 +08:00
|
|
|
if (!ByVal)
|
|
|
|
return ABIArgInfo::getIndirect(0, false);
|
|
|
|
|
2010-09-17 04:42:06 +08:00
|
|
|
// Compute the byval alignment.
|
|
|
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
|
|
unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
|
|
|
|
if (StackAlign == 0)
|
2011-05-23 07:35:00 +08:00
|
|
|
return ABIArgInfo::getIndirect(4);
|
2010-09-17 04:42:06 +08:00
|
|
|
|
|
|
|
// If the stack alignment is less than the type alignment, realign the
|
|
|
|
// argument.
|
|
|
|
if (StackAlign < TypeAlign)
|
|
|
|
return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
|
|
|
|
/*Realign=*/true);
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(StackAlign);
|
2010-04-22 03:10:51 +08:00
|
|
|
}
|
|
|
|
|
2012-07-31 10:44:24 +08:00
|
|
|
X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
|
|
|
|
const Type *T = isSingleElementStruct(Ty, getContext());
|
|
|
|
if (!T)
|
|
|
|
T = Ty.getTypePtr();
|
|
|
|
|
|
|
|
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
|
|
|
|
BuiltinType::Kind K = BT->getKind();
|
|
|
|
if (K == BuiltinType::Float || K == BuiltinType::Double)
|
|
|
|
return Float;
|
|
|
|
}
|
|
|
|
return Integer;
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo
|
|
|
|
X86_32ABIInfo::classifyArgumentTypeWithReg(QualType Ty,
|
|
|
|
unsigned &FreeRegs) const {
|
|
|
|
// Common case first.
|
|
|
|
if (FreeRegs == 0)
|
|
|
|
return classifyArgumentType(Ty);
|
|
|
|
|
|
|
|
Class C = classify(Ty);
|
|
|
|
if (C == Float)
|
|
|
|
return classifyArgumentType(Ty);
|
|
|
|
|
|
|
|
unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
|
|
if (SizeInRegs == 0)
|
|
|
|
return classifyArgumentType(Ty);
|
|
|
|
|
|
|
|
if (SizeInRegs > FreeRegs) {
|
|
|
|
FreeRegs = 0;
|
|
|
|
return classifyArgumentType(Ty);
|
|
|
|
}
|
|
|
|
assert(SizeInRegs >= 1 && SizeInRegs <= 3);
|
|
|
|
FreeRegs -= SizeInRegs;
|
|
|
|
|
|
|
|
// If it is a simple scalar, keep the type so that we produce a cleaner IR.
|
|
|
|
ABIArgInfo Foo = classifyArgumentType(Ty);
|
|
|
|
if (Foo.isDirect() && !Foo.getDirectOffset() && !Foo.getPaddingType())
|
|
|
|
return ABIArgInfo::getDirectInReg(Foo.getCoerceToType());
|
|
|
|
if (Foo.isExtend())
|
|
|
|
return ABIArgInfo::getExtendInReg(Foo.getCoerceToType());
|
|
|
|
|
|
|
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
|
|
|
llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
|
|
|
SmallVector<llvm::Type*, 3> Elements;
|
|
|
|
for (unsigned I = 0; I < SizeInRegs; ++I)
|
|
|
|
Elements.push_back(Int32);
|
|
|
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
|
|
|
return ABIArgInfo::getDirectInReg(Result);
|
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
|
2009-06-06 06:08:42 +08:00
|
|
|
// FIXME: Set alignment on indirect arguments.
|
2010-08-22 18:59:02 +08:00
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
2009-06-06 06:08:42 +08:00
|
|
|
// Structures with flexible arrays are always indirect.
|
2010-01-27 11:25:19 +08:00
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
2010-07-29 10:16:43 +08:00
|
|
|
return getIndirectResult(Ty, /*ByVal=*/false);
|
2010-04-22 03:10:51 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
2010-07-29 10:16:43 +08:00
|
|
|
return getIndirectResult(Ty);
|
2010-01-27 11:25:19 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-11-18 08:28:11 +08:00
|
|
|
// Ignore empty structs/unions.
|
2011-11-18 12:01:36 +08:00
|
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
2009-06-06 06:08:42 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2009-11-09 09:33:53 +08:00
|
|
|
// Expand small (<= 128-bit) record types when we know that the stack layout
|
|
|
|
// of those arguments will match the struct. This is important because the
|
|
|
|
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
|
|
|
// optimizations.
|
2010-07-29 10:16:43 +08:00
|
|
|
if (getContext().getTypeSize(Ty) <= 4*32 &&
|
|
|
|
canExpandIndirectArgument(Ty, getContext()))
|
2009-11-09 09:33:53 +08:00
|
|
|
return ABIArgInfo::getExpand();
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
return getIndirectResult(Ty);
|
2010-08-26 02:17:27 +08:00
|
|
|
}
|
|
|
|
|
2010-08-27 04:05:13 +08:00
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
2010-08-27 04:08:43 +08:00
|
|
|
// On Darwin, some vectors are passed in memory, we handle this by passing
|
|
|
|
// it as an i8/i16/i32/i64.
|
2010-08-27 04:05:13 +08:00
|
|
|
if (IsDarwinVectorABI) {
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
|
|
(Size == 64 && VT->getNumElements() == 1))
|
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
|
|
Size));
|
|
|
|
}
|
2010-10-18 11:41:31 +08:00
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
2010-10-18 11:41:31 +08:00
|
|
|
if (UseX86_MMXType(IRType)) {
|
2011-07-09 07:31:17 +08:00
|
|
|
if (IsMMXDisabled)
|
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
|
|
64));
|
2010-10-18 11:41:31 +08:00
|
|
|
ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
|
|
|
|
AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
|
|
|
|
return AAI;
|
|
|
|
}
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2010-08-27 04:05:13 +08:00
|
|
|
return ABIArgInfo::getDirect();
|
|
|
|
}
|
2010-10-19 14:39:39 +08:00
|
|
|
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
2010-02-03 04:10:50 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2012-07-24 08:01:07 +08:00
|
|
|
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
|
|
|
|
FI.getCallingConvention());
|
2012-07-31 10:44:24 +08:00
|
|
|
|
|
|
|
unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
|
|
|
|
DefaultNumRegisterParameters;
|
|
|
|
|
|
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
|
|
// integer register.
|
|
|
|
if (FI.getReturnInfo().isIndirect() && FreeRegs) {
|
|
|
|
--FreeRegs;
|
|
|
|
ABIArgInfo &Old = FI.getReturnInfo();
|
|
|
|
Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
|
|
|
|
Old.getIndirectByVal(),
|
|
|
|
Old.getIndirectRealign());
|
|
|
|
}
|
|
|
|
|
2012-07-24 08:01:07 +08:00
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
2012-07-31 10:44:24 +08:00
|
|
|
it->info = classifyArgumentTypeWithReg(it->type, FreeRegs);
|
2012-07-24 08:01:07 +08:00
|
|
|
}
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
|
|
"ap");
|
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
2011-11-18 10:12:09 +08:00
|
|
|
|
|
|
|
// Compute if the address needs to be aligned
|
|
|
|
unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
|
|
|
|
Align = getTypeStackAlignInBytes(Ty, Align);
|
|
|
|
Align = std::max(Align, 4U);
|
|
|
|
if (Align > 4) {
|
|
|
|
// addr = (addr + align - 1) & -align;
|
|
|
|
llvm::Value *Offset =
|
|
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
|
|
|
|
Addr = CGF.Builder.CreateGEP(Addr, Offset);
|
|
|
|
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
|
|
|
|
CGF.Int32Ty);
|
|
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
|
|
|
|
Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
|
|
|
Addr->getType(),
|
|
|
|
"ap.cur.aligned");
|
|
|
|
}
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Type *PTy =
|
2009-07-30 06:16:19 +08:00
|
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
|
|
|
|
uint64_t Offset =
|
2011-11-18 10:12:09 +08:00
|
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *NextAddr =
|
2010-06-27 15:15:29 +08:00
|
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
2009-06-06 06:08:42 +08:00
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
|
|
|
|
return AddrTyped;
|
|
|
|
}
|
|
|
|
|
2010-02-13 23:54:06 +08:00
|
|
|
void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
|
|
llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &CGM) const {
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
|
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
|
|
|
// Get the LLVM function.
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
|
|
|
|
|
|
// Now add the 'alignstack' attribute with a value of 16.
|
2012-10-10 11:13:20 +08:00
|
|
|
Fn->addAttribute(~0U,
|
|
|
|
llvm::Attributes::constructStackAlignmentFromInt(16));
|
2010-02-13 23:54:06 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-03-06 08:35:14 +08:00
|
|
|
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
|
|
CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-03-06 08:35:14 +08:00
|
|
|
// 0-7 are the eight integer registers; the order is different
|
|
|
|
// on Darwin (for EH), but the range is the same.
|
|
|
|
// 8 is %eip.
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Four8, 0, 8);
|
2010-03-06 08:35:14 +08:00
|
|
|
|
|
|
|
if (CGF.CGM.isTargetDarwin()) {
|
|
|
|
// 12-16 are st(0..4). Not sure why we stop at 4.
|
|
|
|
// These have size 16, which is sizeof(long double) on
|
|
|
|
// platforms with 8-byte alignment for that type.
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-03-06 08:35:14 +08:00
|
|
|
} else {
|
|
|
|
// 9 is %eflags, which doesn't get a size on Darwin for some
|
|
|
|
// reason.
|
|
|
|
Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
|
|
|
|
|
|
|
|
// 11-16 are st(0..5). Not sure why we stop at 5.
|
|
|
|
// These have size 12, which is sizeof(long double) on
|
|
|
|
// platforms with 4-byte alignment for that type.
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
|
|
|
|
}
|
2010-03-06 08:35:14 +08:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// X86-64 ABI Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
namespace {
|
|
|
|
/// X86_64ABIInfo - The X86_64 ABI information.
|
|
|
|
class X86_64ABIInfo : public ABIInfo {
|
|
|
|
enum Class {
|
|
|
|
Integer = 0,
|
|
|
|
SSE,
|
|
|
|
SSEUp,
|
|
|
|
X87,
|
|
|
|
X87Up,
|
|
|
|
ComplexX87,
|
|
|
|
NoClass,
|
|
|
|
Memory
|
|
|
|
};
|
|
|
|
|
|
|
|
/// merge - Implement the X86_64 ABI merging algorithm.
|
|
|
|
///
|
|
|
|
/// Merge an accumulating classification \arg Accum with a field
|
|
|
|
/// classification \arg Field.
|
|
|
|
///
|
|
|
|
/// \param Accum - The accumulating classification. This should
|
|
|
|
/// always be either NoClass or the result of a previous merge
|
|
|
|
/// call. In addition, this should never be Memory (the caller
|
|
|
|
/// should just return Memory for the aggregate).
|
2010-06-29 05:43:59 +08:00
|
|
|
static Class merge(Class Accum, Class Field);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
/// postMerge - Implement the X86_64 ABI post merging algorithm.
|
|
|
|
///
|
|
|
|
/// Post merger cleanup, reduces a malformed Hi and Lo pair to
|
|
|
|
/// final MEMORY or SSE classes when necessary.
|
|
|
|
///
|
|
|
|
/// \param AggregateSize - The size of the current aggregate in
|
|
|
|
/// the classification process.
|
|
|
|
///
|
|
|
|
/// \param Lo - The classification for the parts of the type
|
|
|
|
/// residing in the low word of the containing object.
|
|
|
|
///
|
|
|
|
/// \param Hi - The classification for the parts of the type
|
|
|
|
/// residing in the higher words of the containing object.
|
|
|
|
///
|
|
|
|
void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
/// classify - Determine the x86_64 register classes in which the
|
|
|
|
/// given type T should be passed.
|
|
|
|
///
|
|
|
|
/// \param Lo - The classification for the parts of the type
|
|
|
|
/// residing in the low word of the containing object.
|
|
|
|
///
|
|
|
|
/// \param Hi - The classification for the parts of the type
|
|
|
|
/// residing in the high word of the containing object.
|
|
|
|
///
|
|
|
|
/// \param OffsetBase - The bit offset of this type in the
|
|
|
|
/// containing object. Some parameters are classified different
|
|
|
|
/// depending on whether they straddle an eightbyte boundary.
|
|
|
|
///
|
|
|
|
/// If a word is unused its result will be NoClass; if a type should
|
|
|
|
/// be passed in Memory then at least the classification of \arg Lo
|
|
|
|
/// will be Memory.
|
|
|
|
///
|
2012-09-27 18:16:10 +08:00
|
|
|
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
2009-06-06 06:08:42 +08:00
|
|
|
///
|
|
|
|
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
|
|
|
/// also be ComplexX87.
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
llvm::Type *GetByteVectorType(QualType Ty) const;
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
|
|
|
|
unsigned IROffset, QualType SourceTy,
|
|
|
|
unsigned SourceOffset) const;
|
|
|
|
llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
|
|
|
|
unsigned IROffset, QualType SourceTy,
|
|
|
|
unsigned SourceOffset) const;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-04-22 03:49:55 +08:00
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
|
|
/// such that the argument will be returned in memory.
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
ABIArgInfo getIndirectReturnResult(QualType Ty) const;
|
2010-04-22 03:49:55 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
|
|
/// such that the argument will be passed in memory.
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
///
|
|
|
|
/// \param freeIntRegs - The number of free integer registers remaining
|
|
|
|
/// available.
|
|
|
|
ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-10-18 11:41:31 +08:00
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty,
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
unsigned freeIntRegs,
|
2010-10-18 11:41:31 +08:00
|
|
|
unsigned &neededInt,
|
2010-10-19 07:51:38 +08:00
|
|
|
unsigned &neededSSE) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-12-02 08:11:43 +08:00
|
|
|
bool IsIllegalVectorType(QualType Ty) const;
|
|
|
|
|
2011-04-21 09:20:55 +08:00
|
|
|
/// The 0.98 ABI revision clarified a lot of ambiguities,
|
|
|
|
/// unfortunately in ways that were not always consistent with
|
|
|
|
/// certain previous compilers. In particular, platforms which
|
|
|
|
/// required strict binary compatibility with older versions of GCC
|
|
|
|
/// may need to exempt themselves.
|
|
|
|
bool honorsRevision0_98() const {
|
2011-09-02 08:18:52 +08:00
|
|
|
return !getContext().getTargetInfo().getTriple().isOSDarwin();
|
2011-04-21 09:20:55 +08:00
|
|
|
}
|
|
|
|
|
2011-12-02 08:11:43 +08:00
|
|
|
bool HasAVX;
|
2012-10-11 23:52:22 +08:00
|
|
|
// Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
|
|
|
|
// 64-bit hardware.
|
|
|
|
bool Has64BitPointers;
|
2011-12-02 08:11:43 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
public:
|
2011-12-02 08:11:43 +08:00
|
|
|
X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
|
2012-10-11 23:52:22 +08:00
|
|
|
ABIInfo(CGT), HasAVX(hasavx),
|
|
|
|
Has64BitPointers(CGT.getDataLayout().getPointerSize() == 8) {
|
|
|
|
}
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
|
2012-02-17 11:33:10 +08:00
|
|
|
bool isPassedUsingAVXType(QualType type) const {
|
|
|
|
unsigned neededInt, neededSSE;
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
// The freeIntRegs argument doesn't matter here.
|
|
|
|
ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
|
2012-02-17 11:33:10 +08:00
|
|
|
if (info.isDirect()) {
|
|
|
|
llvm::Type *ty = info.getCoerceToType();
|
|
|
|
if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
|
|
|
|
return (vectorTy->getBitWidth() > 128);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-07-29 10:31:05 +08:00
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
2010-01-10 20:58:08 +08:00
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
|
2011-01-18 06:56:31 +08:00
|
|
|
class WinX86_64ABIInfo : public ABIInfo {
|
|
|
|
|
|
|
|
ABIArgInfo classify(QualType Ty) const;
|
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
public:
|
2011-01-18 06:56:31 +08:00
|
|
|
WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
2010-09-01 00:44:54 +08:00
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
2011-12-02 08:11:43 +08:00
|
|
|
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
|
2012-10-11 23:52:22 +08:00
|
|
|
: TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
|
2010-03-06 08:35:14 +08:00
|
|
|
|
2012-02-17 11:33:10 +08:00
|
|
|
const X86_64ABIInfo &getABIInfo() const {
|
|
|
|
return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
|
|
}
|
|
|
|
|
2010-03-06 08:35:14 +08:00
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
|
|
|
return 7;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-05-27 14:19:26 +08:00
|
|
|
// 0-15 are the 16 integer registers.
|
|
|
|
// 16 is %rip.
|
2012-02-07 08:39:47 +08:00
|
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
2010-03-06 08:35:14 +08:00
|
|
|
return false;
|
|
|
|
}
|
2011-02-20 07:03:58 +08:00
|
|
|
|
2011-07-11 17:56:20 +08:00
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
2011-07-23 18:55:15 +08:00
|
|
|
StringRef Constraint,
|
2011-07-11 17:56:20 +08:00
|
|
|
llvm::Type* Ty) const {
|
2011-02-20 07:03:58 +08:00
|
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
|
|
}
|
|
|
|
|
2012-02-17 11:33:10 +08:00
|
|
|
bool isNoProtoCallVariadic(const CallArgList &args,
|
|
|
|
const FunctionNoProtoType *fnType) const {
|
2011-09-21 16:08:30 +08:00
|
|
|
// The default CC on x86-64 sets %al to the number of SSA
|
|
|
|
// registers used, and GCC sets this when calling an unprototyped
|
2011-12-01 12:53:19 +08:00
|
|
|
// function, so we override the default behavior. However, don't do
|
2011-12-06 11:08:26 +08:00
|
|
|
// that when AVX types are involved: the ABI explicitly states it is
|
|
|
|
// undefined, and it doesn't work in practice because of how the ABI
|
|
|
|
// defines varargs anyway.
|
2012-02-17 11:33:10 +08:00
|
|
|
if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
|
2011-12-01 12:53:19 +08:00
|
|
|
bool HasAVXType = false;
|
2012-02-17 11:33:10 +08:00
|
|
|
for (CallArgList::const_iterator
|
|
|
|
it = args.begin(), ie = args.end(); it != ie; ++it) {
|
|
|
|
if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
|
|
|
|
HasAVXType = true;
|
|
|
|
break;
|
2011-12-01 12:53:19 +08:00
|
|
|
}
|
|
|
|
}
|
2012-02-17 11:33:10 +08:00
|
|
|
|
2011-12-01 12:53:19 +08:00
|
|
|
if (!HasAVXType)
|
|
|
|
return true;
|
|
|
|
}
|
2011-09-21 16:08:30 +08:00
|
|
|
|
2012-02-17 11:33:10 +08:00
|
|
|
return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
|
2011-09-21 16:08:30 +08:00
|
|
|
}
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
};
|
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
|
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
|
|
|
return 7;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
// 0-15 are the 16 integer registers.
|
|
|
|
// 16 is %rip.
|
2012-02-07 08:39:47 +08:00
|
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
2010-09-01 00:44:54 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
|
|
|
|
Class &Hi) const {
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
|
|
|
//
|
|
|
|
// (a) If one of the classes is Memory, the whole argument is passed in
|
|
|
|
// memory.
|
|
|
|
//
|
|
|
|
// (b) If X87UP is not preceded by X87, the whole argument is passed in
|
|
|
|
// memory.
|
|
|
|
//
|
|
|
|
// (c) If the size of the aggregate exceeds two eightbytes and the first
|
|
|
|
// eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
|
|
|
|
// argument is passed in memory. NOTE: This is necessary to keep the
|
|
|
|
// ABI working for processors that don't support the __m256 type.
|
|
|
|
//
|
|
|
|
// (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
|
|
|
|
//
|
|
|
|
// Some of these are enforced by the merging logic. Others can arise
|
|
|
|
// only with unions; for example:
|
|
|
|
// union { _Complex double; unsigned; }
|
|
|
|
//
|
|
|
|
// Note that clauses (b) and (c) were added in 0.98.
|
|
|
|
//
|
|
|
|
if (Hi == Memory)
|
|
|
|
Lo = Memory;
|
|
|
|
if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
|
|
|
|
Lo = Memory;
|
|
|
|
if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
|
|
|
|
Lo = Memory;
|
|
|
|
if (Hi == SSEUp && Lo != SSE)
|
|
|
|
Hi = SSE;
|
|
|
|
}
|
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
|
2009-06-06 06:08:42 +08:00
|
|
|
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
|
|
|
// classified recursively so that always two fields are
|
|
|
|
// considered. The resulting class is calculated according to
|
|
|
|
// the classes of the fields in the eightbyte:
|
|
|
|
//
|
|
|
|
// (a) If both classes are equal, this is the resulting class.
|
|
|
|
//
|
|
|
|
// (b) If one of the classes is NO_CLASS, the resulting class is
|
|
|
|
// the other class.
|
|
|
|
//
|
|
|
|
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
|
|
|
// class.
|
|
|
|
//
|
|
|
|
// (d) If one of the classes is INTEGER, the result is the
|
|
|
|
// INTEGER.
|
|
|
|
//
|
|
|
|
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
|
|
|
// MEMORY is used as class.
|
|
|
|
//
|
|
|
|
// (f) Otherwise class SSE is used.
|
|
|
|
|
|
|
|
// Accum should never be memory (we should have returned) or
|
|
|
|
// ComplexX87 (because this cannot be passed in a structure).
|
|
|
|
assert((Accum != Memory && Accum != ComplexX87) &&
|
|
|
|
"Invalid accumulated classification during merge.");
|
|
|
|
if (Accum == Field || Field == NoClass)
|
|
|
|
return Accum;
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Field == Memory)
|
2009-06-06 06:08:42 +08:00
|
|
|
return Memory;
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Accum == NoClass)
|
2009-06-06 06:08:42 +08:00
|
|
|
return Field;
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Accum == Integer || Field == Integer)
|
2009-06-06 06:08:42 +08:00
|
|
|
return Integer;
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
|
|
|
Accum == X87 || Accum == X87Up)
|
2009-06-06 06:08:42 +08:00
|
|
|
return Memory;
|
2010-06-29 05:43:59 +08:00
|
|
|
return SSE;
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-07-01 03:14:05 +08:00
|
|
|
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
|
2009-06-06 06:08:42 +08:00
|
|
|
Class &Lo, Class &Hi) const {
|
|
|
|
// FIXME: This code can be simplified by introducing a simple value class for
|
|
|
|
// Class pairs with appropriate constructor methods for the various
|
|
|
|
// situations.
|
|
|
|
|
|
|
|
// FIXME: Some of the split computations are wrong; unaligned vectors
|
|
|
|
// shouldn't be passed in registers for example, so there is no chance they
|
|
|
|
// can straddle an eightbyte. Verify & simplify.
|
|
|
|
|
|
|
|
Lo = Hi = NoClass;
|
|
|
|
|
|
|
|
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
|
|
|
Current = Memory;
|
|
|
|
|
2009-09-22 07:43:11 +08:00
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
2009-06-06 06:08:42 +08:00
|
|
|
BuiltinType::Kind k = BT->getKind();
|
|
|
|
|
|
|
|
if (k == BuiltinType::Void) {
|
|
|
|
Current = NoClass;
|
|
|
|
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
|
|
|
Lo = Integer;
|
|
|
|
Hi = Integer;
|
|
|
|
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
|
|
|
Current = Integer;
|
2012-10-12 00:55:58 +08:00
|
|
|
} else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
|
|
|
|
(k == BuiltinType::LongDouble &&
|
|
|
|
getContext().getTargetInfo().getTriple().getOS() ==
|
|
|
|
llvm::Triple::NativeClient)) {
|
2009-06-06 06:08:42 +08:00
|
|
|
Current = SSE;
|
|
|
|
} else if (k == BuiltinType::LongDouble) {
|
|
|
|
Lo = X87;
|
|
|
|
Hi = X87Up;
|
|
|
|
}
|
|
|
|
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
|
|
|
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
2009-06-06 06:08:42 +08:00
|
|
|
// Classify the underlying integer type.
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Ty->hasPointerRepresentation()) {
|
2009-06-06 06:08:42 +08:00
|
|
|
Current = Integer;
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (Ty->isMemberPointerType()) {
|
2012-10-11 23:52:22 +08:00
|
|
|
if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
|
2010-05-15 08:00:37 +08:00
|
|
|
Lo = Hi = Integer;
|
|
|
|
else
|
|
|
|
Current = Integer;
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
2009-06-06 06:08:42 +08:00
|
|
|
if (Size == 32) {
|
|
|
|
// gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
|
|
|
|
// float> as integer.
|
|
|
|
Current = Integer;
|
|
|
|
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
|
|
// split.
|
|
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
|
|
uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
|
|
|
|
if (EB_Real != EB_Imag)
|
|
|
|
Hi = Lo;
|
|
|
|
} else if (Size == 64) {
|
|
|
|
// gcc passes <1 x double> in memory. :(
|
|
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
|
|
|
|
return;
|
|
|
|
|
|
|
|
// gcc passes <1 x long long> as INTEGER.
|
2010-08-27 02:03:20 +08:00
|
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
2010-08-27 02:13:50 +08:00
|
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
|
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
|
|
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
|
2009-06-06 06:08:42 +08:00
|
|
|
Current = Integer;
|
|
|
|
else
|
|
|
|
Current = SSE;
|
|
|
|
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
|
|
// split.
|
|
|
|
if (OffsetBase && OffsetBase != 64)
|
|
|
|
Hi = Lo;
|
2011-12-02 08:11:43 +08:00
|
|
|
} else if (Size == 128 || (HasAVX && Size == 256)) {
|
2011-07-12 06:41:29 +08:00
|
|
|
// Arguments of 256-bits are split into four eightbyte chunks. The
|
|
|
|
// least significant one belongs to class SSE and all the others to class
|
|
|
|
// SSEUP. The original Lo and Hi design considers that types can't be
|
|
|
|
// greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
|
|
|
|
// This design isn't correct for 256-bits, but since there're no cases
|
|
|
|
// where the upper parts would need to be inspected, avoid adding
|
|
|
|
// complexity and just consider Hi to match the 64-256 part.
|
2009-06-06 06:08:42 +08:00
|
|
|
Lo = SSE;
|
|
|
|
Hi = SSEUp;
|
|
|
|
}
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
2010-07-29 10:01:43 +08:00
|
|
|
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
2010-06-16 08:17:44 +08:00
|
|
|
if (ET->isIntegralOrEnumerationType()) {
|
2009-06-06 06:08:42 +08:00
|
|
|
if (Size <= 64)
|
|
|
|
Current = Integer;
|
|
|
|
else if (Size <= 128)
|
|
|
|
Lo = Hi = Integer;
|
2010-07-29 10:01:43 +08:00
|
|
|
} else if (ET == getContext().FloatTy)
|
2009-06-06 06:08:42 +08:00
|
|
|
Current = SSE;
|
2012-10-12 00:55:58 +08:00
|
|
|
else if (ET == getContext().DoubleTy ||
|
|
|
|
(ET == getContext().LongDoubleTy &&
|
|
|
|
getContext().getTargetInfo().getTriple().getOS() ==
|
|
|
|
llvm::Triple::NativeClient))
|
2009-06-06 06:08:42 +08:00
|
|
|
Lo = Hi = SSE;
|
2010-07-29 10:01:43 +08:00
|
|
|
else if (ET == getContext().LongDoubleTy)
|
2009-06-06 06:08:42 +08:00
|
|
|
Current = ComplexX87;
|
|
|
|
|
|
|
|
// If this complex type crosses an eightbyte boundary then it
|
|
|
|
// should be split.
|
|
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
|
2009-06-06 06:08:42 +08:00
|
|
|
if (Hi == NoClass && EB_Real != EB_Imag)
|
|
|
|
Hi = Lo;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
2009-06-06 06:08:42 +08:00
|
|
|
// Arrays are treated like structures.
|
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
2011-07-12 06:41:29 +08:00
|
|
|
// than four eightbytes, ..., it has class MEMORY.
|
|
|
|
if (Size > 256)
|
2009-06-06 06:08:42 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
|
|
|
// fields, it has class MEMORY.
|
|
|
|
//
|
|
|
|
// Only need to check alignment of array base.
|
2010-07-29 10:01:43 +08:00
|
|
|
if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
|
2009-06-06 06:08:42 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
// Otherwise implement simplified merge. We could be smarter about
|
|
|
|
// this, but it isn't worth it and would be harder to verify.
|
|
|
|
Current = NoClass;
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
|
2009-06-06 06:08:42 +08:00
|
|
|
uint64_t ArraySize = AT->getSize().getZExtValue();
|
2011-07-12 09:27:38 +08:00
|
|
|
|
|
|
|
// The only case a 256-bit wide vector could be used is when the array
|
|
|
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
|
|
|
// to work for sizes wider than 128, early check and fallback to memory.
|
|
|
|
if (Size > 128 && EltSize != 256)
|
|
|
|
return;
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
|
|
|
Class FieldLo, FieldHi;
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(AT->getElementType(), Offset, FieldLo, FieldHi);
|
2009-06-06 06:08:42 +08:00
|
|
|
Lo = merge(Lo, FieldLo);
|
|
|
|
Hi = merge(Hi, FieldHi);
|
|
|
|
if (Lo == Memory || Hi == Memory)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
postMerge(Size, Lo, Hi);
|
2009-06-06 06:08:42 +08:00
|
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
2010-06-29 05:43:59 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
2010-07-29 10:01:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
2011-07-12 06:41:29 +08:00
|
|
|
// than four eightbytes, ..., it has class MEMORY.
|
|
|
|
if (Size > 256)
|
2009-06-06 06:08:42 +08:00
|
|
|
return;
|
|
|
|
|
2009-09-16 23:53:40 +08:00
|
|
|
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
|
|
|
// copy constructor or a non-trivial destructor, it is passed by invisible
|
|
|
|
// reference.
|
|
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
|
|
|
return;
|
2009-11-23 07:01:23 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
|
|
|
|
// Assume variable sized types are passed in memory.
|
|
|
|
if (RD->hasFlexibleArrayMember())
|
|
|
|
return;
|
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Reset Lo class, this will be recomputed.
|
|
|
|
Current = NoClass;
|
2009-11-23 07:01:23 +08:00
|
|
|
|
|
|
|
// If this is a C++ record, classify the bases first.
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
|
|
e = CXXRD->bases_end(); i != e; ++i) {
|
|
|
|
assert(!i->isVirtual() && !i->getType()->isDependentType() &&
|
|
|
|
"Unexpected base class!");
|
|
|
|
const CXXRecordDecl *Base =
|
|
|
|
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
|
|
|
// Classify this field.
|
|
|
|
//
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
|
|
|
// single eightbyte, each is classified separately. Each eightbyte gets
|
|
|
|
// initialized to class NO_CLASS.
|
|
|
|
Class FieldLo, FieldHi;
|
2012-07-05 02:45:14 +08:00
|
|
|
uint64_t Offset =
|
|
|
|
OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(i->getType(), Offset, FieldLo, FieldHi);
|
2009-11-23 07:01:23 +08:00
|
|
|
Lo = merge(Lo, FieldLo);
|
|
|
|
Hi = merge(Hi, FieldHi);
|
|
|
|
if (Lo == Memory || Hi == Memory)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Classify the fields one at a time, merging the results.
|
2009-06-06 06:08:42 +08:00
|
|
|
unsigned idx = 0;
|
2011-07-13 06:30:58 +08:00
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
2009-06-30 10:36:12 +08:00
|
|
|
i != e; ++i, ++idx) {
|
2009-06-06 06:08:42 +08:00
|
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
|
|
bool BitField = i->isBitField();
|
|
|
|
|
2011-07-14 05:58:55 +08:00
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
|
|
|
|
// four eightbytes, or it contains unaligned fields, it has class MEMORY.
|
2009-06-06 06:08:42 +08:00
|
|
|
//
|
2011-07-14 05:58:55 +08:00
|
|
|
// The only case a 256-bit wide vector could be used is when the struct
|
|
|
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
|
|
|
// to work for sizes wider than 128, early check and fallback to memory.
|
|
|
|
//
|
|
|
|
if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
|
|
|
|
Lo = Memory;
|
|
|
|
return;
|
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
// Note, skip this test for bit-fields, see below.
|
2010-07-29 10:01:43 +08:00
|
|
|
if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
|
2009-06-06 06:08:42 +08:00
|
|
|
Lo = Memory;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Classify this field.
|
|
|
|
//
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
|
|
|
// exceeds a single eightbyte, each is classified
|
|
|
|
// separately. Each eightbyte gets initialized to class
|
|
|
|
// NO_CLASS.
|
|
|
|
Class FieldLo, FieldHi;
|
|
|
|
|
|
|
|
// Bit-fields require special handling, they do not force the
|
|
|
|
// structure to be passed in memory even if unaligned, and
|
|
|
|
// therefore they can straddle an eightbyte.
|
|
|
|
if (BitField) {
|
|
|
|
// Ignore padding bit-fields.
|
|
|
|
if (i->isUnnamedBitfield())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
2011-10-11 02:28:20 +08:00
|
|
|
uint64_t Size = i->getBitWidthValue(getContext());
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
uint64_t EB_Lo = Offset / 64;
|
|
|
|
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
|
|
|
FieldLo = FieldHi = NoClass;
|
|
|
|
if (EB_Lo) {
|
|
|
|
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
|
|
|
FieldLo = NoClass;
|
|
|
|
FieldHi = Integer;
|
|
|
|
} else {
|
|
|
|
FieldLo = Integer;
|
|
|
|
FieldHi = EB_Hi ? Integer : NoClass;
|
|
|
|
}
|
|
|
|
} else
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(i->getType(), Offset, FieldLo, FieldHi);
|
2009-06-06 06:08:42 +08:00
|
|
|
Lo = merge(Lo, FieldLo);
|
|
|
|
Hi = merge(Hi, FieldHi);
|
|
|
|
if (Lo == Memory || Hi == Memory)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
postMerge(Size, Lo, Hi);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
|
2010-04-22 03:49:55 +08:00
|
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
|
|
// place naturally.
|
2010-08-22 18:59:02 +08:00
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
2010-04-22 03:49:55 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
}
|
|
|
|
|
2011-12-02 08:11:43 +08:00
|
|
|
bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
|
|
|
|
if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
|
|
|
|
uint64_t Size = getContext().getTypeSize(VecTy);
|
|
|
|
unsigned LargestVector = HasAVX ? 256 : 128;
|
|
|
|
if (Size <= 64 || Size > LargestVector)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
|
|
|
|
unsigned freeIntRegs) const {
|
2009-06-06 06:08:42 +08:00
|
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
|
|
// place naturally.
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
//
|
|
|
|
// This assumption is optimistic, as there could be free registers available
|
|
|
|
// when we need to pass this argument in memory, and LLVM could try to pass
|
|
|
|
// the argument in the free register. This does not seem to happen currently,
|
|
|
|
// but this code would be much safer if we could mark the argument with
|
|
|
|
// 'onstack'. See PR12193.
|
2011-12-02 08:11:43 +08:00
|
|
|
if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
|
2010-02-03 04:10:50 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
2009-06-06 17:36:29 +08:00
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2010-02-03 04:10:50 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-04-22 03:49:55 +08:00
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
2009-09-16 23:53:40 +08:00
|
|
|
|
2011-05-23 07:21:23 +08:00
|
|
|
// Compute the byval alignment. We specify the alignment of the byval in all
|
|
|
|
// cases so that the mid-level optimizer knows the alignment of the byval.
|
|
|
|
unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
|
|
|
|
// Attempt to avoid passing indirect results using byval when possible. This
|
|
|
|
// is important for good codegen.
|
|
|
|
//
|
|
|
|
// We do this by coercing the value into a scalar type which the backend can
|
|
|
|
// handle naturally (i.e., without using byval).
|
|
|
|
//
|
|
|
|
// For simplicity, we currently only do this when we have exhausted all of the
|
|
|
|
// free integer registers. Doing this when there are free integer registers
|
|
|
|
// would require more care, as we would have to ensure that the coerced value
|
|
|
|
// did not claim the unused register. That would require either reording the
|
|
|
|
// arguments to the function (so that any subsequent inreg values came first),
|
|
|
|
// or only doing this optimization when there were no following arguments that
|
|
|
|
// might be inreg.
|
|
|
|
//
|
|
|
|
// We currently expect it to be rare (particularly in well written code) for
|
|
|
|
// arguments to be passed on the stack when there are still free integer
|
|
|
|
// registers available (this would typically imply large structs being passed
|
|
|
|
// by value), so this seems like a fair tradeoff for now.
|
|
|
|
//
|
|
|
|
// We can revisit this if the backend grows support for 'onstack' parameter
|
|
|
|
// attributes. See PR12193.
|
|
|
|
if (freeIntRegs == 0) {
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
|
|
|
|
// If this type fits in an eightbyte, coerce it into the matching integral
|
|
|
|
// type, which will end up on the stack (with alignment 8).
|
|
|
|
if (Align == 8 && Size <= 64)
|
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
|
|
Size));
|
|
|
|
}
|
|
|
|
|
2011-05-23 07:21:23 +08:00
|
|
|
return ABIArgInfo::getIndirect(Align);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2011-07-12 06:41:29 +08:00
|
|
|
/// GetByteVectorType - The ABI specifies that a value should be passed in an
|
|
|
|
/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
|
2010-07-29 12:56:46 +08:00
|
|
|
/// vector register.
|
2011-07-12 06:41:29 +08:00
|
|
|
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 13:02:29 +08:00
|
|
|
// Wrapper structs that just contain vectors are passed just like vectors,
|
|
|
|
// strip them off if present.
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
|
2010-07-29 13:02:29 +08:00
|
|
|
while (STy && STy->getNumElements() == 1) {
|
|
|
|
IRType = STy->getElementType(0);
|
|
|
|
STy = dyn_cast<llvm::StructType>(IRType);
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2011-07-09 06:57:35 +08:00
|
|
|
// If the preferred type is a 16-byte vector, prefer to pass it.
|
2011-07-10 01:41:47 +08:00
|
|
|
if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
|
|
|
|
llvm::Type *EltTy = VT->getElementType();
|
2011-07-12 06:41:29 +08:00
|
|
|
unsigned BitWidth = VT->getBitWidth();
|
2011-11-29 07:18:11 +08:00
|
|
|
if ((BitWidth >= 128 && BitWidth <= 256) &&
|
2010-07-29 12:56:46 +08:00
|
|
|
(EltTy->isFloatTy() || EltTy->isDoubleTy() ||
|
|
|
|
EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
|
|
|
|
EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
|
|
|
|
EltTy->isIntegerTy(128)))
|
|
|
|
return VT;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 12:56:46 +08:00
|
|
|
return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
|
|
|
|
}
|
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
|
|
|
|
/// is known to either be off the end of the specified type or being in
|
|
|
|
/// alignment padding. The user type specified is known to be at most 128 bits
|
|
|
|
/// in size, and have passed through X86_64ABIInfo::classify with a successful
|
|
|
|
/// classification that put one of the two halves in the INTEGER class.
|
|
|
|
///
|
|
|
|
/// It is conservatively correct to return false.
|
|
|
|
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
|
|
|
|
unsigned EndBit, ASTContext &Context) {
|
|
|
|
// If the bytes being queried are off the end of the type, there is no user
|
|
|
|
// data hiding here. This handles analysis of builtins, vectors and other
|
|
|
|
// types that don't contain interesting padding.
|
|
|
|
unsigned TySize = (unsigned)Context.getTypeSize(Ty);
|
|
|
|
if (TySize <= StartBit)
|
|
|
|
return true;
|
|
|
|
|
This is a little bit far, but optimize cases like:
struct a {
struct c {
double x;
int y;
} x[1];
};
void foo(struct a A) {
}
into:
define void @foo(double %A.coerce0, i32 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %struct.c* ; <%struct.c*> [#uses=2]
%1 = getelementptr %struct.c* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %struct.c* %0, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %A.coerce1, i32* %2
instead of:
define void @foo(double %A.coerce0, i64 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %A.coerce1, i64* %2
I only do this now because I never want to look at this code again :)
llvm-svn: 109738
2010-07-29 15:43:55 +08:00
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
|
|
unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
|
|
|
|
unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
|
|
|
|
|
|
|
|
// Check each element to see if the element overlaps with the queried range.
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
|
|
// If the element is after the span we care about, then we're done..
|
|
|
|
unsigned EltOffset = i*EltSize;
|
|
|
|
if (EltOffset >= EndBit) break;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
This is a little bit far, but optimize cases like:
struct a {
struct c {
double x;
int y;
} x[1];
};
void foo(struct a A) {
}
into:
define void @foo(double %A.coerce0, i32 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %struct.c* ; <%struct.c*> [#uses=2]
%1 = getelementptr %struct.c* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %struct.c* %0, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %A.coerce1, i32* %2
instead of:
define void @foo(double %A.coerce0, i64 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %A.coerce1, i64* %2
I only do this now because I never want to look at this code again :)
llvm-svn: 109738
2010-07-29 15:43:55 +08:00
|
|
|
unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
|
|
|
|
if (!BitsContainNoUserData(AT->getElementType(), EltStart,
|
|
|
|
EndBit-EltOffset, Context))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// If it overlaps no elements, then it is safe to process as padding.
|
|
|
|
return true;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// If this is a C++ record, check the bases first.
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
|
|
e = CXXRD->bases_end(); i != e; ++i) {
|
|
|
|
assert(!i->isVirtual() && !i->getType()->isDependentType() &&
|
|
|
|
"Unexpected base class!");
|
|
|
|
const CXXRecordDecl *Base =
|
|
|
|
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// If the base is after the span we care about, ignore it.
|
2012-07-05 02:45:14 +08:00
|
|
|
unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
if (BaseOffset >= EndBit) continue;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
|
|
|
|
if (!BitsContainNoUserData(i->getType(), BaseStart,
|
|
|
|
EndBit-BaseOffset, Context))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// Verify that no field has data that overlaps the region of interest. Yes
|
|
|
|
// this could be sped up a lot by being smarter about queried fields,
|
|
|
|
// however we're only looking at structs up to 16 bytes, so we don't care
|
|
|
|
// much.
|
|
|
|
unsigned idx = 0;
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i, ++idx) {
|
|
|
|
unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// If we found a field after the region we care about, then we're done.
|
|
|
|
if (FieldOffset >= EndBit) break;
|
|
|
|
|
|
|
|
unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
|
|
|
|
if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
|
|
|
|
Context))
|
|
|
|
return false;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// If nothing in this record overlapped the area of interest, then we're
|
|
|
|
// clean.
|
|
|
|
return true;
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-07-30 02:39:32 +08:00
|
|
|
/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
|
|
|
|
/// float member at the specified offset. For example, {int,{float}} has a
|
|
|
|
/// float at offset 4. It is conservatively correct for this routine to return
|
|
|
|
/// false.
|
2011-07-18 12:24:23 +08:00
|
|
|
static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
|
2012-10-09 00:25:52 +08:00
|
|
|
const llvm::DataLayout &TD) {
|
2010-07-30 02:39:32 +08:00
|
|
|
// Base case if we find a float.
|
|
|
|
if (IROffset == 0 && IRType->isFloatTy())
|
|
|
|
return true;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 02:39:32 +08:00
|
|
|
// If this is a struct, recurse into the field at the specified offset.
|
2011-07-18 12:24:23 +08:00
|
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
2010-07-30 02:39:32 +08:00
|
|
|
const llvm::StructLayout *SL = TD.getStructLayout(STy);
|
|
|
|
unsigned Elt = SL->getElementContainingOffset(IROffset);
|
|
|
|
IROffset -= SL->getElementOffset(Elt);
|
|
|
|
return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 02:39:32 +08:00
|
|
|
// If this is an array, recurse into the field at the specified offset.
|
2011-07-18 12:24:23 +08:00
|
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
|
|
|
llvm::Type *EltTy = ATy->getElementType();
|
2010-07-30 02:39:32 +08:00
|
|
|
unsigned EltSize = TD.getTypeAllocSize(EltTy);
|
|
|
|
IROffset -= IROffset/EltSize*EltSize;
|
|
|
|
return ContainsFloatAtOffset(EltTy, IROffset, TD);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
|
|
|
|
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
|
|
|
|
/// low 8 bytes of an XMM register, corresponding to the SSE class.
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *X86_64ABIInfo::
|
|
|
|
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
2010-07-30 02:19:50 +08:00
|
|
|
// The only three choices we have are either double, <2 x float>, or float. We
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
// pass as float if the last 4 bytes is just padding. This happens for
|
|
|
|
// structs that contain 3 floats.
|
|
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
|
|
|
|
SourceOffset*8+64, getContext()))
|
|
|
|
return llvm::Type::getFloatTy(getVMContext());
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 02:39:32 +08:00
|
|
|
// We want to pass as <2 x float> if the LLVM IR type contains a float at
|
|
|
|
// offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
|
|
|
|
// case.
|
2012-10-09 00:25:52 +08:00
|
|
|
if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
|
|
|
|
ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
|
Finally pass "two floats in a 64-bit unit" as a <2 x float> instead of
as a double in the x86-64 ABI. This allows us to generate much better
code for certain things, e.g.:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
Used to compile into (look at the integer silliness!):
_f32: ## @f32
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm1
movd %xmm0, %rcx
movd %ecx, %xmm0
addss %xmm1, %xmm0
movd %xmm0, %edx
shrq $32, %rax
movd %eax, %xmm0
shrq $32, %rcx
movd %ecx, %xmm1
addss %xmm0, %xmm1
movd %xmm1, %eax
shlq $32, %rax
addq %rdx, %rax
movd %rax, %xmm0
ret
Now we get:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
and compile stuff like:
extern float _Complex ccoshf( float _Complex ) ;
float _Complex ccosf ( float _Complex z ) {
float _Complex iz;
(__real__ iz) = -(__imag__ z);
(__imag__ iz) = (__real__ z);
return ccoshf(iz);
}
into:
_ccosf: ## @ccosf
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm1
xorps LCPI4_0(%rip), %xmm1
unpcklps %xmm0, %xmm1
movaps %xmm1, %xmm0
jmp _ccoshf ## TAILCALL
instead of:
_ccosf: ## @ccosf
## BB#0: ## %entry
movd %xmm0, %rax
movq %rax, %rcx
shlq $32, %rcx
shrq $32, %rax
xorl $-2147483648, %eax ## imm = 0xFFFFFFFF80000000
addq %rcx, %rax
movd %rax, %xmm0
jmp _ccoshf ## TAILCALL
There is still "stuff to be done" here for the struct case,
but this resolves rdar://6379669 - [x86-64 ABI] Pass and return
_Complex float / double efficiently
llvm-svn: 112111
2010-08-26 07:39:14 +08:00
|
|
|
return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
return llvm::Type::getDoubleTy(getVMContext());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-07-30 01:40:35 +08:00
|
|
|
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
|
|
|
|
/// an 8-byte GPR. This means that we either have a scalar or we are talking
|
|
|
|
/// about the high or low part of an up-to-16-byte struct. This routine picks
|
|
|
|
/// the best LLVM IR type to represent this, which may be i64 or may be anything
|
2010-07-29 07:06:14 +08:00
|
|
|
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
|
|
|
|
/// etc).
|
|
|
|
///
|
|
|
|
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
|
|
|
|
/// the source type. IROffset is an offset in bytes into the LLVM IR type that
|
|
|
|
/// the 8-byte value references. PrefType may be null.
|
|
|
|
///
|
|
|
|
/// SourceTy is the source level type for the entire argument. SourceOffset is
|
|
|
|
/// an offset into this that we're processing (which is always either 0 or 8).
|
|
|
|
///
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *X86_64ABIInfo::
|
|
|
|
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
2010-07-30 01:40:35 +08:00
|
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// If we're dealing with an un-offset LLVM IR type, then it means that we're
|
|
|
|
// returning an 8-byte unit starting with it. See if we can safely use it.
|
|
|
|
if (IROffset == 0) {
|
|
|
|
// Pointers and int64's always fill the 8-byte unit.
|
2012-10-11 23:52:22 +08:00
|
|
|
if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
|
|
|
|
IRType->isIntegerTy(64))
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
return IRType;
|
|
|
|
|
|
|
|
// If we have a 1/2/4-byte integer, we can use it only if the rest of the
|
|
|
|
// goodness in the source type is just tail padding. This is allowed to
|
|
|
|
// kick in for struct {double,int} on the int, but not on
|
|
|
|
// struct{double,int,int} because we wouldn't return the second int. We
|
|
|
|
// have to do this analysis on the source type because we can't depend on
|
|
|
|
// unions being lowered a specific way etc.
|
|
|
|
if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
|
2012-10-11 23:52:22 +08:00
|
|
|
IRType->isIntegerTy(32) ||
|
|
|
|
(isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
|
|
|
|
unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
|
|
|
|
cast<llvm::IntegerType>(IRType)->getBitWidth();
|
2010-08-26 02:17:27 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
|
|
|
|
SourceOffset*8+64, getContext()))
|
|
|
|
return IRType;
|
|
|
|
}
|
|
|
|
}
|
2010-07-29 07:06:14 +08:00
|
|
|
|
2011-07-18 12:24:23 +08:00
|
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
2010-07-29 07:06:14 +08:00
|
|
|
// If this is a struct, recurse into the field at the specified offset.
|
2012-10-09 00:25:52 +08:00
|
|
|
const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
|
2010-07-29 07:06:14 +08:00
|
|
|
if (IROffset < SL->getSizeInBytes()) {
|
|
|
|
unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
|
|
|
|
IROffset -= SL->getElementOffset(FieldIdx);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 01:40:35 +08:00
|
|
|
return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
|
|
|
|
SourceTy, SourceOffset);
|
2010-08-26 02:17:27 +08:00
|
|
|
}
|
2010-07-29 07:06:14 +08:00
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2011-07-18 12:24:23 +08:00
|
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *EltTy = ATy->getElementType();
|
2012-10-09 00:25:52 +08:00
|
|
|
unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
|
This is a little bit far, but optimize cases like:
struct a {
struct c {
double x;
int y;
} x[1];
};
void foo(struct a A) {
}
into:
define void @foo(double %A.coerce0, i32 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %struct.c* ; <%struct.c*> [#uses=2]
%1 = getelementptr %struct.c* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %struct.c* %0, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %A.coerce1, i32* %2
instead of:
define void @foo(double %A.coerce0, i64 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %A.coerce1, i64* %2
I only do this now because I never want to look at this code again :)
llvm-svn: 109738
2010-07-29 15:43:55 +08:00
|
|
|
unsigned EltOffset = IROffset/EltSize*EltSize;
|
2010-07-30 01:40:35 +08:00
|
|
|
return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
|
|
|
|
SourceOffset);
|
This is a little bit far, but optimize cases like:
struct a {
struct c {
double x;
int y;
} x[1];
};
void foo(struct a A) {
}
into:
define void @foo(double %A.coerce0, i32 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %struct.c* ; <%struct.c*> [#uses=2]
%1 = getelementptr %struct.c* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %struct.c* %0, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %A.coerce1, i32* %2
instead of:
define void @foo(double %A.coerce0, i64 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %A.coerce1, i64* %2
I only do this now because I never want to look at this code again :)
llvm-svn: 109738
2010-07-29 15:43:55 +08:00
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 07:06:14 +08:00
|
|
|
// Okay, we don't have any better idea of what to pass, so we pass this in an
|
|
|
|
// integer register that isn't too big to fit the rest of the struct.
|
2010-07-30 01:34:39 +08:00
|
|
|
unsigned TySizeInBytes =
|
|
|
|
(unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
|
2010-07-29 07:06:14 +08:00
|
|
|
|
2010-07-30 01:34:39 +08:00
|
|
|
assert(TySizeInBytes != SourceOffset && "Empty field?");
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 07:06:14 +08:00
|
|
|
// It is always safe to classify this as an integer type up to i64 that
|
|
|
|
// isn't larger than the structure.
|
2010-07-30 01:34:39 +08:00
|
|
|
return llvm::IntegerType::get(getVMContext(),
|
|
|
|
std::min(TySizeInBytes-SourceOffset, 8U)*8);
|
2010-07-29 07:06:14 +08:00
|
|
|
}
|
|
|
|
|
2010-09-01 08:50:20 +08:00
|
|
|
|
|
|
|
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
|
|
|
|
/// be used as elements of a two register pair to pass or return, return a
|
|
|
|
/// first class aggregate to represent them. For example, if the low part of
|
|
|
|
/// a by-value argument should be passed as i32* and the high part as float,
|
|
|
|
/// return {i32*, float}.
|
2011-07-10 01:41:47 +08:00
|
|
|
static llvm::Type *
|
2011-07-11 17:56:20 +08:00
|
|
|
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
|
2012-10-09 00:25:52 +08:00
|
|
|
const llvm::DataLayout &TD) {
|
2010-09-01 08:50:20 +08:00
|
|
|
// In order to correctly satisfy the ABI, we need to the high part to start
|
|
|
|
// at offset 8. If the high and low parts we inferred are both 4-byte types
|
|
|
|
// (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
|
|
|
|
// the second element at offset 8. Check for this:
|
|
|
|
unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
|
|
|
|
unsigned HiAlign = TD.getABITypeAlignment(Hi);
|
2012-10-09 00:25:52 +08:00
|
|
|
unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
|
2010-09-01 08:50:20 +08:00
|
|
|
assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2010-09-01 08:50:20 +08:00
|
|
|
// To handle this, we have to increase the size of the low part so that the
|
|
|
|
// second element will start at an 8 byte offset. We can't increase the size
|
|
|
|
// of the second element because it might make us access off the end of the
|
|
|
|
// struct.
|
|
|
|
if (HiStart != 8) {
|
|
|
|
// There are only two sorts of types the ABI generation code can produce for
|
|
|
|
// the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
|
|
|
|
// Promote these to a larger type.
|
|
|
|
if (Lo->isFloatTy())
|
|
|
|
Lo = llvm::Type::getDoubleTy(Lo->getContext());
|
|
|
|
else {
|
|
|
|
assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
|
|
|
|
Lo = llvm::Type::getInt64Ty(Lo->getContext());
|
|
|
|
}
|
|
|
|
}
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
|
2010-10-19 14:39:39 +08:00
|
|
|
|
|
|
|
|
2010-09-01 08:50:20 +08:00
|
|
|
// Verify that the second element is at an 8-byte offset.
|
|
|
|
assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
|
|
|
|
"Invalid x86-64 argument pair!");
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2010-06-29 05:43:59 +08:00
|
|
|
ABIArgInfo X86_64ABIInfo::
|
2010-07-29 10:16:43 +08:00
|
|
|
classifyReturnType(QualType RetTy) const {
|
2009-06-06 06:08:42 +08:00
|
|
|
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
|
|
|
// classification algorithm.
|
|
|
|
X86_64ABIInfo::Class Lo, Hi;
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(RetTy, 0, Lo, Hi);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Check some invariants.
|
|
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *ResType = 0;
|
2009-06-06 06:08:42 +08:00
|
|
|
switch (Lo) {
|
|
|
|
case NoClass:
|
2010-07-30 12:02:24 +08:00
|
|
|
if (Hi == NoClass)
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
|
|
// null.
|
|
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
|
|
"Unknown missing lo part");
|
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
case SSEUp:
|
|
|
|
case X87Up:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Invalid classification for lo word.");
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
|
|
|
// hidden argument.
|
|
|
|
case Memory:
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
return getIndirectReturnResult(RetTy);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
|
|
|
// available register of the sequence %rax, %rdx is used.
|
|
|
|
case Integer:
|
2011-07-10 01:41:47 +08:00
|
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 05:42:50 +08:00
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 05:42:50 +08:00
|
|
|
if (RetTy->isIntegralOrEnumerationType() &&
|
|
|
|
RetTy->isPromotableIntegerType())
|
|
|
|
return ABIArgInfo::getExtend();
|
|
|
|
}
|
2010-07-29 07:06:14 +08:00
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
|
|
|
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
|
|
|
case SSE:
|
2011-07-10 01:41:47 +08:00
|
|
|
ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
2010-07-29 07:12:33 +08:00
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
|
|
|
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
|
|
|
case X87:
|
2010-07-29 10:01:43 +08:00
|
|
|
ResType = llvm::Type::getX86_FP80Ty(getVMContext());
|
2010-07-29 07:12:33 +08:00
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
|
|
|
// part of the value is returned in %st0 and the imaginary part in
|
|
|
|
// %st1.
|
|
|
|
case ComplexX87:
|
|
|
|
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
2011-06-19 06:49:11 +08:00
|
|
|
ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
|
2010-07-29 10:01:43 +08:00
|
|
|
llvm::Type::getX86_FP80Ty(getVMContext()),
|
2009-06-06 06:08:42 +08:00
|
|
|
NULL);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *HighPart = 0;
|
2009-06-06 06:08:42 +08:00
|
|
|
switch (Hi) {
|
|
|
|
// Memory was handled previously and X87 should
|
|
|
|
// never occur as a hi class.
|
|
|
|
case Memory:
|
|
|
|
case X87:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Invalid classification for hi word.");
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
case ComplexX87: // Previously handled.
|
2010-07-29 07:12:33 +08:00
|
|
|
case NoClass:
|
|
|
|
break;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-09-01 08:20:33 +08:00
|
|
|
case Integer:
|
2011-07-10 01:41:47 +08:00
|
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
2010-09-01 08:20:33 +08:00
|
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
2010-09-01 08:20:33 +08:00
|
|
|
case SSE:
|
2011-07-10 01:41:47 +08:00
|
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
2010-09-01 08:20:33 +08:00
|
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
2011-07-12 06:41:29 +08:00
|
|
|
// is passed in the next available eightbyte chunk if the last used
|
|
|
|
// vector register.
|
2009-06-06 06:08:42 +08:00
|
|
|
//
|
2011-04-15 13:22:18 +08:00
|
|
|
// SSEUP should always be preceded by SSE, just widen.
|
2009-06-06 06:08:42 +08:00
|
|
|
case SSEUp:
|
|
|
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
2011-07-12 06:41:29 +08:00
|
|
|
ResType = GetByteVectorType(RetTy);
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
|
|
|
// returned together with the previous X87 value in %st0.
|
|
|
|
case X87Up:
|
2011-04-15 13:22:18 +08:00
|
|
|
// If X87Up is preceded by X87, we don't need to do
|
2009-06-06 06:08:42 +08:00
|
|
|
// anything. However, in some cases with unions it may not be
|
2011-04-15 13:22:18 +08:00
|
|
|
// preceded by X87. In such situations we follow gcc and pass the
|
2009-06-06 06:08:42 +08:00
|
|
|
// extra bits in an SSE reg.
|
2010-07-30 01:49:08 +08:00
|
|
|
if (Lo != X87) {
|
2011-07-10 01:41:47 +08:00
|
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
2010-09-01 08:20:33 +08:00
|
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
2010-07-30 01:49:08 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
}
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2010-09-01 08:20:33 +08:00
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
2010-09-01 08:24:35 +08:00
|
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
|
|
// first class struct aggregate with the high and low part: {low, high}
|
2010-09-01 08:50:20 +08:00
|
|
|
if (HighPart)
|
2012-10-09 00:25:52 +08:00
|
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-30 05:42:50 +08:00
|
|
|
return ABIArgInfo::getDirect(ResType);
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
}
|
|
|
|
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(
|
|
|
|
QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
|
|
|
|
const
|
|
|
|
{
|
2009-06-06 06:08:42 +08:00
|
|
|
X86_64ABIInfo::Class Lo, Hi;
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
classify(Ty, 0, Lo, Hi);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
// Check some invariants.
|
|
|
|
// FIXME: Enforce these by construction.
|
|
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
|
|
|
|
neededInt = 0;
|
|
|
|
neededSSE = 0;
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *ResType = 0;
|
2009-06-06 06:08:42 +08:00
|
|
|
switch (Lo) {
|
|
|
|
case NoClass:
|
2010-07-30 12:02:24 +08:00
|
|
|
if (Hi == NoClass)
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
|
|
// null.
|
|
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
|
|
"Unknown missing lo part");
|
|
|
|
break;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
|
|
|
// on the stack.
|
|
|
|
case Memory:
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
|
|
|
// COMPLEX_X87, it is passed in memory.
|
|
|
|
case X87:
|
|
|
|
case ComplexX87:
|
2011-06-29 15:04:55 +08:00
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
++neededInt;
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
return getIndirectResult(Ty, freeIntRegs);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
case SSEUp:
|
|
|
|
case X87Up:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Invalid classification for lo word.");
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
|
|
|
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
|
|
|
// and %r9 is used.
|
|
|
|
case Integer:
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
++neededInt;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 06:44:07 +08:00
|
|
|
// Pick an 8-byte type based on the preferred type.
|
2011-07-10 01:41:47 +08:00
|
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
|
2010-07-30 05:42:50 +08:00
|
|
|
|
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-30 05:42:50 +08:00
|
|
|
if (Ty->isIntegralOrEnumerationType() &&
|
|
|
|
Ty->isPromotableIntegerType())
|
|
|
|
return ABIArgInfo::getExtend();
|
|
|
|
}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
|
|
|
// available SSE register is used, the registers are taken in the
|
|
|
|
// order from %xmm0 to %xmm7.
|
2010-10-18 11:41:31 +08:00
|
|
|
case SSE: {
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
2011-07-02 08:57:27 +08:00
|
|
|
ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
|
2010-10-19 07:51:38 +08:00
|
|
|
++neededSSE;
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
}
|
2010-10-18 11:41:31 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *HighPart = 0;
|
2009-06-06 06:08:42 +08:00
|
|
|
switch (Hi) {
|
|
|
|
// Memory was handled previously, ComplexX87 and X87 should
|
2011-04-15 13:22:18 +08:00
|
|
|
// never occur as hi classes, and X87Up must be preceded by X87,
|
2009-06-06 06:08:42 +08:00
|
|
|
// which is passed in memory.
|
|
|
|
case Memory:
|
|
|
|
case X87:
|
|
|
|
case ComplexX87:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Invalid classification for hi word.");
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
case NoClass: break;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-09-01 08:24:35 +08:00
|
|
|
case Integer:
|
2009-06-06 06:08:42 +08:00
|
|
|
++neededInt;
|
2010-07-29 06:44:07 +08:00
|
|
|
// Pick an 8-byte type based on the preferred type.
|
2011-07-10 01:41:47 +08:00
|
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
2010-07-30 12:02:24 +08:00
|
|
|
|
2010-09-01 08:24:35 +08:00
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
// X87Up generally doesn't occur here (long double is passed in
|
|
|
|
// memory), except in situations involving unions.
|
|
|
|
case X87Up:
|
2010-09-01 08:24:35 +08:00
|
|
|
case SSE:
|
2011-07-10 01:41:47 +08:00
|
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-09-01 08:24:35 +08:00
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
2010-07-30 12:02:24 +08:00
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
++neededSSE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
|
|
|
// eightbyte is passed in the upper half of the last used SSE
|
2010-08-26 02:17:27 +08:00
|
|
|
// register. This only happens when 128-bit vectors are passed.
|
2009-06-06 06:08:42 +08:00
|
|
|
case SSEUp:
|
2010-07-29 07:47:21 +08:00
|
|
|
assert(Lo == SSE && "Unexpected SSEUp classification");
|
2011-07-12 06:41:29 +08:00
|
|
|
ResType = GetByteVectorType(Ty);
|
2009-06-06 06:08:42 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2010-09-01 08:24:35 +08:00
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
|
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
|
|
// first class struct aggregate with the high and low part: {low, high}
|
|
|
|
if (HighPart)
|
2012-10-09 00:25:52 +08:00
|
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
2010-10-19 14:39:39 +08:00
|
|
|
|
2010-07-30 05:42:50 +08:00
|
|
|
return ABIArgInfo::getDirect(ResType);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-07-29 10:31:05 +08:00
|
|
|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// Keep track of the number of assigned registers.
|
2010-10-19 07:51:38 +08:00
|
|
|
unsigned freeIntRegs = 6, freeSSERegs = 8;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
|
|
// integer register.
|
|
|
|
if (FI.getReturnInfo().isIndirect())
|
|
|
|
--freeIntRegs;
|
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
|
|
|
// get assigned (in left-to-right order) for passing as follows...
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it) {
|
2010-10-19 07:51:38 +08:00
|
|
|
unsigned neededInt, neededSSE;
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
|
|
|
|
neededSSE);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
|
|
|
// eightbyte of an argument, the whole argument is passed on the
|
|
|
|
// stack. If registers have already been assigned for some
|
|
|
|
// eightbytes of such an argument, the assignments get reverted.
|
2010-10-19 07:51:38 +08:00
|
|
|
if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
|
2009-06-06 06:08:42 +08:00
|
|
|
freeIntRegs -= neededInt;
|
|
|
|
freeSSERegs -= neededSSE;
|
|
|
|
} else {
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
it->info = getIndirectResult(it->type, freeIntRegs);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
|
|
|
|
QualType Ty,
|
|
|
|
CodeGenFunction &CGF) {
|
|
|
|
llvm::Value *overflow_arg_area_p =
|
|
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
|
|
|
llvm::Value *overflow_arg_area =
|
|
|
|
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
|
|
|
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
2011-11-18 10:44:19 +08:00
|
|
|
// It isn't stated explicitly in the standard, but in practice we use
|
|
|
|
// alignment greater than 16 where necessary.
|
2009-06-06 06:08:42 +08:00
|
|
|
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
|
|
if (Align > 8) {
|
2011-11-18 10:44:19 +08:00
|
|
|
// overflow_arg_area = (overflow_arg_area + align - 1) & -align;
|
2009-08-14 05:57:51 +08:00
|
|
|
llvm::Value *Offset =
|
2011-11-18 10:44:19 +08:00
|
|
|
llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
|
2009-06-06 06:08:42 +08:00
|
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
|
|
|
|
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
|
2010-06-27 15:15:29 +08:00
|
|
|
CGF.Int64Ty);
|
2011-11-18 10:44:19 +08:00
|
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
|
2009-06-06 06:08:42 +08:00
|
|
|
overflow_arg_area =
|
|
|
|
CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
|
|
|
overflow_arg_area->getType(),
|
|
|
|
"overflow_arg_area.align");
|
|
|
|
}
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *Res =
|
|
|
|
CGF.Builder.CreateBitCast(overflow_arg_area,
|
2009-07-30 06:16:19 +08:00
|
|
|
llvm::PointerType::getUnqual(LTy));
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
|
|
|
// l->overflow_arg_area + sizeof(type).
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
|
|
|
// an 8 byte boundary.
|
|
|
|
|
|
|
|
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
2009-08-14 05:57:51 +08:00
|
|
|
llvm::Value *Offset =
|
2010-06-27 15:15:29 +08:00
|
|
|
llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
|
2009-06-06 06:08:42 +08:00
|
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
|
|
|
|
"overflow_arg_area.next");
|
|
|
|
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
|
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
|
|
// struct {
|
|
|
|
// i32 gp_offset;
|
|
|
|
// i32 fp_offset;
|
|
|
|
// i8* overflow_arg_area;
|
|
|
|
// i8* reg_save_area;
|
|
|
|
// };
|
2010-10-19 07:51:38 +08:00
|
|
|
unsigned neededInt, neededSSE;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-03-12 02:19:55 +08:00
|
|
|
Ty = CGF.getContext().getCanonicalType(Ty);
|
IRgen/ABI/x86_64: Avoid passing small structs using byval sometimes.
- We do this when it is easy to determine that the backend will pass them on
the stack properly by itself.
Currently LLVM codegen is really bad in some cases with byval, for example, on
the test case here (which is derived from Sema code, which likes to pass
SourceLocations around)::
struct s47 { unsigned a; };
void f47(int,int,int,int,int,int,struct s47);
void test47(int a, struct s47 b) { f47(a, a, a, a, a, a, b); }
we used to emit code like this::
...
movl %esi, -8(%rbp)
movl -8(%rbp), %ecx
movl %ecx, (%rsp)
...
to handle moving the struct onto the stack, which is just appalling.
Now we generate::
movl %esi, (%rsp)
which seems better, no?
llvm-svn: 152462
2012-03-10 09:03:58 +08:00
|
|
|
ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
|
|
|
// in the registers. If not go to step 7.
|
|
|
|
if (!neededInt && !neededSSE)
|
|
|
|
return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
|
|
|
// general purpose registers needed to pass type and num_fp to hold
|
|
|
|
// the number of floating point registers needed.
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
|
|
|
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
|
|
|
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
|
|
|
//
|
|
|
|
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
|
|
|
// register save space).
|
|
|
|
|
|
|
|
llvm::Value *InRegs = 0;
|
|
|
|
llvm::Value *gp_offset_p = 0, *gp_offset = 0;
|
|
|
|
llvm::Value *fp_offset_p = 0, *fp_offset = 0;
|
|
|
|
if (neededInt) {
|
|
|
|
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
|
|
|
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
2010-06-29 05:43:59 +08:00
|
|
|
InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
|
|
|
|
InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (neededSSE) {
|
|
|
|
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
|
|
|
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
|
|
|
llvm::Value *FitsInFP =
|
2010-06-29 05:43:59 +08:00
|
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
|
|
|
|
FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
|
2009-06-06 06:08:42 +08:00
|
|
|
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
|
|
|
|
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
|
|
|
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
|
|
|
// copying to a temporary location in case the parameter is passed
|
|
|
|
// in different register classes or requires an alignment greater
|
|
|
|
// than 8 for general purpose registers and 16 for XMM registers.
|
|
|
|
//
|
|
|
|
// FIXME: This really results in shameful code when we end up needing to
|
|
|
|
// collect arguments from different places; often what should result in a
|
|
|
|
// simple assembling of a structure from scattered addresses has many more
|
|
|
|
// loads than necessary. Can we clean this up?
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *RegAddr =
|
|
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
|
|
|
|
"reg_save_area");
|
|
|
|
if (neededInt && neededSSE) {
|
|
|
|
// FIXME: Cleanup.
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
|
|
|
|
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type *TyLo = ST->getElementType(0);
|
|
|
|
llvm::Type *TyHi = ST->getElementType(1);
|
2010-08-26 14:28:35 +08:00
|
|
|
assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
|
2009-06-06 06:08:42 +08:00
|
|
|
"Unexpected ABI info for mixed regs");
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
|
|
|
|
llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
|
|
llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
2010-02-16 00:14:01 +08:00
|
|
|
llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
|
|
|
|
llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *V =
|
|
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
|
|
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
|
|
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
|
2009-07-15 07:10:40 +08:00
|
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
2009-07-30 06:16:19 +08:00
|
|
|
llvm::PointerType::getUnqual(LTy));
|
2009-06-06 06:08:42 +08:00
|
|
|
} else if (neededInt) {
|
|
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
2009-07-30 06:16:19 +08:00
|
|
|
llvm::PointerType::getUnqual(LTy));
|
2010-06-29 04:05:43 +08:00
|
|
|
} else if (neededSSE == 1) {
|
|
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
|
|
|
llvm::PointerType::getUnqual(LTy));
|
2009-06-06 06:08:42 +08:00
|
|
|
} else {
|
2010-06-29 04:05:43 +08:00
|
|
|
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
|
|
|
// SSE registers are spaced 16 bytes apart in the register save
|
|
|
|
// area, we need to collect the two eightbytes together.
|
|
|
|
llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
2010-06-29 05:43:59 +08:00
|
|
|
llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *DoubleTy = CGF.DoubleTy;
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type *DblPtrTy =
|
2010-06-29 04:05:43 +08:00
|
|
|
llvm::PointerType::getUnqual(DoubleTy);
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::StructType *ST = llvm::StructType::get(DoubleTy,
|
2010-06-29 04:05:43 +08:00
|
|
|
DoubleTy, NULL);
|
|
|
|
llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
|
|
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
|
|
|
|
DblPtrTy));
|
|
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
|
|
|
|
DblPtrTy));
|
|
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
|
|
|
llvm::PointerType::getUnqual(LTy));
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
|
|
|
// l->gp_offset = l->gp_offset + num_gp * 8
|
|
|
|
// l->fp_offset = l->fp_offset + num_fp * 16.
|
|
|
|
if (neededInt) {
|
2010-06-27 15:15:29 +08:00
|
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
|
2009-06-06 06:08:42 +08:00
|
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
|
|
|
gp_offset_p);
|
|
|
|
}
|
|
|
|
if (neededSSE) {
|
2010-06-27 15:15:29 +08:00
|
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
|
2009-06-06 06:08:42 +08:00
|
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
|
|
|
fp_offset_p);
|
|
|
|
}
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
|
|
|
|
|
|
CGF.EmitBlock(InMemBlock);
|
|
|
|
llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
|
|
|
|
// Return the appropriate result.
|
|
|
|
|
|
|
|
CGF.EmitBlock(ContBlock);
|
2011-03-30 19:28:58 +08:00
|
|
|
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
|
2009-06-06 06:08:42 +08:00
|
|
|
"vaarg.addr");
|
|
|
|
ResAddr->addIncoming(RegAddr, InRegBlock);
|
|
|
|
ResAddr->addIncoming(MemAddr, InMemBlock);
|
|
|
|
return ResAddr;
|
|
|
|
}
|
|
|
|
|
2011-01-18 06:56:31 +08:00
|
|
|
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
|
|
|
|
|
|
|
|
if (Ty->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
2011-01-19 08:11:33 +08:00
|
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
|
|
|
|
RT->getDecl()->hasFlexibleArrayMember())
|
2011-01-18 06:56:31 +08:00
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
2011-02-22 11:56:57 +08:00
|
|
|
// FIXME: mingw-w64-gcc emits 128-bit struct as i128
|
|
|
|
if (Size == 128 &&
|
2012-01-26 06:46:34 +08:00
|
|
|
getContext().getTargetInfo().getTriple().getOS()
|
|
|
|
== llvm::Triple::MinGW32)
|
2011-02-22 11:56:57 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
|
|
Size));
|
|
|
|
|
|
|
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
|
|
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
|
|
|
if (Size <= 64 &&
|
2011-01-19 08:11:33 +08:00
|
|
|
(Size & (Size - 1)) == 0)
|
2011-01-18 06:56:31 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
|
|
Size));
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ty->isPromotableIntegerType())
|
|
|
|
return ABIArgInfo::getExtend();
|
|
|
|
|
|
|
|
return ABIArgInfo::getDirect();
|
|
|
|
}
|
|
|
|
|
|
|
|
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
|
|
|
|
QualType RetTy = FI.getReturnType();
|
|
|
|
FI.getReturnInfo() = classify(RetTy);
|
|
|
|
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classify(it->type);
|
|
|
|
}
|
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
2010-09-01 00:44:54 +08:00
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
|
|
"ap");
|
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
llvm::Type *PTy =
|
|
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
|
|
|
|
uint64_t Offset =
|
|
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
|
|
|
|
llvm::Value *NextAddr =
|
|
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
2010-06-29 04:05:43 +08:00
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
return AddrTyped;
|
|
|
|
}
|
2010-06-29 04:05:43 +08:00
|
|
|
|
2010-03-11 08:10:12 +08:00
|
|
|
// PowerPC-32
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
|
|
public:
|
2010-07-29 10:01:43 +08:00
|
|
|
PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-03-11 08:10:12 +08:00
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
|
|
|
// This is recovered from gcc output.
|
|
|
|
return 1; // r1 is the dedicated stack pointer
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
2010-08-26 02:17:27 +08:00
|
|
|
llvm::Value *Address) const;
|
2010-03-11 08:10:12 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
|
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
2010-03-11 08:10:12 +08:00
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
|
|
|
|
|
|
|
// 0-31: r0-31, the 4-byte general-purpose registers
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Four8, 0, 31);
|
2010-03-11 08:10:12 +08:00
|
|
|
|
|
|
|
// 32-63: fp0-31, the 8-byte floating-point registers
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
2010-03-11 08:10:12 +08:00
|
|
|
|
|
|
|
// 64-76 are various 4-byte special-purpose registers:
|
|
|
|
// 64: mq
|
|
|
|
// 65: lr
|
|
|
|
// 66: ctr
|
|
|
|
// 67: ap
|
|
|
|
// 68-75 cr0-7
|
|
|
|
// 76: xer
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Four8, 64, 76);
|
2010-03-11 08:10:12 +08:00
|
|
|
|
|
|
|
// 77-108: v0-31, the 16-byte vector registers
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
2010-03-11 08:10:12 +08:00
|
|
|
|
|
|
|
// 109: vrsave
|
|
|
|
// 110: vscr
|
|
|
|
// 111: spe_acc
|
|
|
|
// 112: spefscr
|
|
|
|
// 113: sfp
|
2010-05-27 14:19:26 +08:00
|
|
|
AssignToArrayRange(Builder, Address, Four8, 109, 113);
|
2010-03-11 08:10:12 +08:00
|
|
|
|
2010-08-26 02:17:27 +08:00
|
|
|
return false;
|
2010-03-11 08:10:12 +08:00
|
|
|
}
|
|
|
|
|
2012-05-10 02:22:46 +08:00
|
|
|
// PowerPC-64
|
|
|
|
|
|
|
|
namespace {
|
2012-10-04 03:18:57 +08:00
|
|
|
/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
|
|
|
|
class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
|
|
|
|
|
|
|
|
public:
|
|
|
|
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
|
|
|
|
// TODO: Could override computeInfo to model the ABI more completely if
|
|
|
|
// it would be helpful. Example: We might remove the byVal flag from
|
|
|
|
// aggregate arguments that fit in a register to avoid pushing them to
|
|
|
|
// memory on function entry. Note that this is a performance optimization,
|
|
|
|
// not a compliance issue. In general we prefer to keep ABI details in
|
|
|
|
// the back end where possible, but modifying an argument flag seems like
|
|
|
|
// a good thing to do before invoking the back end.
|
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
|
|
|
|
QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
|
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
|
|
|
// This is recovered from gcc output.
|
|
|
|
return 1; // r1 is the dedicated stack pointer
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const;
|
|
|
|
};
|
|
|
|
|
2012-05-10 02:22:46 +08:00
|
|
|
class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
|
|
|
// This is recovered from gcc output.
|
|
|
|
return 1; // r1 is the dedicated stack pointer
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2012-10-04 03:18:57 +08:00
|
|
|
// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
|
|
|
|
llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
|
|
|
|
QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
|
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
|
|
|
|
// Handle address alignment for type alignment > 64 bits. Although
|
|
|
|
// long double normally requires 16-byte alignment, this is not the
|
|
|
|
// case when it is passed as an argument; so handle that special case.
|
|
|
|
const BuiltinType *BT = Ty->getAs<BuiltinType>();
|
|
|
|
unsigned TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
|
|
|
|
|
|
if (TyAlign > 8 && (!BT || !BT->isFloatingPoint())) {
|
|
|
|
assert((TyAlign & (TyAlign - 1)) == 0 &&
|
|
|
|
"Alignment is not power of 2!");
|
|
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(TyAlign - 1));
|
|
|
|
AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(~(TyAlign - 1)));
|
|
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the va_list pointer.
|
|
|
|
unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
|
|
|
|
unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
|
|
|
|
llvm::Value *NextAddr =
|
|
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
|
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
|
|
|
|
// If the argument is smaller than 8 bytes, it is right-adjusted in
|
|
|
|
// its doubleword slot. Adjust the pointer to pick it up from the
|
|
|
|
// correct offset.
|
|
|
|
if (SizeInBytes < 8) {
|
|
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
|
|
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
|
|
return Builder.CreateBitCast(Addr, PTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) {
|
2012-05-10 02:22:46 +08:00
|
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
|
|
|
|
|
|
|
// 0-31: r0-31, the 8-byte general-purpose registers
|
|
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
|
|
|
|
// 32-63: fp0-31, the 8-byte floating-point registers
|
|
|
|
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
|
|
|
|
|
|
|
// 64-76 are various 4-byte special-purpose registers:
|
|
|
|
// 64: mq
|
|
|
|
// 65: lr
|
|
|
|
// 66: ctr
|
|
|
|
// 67: ap
|
|
|
|
// 68-75 cr0-7
|
|
|
|
// 76: xer
|
|
|
|
AssignToArrayRange(Builder, Address, Four8, 64, 76);
|
|
|
|
|
|
|
|
// 77-108: v0-31, the 16-byte vector registers
|
|
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
|
|
|
|
|
|
|
// 109: vrsave
|
|
|
|
// 110: vscr
|
|
|
|
// 111: spe_acc
|
|
|
|
// 112: spefscr
|
|
|
|
// 113: sfp
|
|
|
|
AssignToArrayRange(Builder, Address, Four8, 109, 113);
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
2010-03-11 08:10:12 +08:00
|
|
|
|
2012-10-04 03:18:57 +08:00
|
|
|
bool
|
|
|
|
PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
|
|
CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
|
|
|
|
|
|
|
return PPC64_initDwarfEHRegSizeTable(CGF, Address);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
|
|
|
|
|
|
|
return PPC64_initDwarfEHRegSizeTable(CGF, Address);
|
|
|
|
}
|
|
|
|
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2009-09-12 08:59:49 +08:00
|
|
|
// ARM ABI Implementation
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2009-09-12 08:59:49 +08:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
class ARMABIInfo : public ABIInfo {
|
2009-09-12 09:00:39 +08:00
|
|
|
public:
|
|
|
|
enum ABIKind {
|
|
|
|
APCS = 0,
|
|
|
|
AAPCS = 1,
|
|
|
|
AAPCS_VFP
|
|
|
|
};
|
|
|
|
|
|
|
|
private:
|
|
|
|
ABIKind Kind;
|
|
|
|
|
|
|
|
public:
|
2010-07-29 10:01:43 +08:00
|
|
|
ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
|
2009-09-12 09:00:39 +08:00
|
|
|
|
2011-08-30 09:42:09 +08:00
|
|
|
bool isEABI() const {
|
2012-01-26 06:46:34 +08:00
|
|
|
StringRef Env =
|
|
|
|
getContext().getTargetInfo().getTriple().getEnvironmentName();
|
2012-09-02 17:30:11 +08:00
|
|
|
return (Env == "gnueabi" || Env == "eabi" ||
|
|
|
|
Env == "android" || Env == "androideabi");
|
2011-08-30 09:42:09 +08:00
|
|
|
}
|
|
|
|
|
2009-09-12 09:00:39 +08:00
|
|
|
private:
|
|
|
|
ABIKind getABIKind() const { return Kind; }
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2010-07-29 10:31:05 +08:00
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
2010-07-29 10:01:43 +08:00
|
|
|
ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
|
|
|
|
:TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
|
2010-03-06 08:35:14 +08:00
|
|
|
|
2011-08-30 09:42:09 +08:00
|
|
|
const ARMABIInfo &getABIInfo() const {
|
|
|
|
return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
|
|
}
|
|
|
|
|
2010-03-06 08:35:14 +08:00
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
|
|
|
return 13;
|
|
|
|
}
|
2011-05-19 03:36:54 +08:00
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const {
|
2011-06-16 07:02:42 +08:00
|
|
|
return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
|
|
|
|
}
|
|
|
|
|
2011-05-19 03:36:54 +08:00
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
2011-05-19 03:36:54 +08:00
|
|
|
|
|
|
|
// 0-15 are the 16 integer registers.
|
2012-02-07 08:39:47 +08:00
|
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
|
2011-05-19 03:36:54 +08:00
|
|
|
return false;
|
|
|
|
}
|
2011-08-30 09:42:09 +08:00
|
|
|
|
|
|
|
unsigned getSizeOfUnwindException() const {
|
|
|
|
if (getABIInfo().isEABI()) return 88;
|
|
|
|
return TargetCodeGenInfo::getSizeOfUnwindException();
|
|
|
|
}
|
2010-01-10 20:58:08 +08:00
|
|
|
};
|
|
|
|
|
2009-09-12 08:59:49 +08:00
|
|
|
}
|
|
|
|
|
2010-07-29 10:31:05 +08:00
|
|
|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
2010-07-29 10:16:43 +08:00
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
2009-06-06 06:08:42 +08:00
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
2010-07-29 10:16:43 +08:00
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classifyArgumentType(it->type);
|
2009-09-12 09:00:39 +08:00
|
|
|
|
2011-04-15 04:06:49 +08:00
|
|
|
// Always honor user-specified calling convention.
|
|
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Calling convention as default by an ABI.
|
2010-06-17 00:13:39 +08:00
|
|
|
llvm::CallingConv::ID DefaultCC;
|
2011-08-30 09:42:09 +08:00
|
|
|
if (isEABI())
|
2010-06-17 00:13:39 +08:00
|
|
|
DefaultCC = llvm::CallingConv::ARM_AAPCS;
|
2010-06-17 03:01:17 +08:00
|
|
|
else
|
|
|
|
DefaultCC = llvm::CallingConv::ARM_APCS;
|
2010-06-17 00:13:39 +08:00
|
|
|
|
2011-04-15 04:06:49 +08:00
|
|
|
// If user did not ask for specific calling convention explicitly (e.g. via
|
|
|
|
// pcs attribute), set effective calling convention if it's different than ABI
|
|
|
|
// default.
|
2009-09-12 09:00:39 +08:00
|
|
|
switch (getABIKind()) {
|
|
|
|
case APCS:
|
2010-06-17 00:13:39 +08:00
|
|
|
if (DefaultCC != llvm::CallingConv::ARM_APCS)
|
|
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
|
2009-09-12 09:00:39 +08:00
|
|
|
break;
|
|
|
|
case AAPCS:
|
2010-06-17 00:13:39 +08:00
|
|
|
if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
|
|
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
|
2009-09-12 09:00:39 +08:00
|
|
|
break;
|
|
|
|
case AAPCS_VFP:
|
2011-04-15 04:06:49 +08:00
|
|
|
if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
|
|
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
|
2009-09-12 09:00:39 +08:00
|
|
|
break;
|
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2011-08-03 13:58:22 +08:00
|
|
|
/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
|
|
|
|
/// aggregate. If HAMembers is non-null, the number of base elements
|
|
|
|
/// contained in the type is returned through it; this is used for the
|
|
|
|
/// recursive calls that check aggregate component types.
|
|
|
|
static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
|
|
ASTContext &Context,
|
|
|
|
uint64_t *HAMembers = 0) {
|
2012-04-13 19:22:00 +08:00
|
|
|
uint64_t Members = 0;
|
2011-08-03 13:58:22 +08:00
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
|
|
if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
|
|
|
|
return false;
|
|
|
|
Members *= AT->getSize().getZExtValue();
|
|
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
2012-04-13 19:22:00 +08:00
|
|
|
if (RD->hasFlexibleArrayMember())
|
2011-08-03 13:58:22 +08:00
|
|
|
return false;
|
2012-04-13 19:22:00 +08:00
|
|
|
|
2011-08-03 13:58:22 +08:00
|
|
|
Members = 0;
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl *FD = *i;
|
2011-08-03 13:58:22 +08:00
|
|
|
uint64_t FldMembers;
|
|
|
|
if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
|
|
|
|
return false;
|
2012-04-13 19:22:00 +08:00
|
|
|
|
|
|
|
Members = (RD->isUnion() ?
|
|
|
|
std::max(Members, FldMembers) : Members + FldMembers);
|
2011-08-03 13:58:22 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Members = 1;
|
|
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
|
|
Members = 2;
|
|
|
|
Ty = CT->getElementType();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Homogeneous aggregates for AAPCS-VFP must have base types of float,
|
|
|
|
// double, or 64-bit or 128-bit vectors.
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
|
|
if (BT->getKind() != BuiltinType::Float &&
|
2012-07-21 06:29:29 +08:00
|
|
|
BT->getKind() != BuiltinType::Double &&
|
|
|
|
BT->getKind() != BuiltinType::LongDouble)
|
2011-08-03 13:58:22 +08:00
|
|
|
return false;
|
|
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
|
|
unsigned VecSize = Context.getTypeSize(VT);
|
|
|
|
if (VecSize != 64 && VecSize != 128)
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The base type must be the same for all members. Vector types of the
|
|
|
|
// same total size are treated as being equivalent here.
|
|
|
|
const Type *TyPtr = Ty.getTypePtr();
|
|
|
|
if (!Base)
|
|
|
|
Base = TyPtr;
|
|
|
|
if (Base != TyPtr &&
|
|
|
|
(!Base->isVectorType() || !TyPtr->isVectorType() ||
|
|
|
|
Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Homogeneous Aggregates can have at most 4 members of the base type.
|
|
|
|
if (HAMembers)
|
|
|
|
*HAMembers = Members;
|
2012-04-13 19:22:00 +08:00
|
|
|
|
|
|
|
return (Members > 0 && Members <= 4);
|
2011-08-03 13:58:22 +08:00
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
|
2010-08-22 18:59:02 +08:00
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
2010-02-03 04:10:50 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
2009-06-06 17:36:29 +08:00
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2010-02-03 04:10:50 +08:00
|
|
|
}
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2009-09-15 05:54:03 +08:00
|
|
|
// Ignore empty records.
|
2010-07-29 10:16:43 +08:00
|
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
2009-09-15 05:54:03 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2010-06-08 10:42:08 +08:00
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
2011-08-03 13:58:22 +08:00
|
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
|
|
|
|
// Homogeneous Aggregates need to be expanded.
|
|
|
|
const Type *Base = 0;
|
2012-04-13 19:22:00 +08:00
|
|
|
if (isHomogeneousAggregate(Ty, Base, getContext())) {
|
|
|
|
assert(Base && "Base class should be set for homogeneous aggregate");
|
2011-08-03 13:58:22 +08:00
|
|
|
return ABIArgInfo::getExpand();
|
2012-04-13 19:22:00 +08:00
|
|
|
}
|
2011-08-03 13:58:22 +08:00
|
|
|
}
|
|
|
|
|
2012-08-14 05:23:55 +08:00
|
|
|
// Support byval for ARM.
|
|
|
|
if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
|
|
|
|
getContext().getTypeAlign(Ty) > 64) {
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
|
2012-08-09 08:31:40 +08:00
|
|
|
}
|
|
|
|
|
2010-09-23 09:54:28 +08:00
|
|
|
// Otherwise, pass by coercing to a structure of the appropriate size.
|
2011-07-18 12:24:23 +08:00
|
|
|
llvm::Type* ElemTy;
|
2009-06-06 06:08:42 +08:00
|
|
|
unsigned SizeRegs;
|
2012-08-09 08:31:40 +08:00
|
|
|
// FIXME: Try to match the types of the arguments more accurately where
|
|
|
|
// we can.
|
|
|
|
if (getContext().getTypeAlign(Ty) <= 32) {
|
2011-08-02 07:39:04 +08:00
|
|
|
ElemTy = llvm::Type::getInt32Ty(getVMContext());
|
|
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
2012-06-26 06:04:00 +08:00
|
|
|
} else {
|
|
|
|
ElemTy = llvm::Type::getInt64Ty(getVMContext());
|
|
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
2011-04-29 02:16:06 +08:00
|
|
|
|
2011-07-10 01:41:47 +08:00
|
|
|
llvm::Type *STy =
|
2011-06-19 06:49:11 +08:00
|
|
|
llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
|
2011-04-29 02:16:06 +08:00
|
|
|
return ABIArgInfo::getDirect(STy);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
|
2009-09-13 16:03:58 +08:00
|
|
|
llvm::LLVMContext &VMContext) {
|
|
|
|
// APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
|
|
|
|
// is called integer-like if its size is less than or equal to one word, and
|
|
|
|
// the offset of each of its addressable sub-fields is zero.
|
|
|
|
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
|
|
|
|
// Check that the type fits in a word.
|
|
|
|
if (Size > 32)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// FIXME: Handle vector types!
|
|
|
|
if (Ty->isVectorType())
|
|
|
|
return false;
|
|
|
|
|
2009-09-14 10:20:34 +08:00
|
|
|
// Float types are never treated as "integer like".
|
|
|
|
if (Ty->isRealFloatingType())
|
|
|
|
return false;
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
// If this is a builtin or pointer type then it is ok.
|
2009-09-22 07:43:11 +08:00
|
|
|
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
|
2009-09-13 16:03:58 +08:00
|
|
|
return true;
|
|
|
|
|
2010-02-02 07:31:26 +08:00
|
|
|
// Small complex integer types are "integer like".
|
|
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>())
|
|
|
|
return isIntegerLikeType(CT->getElementType(), Context, VMContext);
|
2009-09-13 16:03:58 +08:00
|
|
|
|
|
|
|
// Single element and zero sized arrays should be allowed, by the definition
|
|
|
|
// above, but they are not.
|
|
|
|
|
|
|
|
// Otherwise, it must be a record type.
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
if (!RT) return false;
|
|
|
|
|
|
|
|
// Ignore records with flexible arrays.
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
if (RD->hasFlexibleArrayMember())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Check that all sub-fields are at offset 0, and are themselves "integer
|
|
|
|
// like".
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
bool HadField = false;
|
|
|
|
unsigned idx = 0;
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i, ++idx) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl *FD = *i;
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2010-01-29 11:22:29 +08:00
|
|
|
// Bit-fields are not addressable, we only need to verify they are "integer
|
|
|
|
// like". We still have to disallow a subsequent non-bitfield, for example:
|
|
|
|
// struct { int : 0; int x }
|
|
|
|
// is non-integer like according to gcc.
|
|
|
|
if (FD->isBitField()) {
|
|
|
|
if (!RD->isUnion())
|
|
|
|
HadField = true;
|
|
|
|
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
|
|
return false;
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2010-01-29 11:22:29 +08:00
|
|
|
continue;
|
2009-09-13 16:03:58 +08:00
|
|
|
}
|
|
|
|
|
2010-01-29 11:22:29 +08:00
|
|
|
// Check if this field is at offset 0.
|
|
|
|
if (Layout.getFieldOffset(idx) != 0)
|
|
|
|
return false;
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
|
|
return false;
|
2010-08-26 02:17:27 +08:00
|
|
|
|
2010-01-29 11:22:29 +08:00
|
|
|
// Only allow at most one field in a structure. This doesn't match the
|
|
|
|
// wording above, but follows gcc in situations with a field following an
|
|
|
|
// empty structure.
|
2009-09-13 16:03:58 +08:00
|
|
|
if (!RD->isUnion()) {
|
|
|
|
if (HadField)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
HadField = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
|
2009-09-13 16:03:58 +08:00
|
|
|
if (RetTy->isVoidType())
|
2009-06-06 06:08:42 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2010-09-23 09:54:32 +08:00
|
|
|
// Large vector types should be returned via memory.
|
|
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
2010-08-22 18:59:02 +08:00
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
2010-02-03 04:10:50 +08:00
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
2009-06-06 17:36:29 +08:00
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
2010-02-03 04:10:50 +08:00
|
|
|
}
|
2009-09-13 16:03:58 +08:00
|
|
|
|
2010-06-08 10:42:08 +08:00
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
// Are we following APCS?
|
|
|
|
if (getABIKind() == APCS) {
|
2010-07-29 10:16:43 +08:00
|
|
|
if (isEmptyRecord(getContext(), RetTy, false))
|
2009-09-13 16:03:58 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2010-02-02 07:31:19 +08:00
|
|
|
// Complex types are all returned as packed integers.
|
|
|
|
//
|
|
|
|
// FIXME: Consider using 2 x vector types if the back end handles them
|
|
|
|
// correctly.
|
|
|
|
if (RetTy->isAnyComplexType())
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
2010-07-29 10:16:43 +08:00
|
|
|
getContext().getTypeSize(RetTy)));
|
2010-02-02 07:31:19 +08:00
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
// Integer like structures are returned in r0.
|
2010-07-29 10:16:43 +08:00
|
|
|
if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
|
2009-09-13 16:03:58 +08:00
|
|
|
// Return in the smallest viable integer type.
|
2010-07-29 10:16:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
2009-09-13 16:03:58 +08:00
|
|
|
if (Size <= 8)
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
2009-09-13 16:03:58 +08:00
|
|
|
if (Size <= 16)
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
2009-09-13 16:03:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise return in memory.
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
2009-09-13 16:03:58 +08:00
|
|
|
|
|
|
|
// Otherwise this is an AAPCS variant.
|
|
|
|
|
2010-07-29 10:16:43 +08:00
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
2009-09-14 08:56:55 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2011-11-02 12:51:36 +08:00
|
|
|
// Check for homogeneous aggregates with AAPCS-VFP.
|
|
|
|
if (getABIKind() == AAPCS_VFP) {
|
|
|
|
const Type *Base = 0;
|
2012-04-13 19:22:00 +08:00
|
|
|
if (isHomogeneousAggregate(RetTy, Base, getContext())) {
|
|
|
|
assert(Base && "Base class should be set for homogeneous aggregate");
|
2011-11-02 12:51:36 +08:00
|
|
|
// Homogeneous Aggregates are returned directly.
|
|
|
|
return ABIArgInfo::getDirect();
|
2012-04-13 19:22:00 +08:00
|
|
|
}
|
2011-11-02 12:51:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
// Aggregates <= 4 bytes are returned in r0; other aggregates
|
|
|
|
// are returned indirectly.
|
2010-07-29 10:16:43 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
2009-09-14 08:56:55 +08:00
|
|
|
if (Size <= 32) {
|
|
|
|
// Return in the smallest viable integer type.
|
|
|
|
if (Size <= 8)
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
2009-09-14 08:56:55 +08:00
|
|
|
if (Size <= 16)
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
2009-09-14 08:56:55 +08:00
|
|
|
}
|
|
|
|
|
2009-09-13 16:03:58 +08:00
|
|
|
return ABIArgInfo::getIndirect(0);
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
2010-06-27 15:15:29 +08:00
|
|
|
CodeGenFunction &CGF) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
2011-08-03 06:33:37 +08:00
|
|
|
// Handle address alignment for type alignment > 32 bits
|
|
|
|
uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
|
|
if (TyAlign > 4) {
|
|
|
|
assert((TyAlign & (TyAlign - 1)) == 0 &&
|
|
|
|
"Alignment is not power of 2!");
|
|
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
|
|
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
|
|
|
|
AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
|
|
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
|
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Type *PTy =
|
2009-07-30 06:16:19 +08:00
|
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
2009-06-06 06:08:42 +08:00
|
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
|
|
|
|
uint64_t Offset =
|
|
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
|
|
llvm::Value *NextAddr =
|
2010-06-27 15:15:29 +08:00
|
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
2009-06-06 06:08:42 +08:00
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
|
|
|
|
return AddrTyped;
|
|
|
|
}
|
|
|
|
|
2011-04-22 19:10:38 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2012-05-25 01:43:12 +08:00
|
|
|
// NVPTX ABI Implementation
|
2011-04-22 19:10:38 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
class NVPTXABIInfo : public ABIInfo {
|
2011-04-22 19:10:38 +08:00
|
|
|
public:
|
2012-05-25 01:43:12 +08:00
|
|
|
NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
2011-04-22 19:10:38 +08:00
|
|
|
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CFG) const;
|
|
|
|
};
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
|
2011-04-22 19:10:38 +08:00
|
|
|
public:
|
2012-05-25 01:43:12 +08:00
|
|
|
NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
|
2011-10-06 01:58:44 +08:00
|
|
|
|
2011-10-14 00:24:41 +08:00
|
|
|
virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const;
|
2011-04-22 19:10:38 +08:00
|
|
|
};
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
|
2011-04-22 19:10:38 +08:00
|
|
|
if (RetTy->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
return ABIArgInfo::getDirect();
|
|
|
|
}
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
|
2011-04-22 19:10:38 +08:00
|
|
|
if (isAggregateTypeForABI(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
return ABIArgInfo::getDirect();
|
|
|
|
}
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
2011-04-22 19:10:38 +08:00
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classifyArgumentType(it->type);
|
|
|
|
|
|
|
|
// Always honor user-specified calling convention.
|
|
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Calling convention as default by an ABI.
|
2012-05-25 01:43:12 +08:00
|
|
|
// We're still using the PTX_Kernel/PTX_Device calling conventions here,
|
|
|
|
// but we should switch to NVVM metadata later on.
|
2011-04-22 19:10:38 +08:00
|
|
|
llvm::CallingConv::ID DefaultCC;
|
2012-03-11 15:00:24 +08:00
|
|
|
const LangOptions &LangOpts = getContext().getLangOpts();
|
2011-10-07 00:49:54 +08:00
|
|
|
if (LangOpts.OpenCL || LangOpts.CUDA) {
|
|
|
|
// If we are in OpenCL or CUDA mode, then default to device functions
|
2011-04-22 19:10:38 +08:00
|
|
|
DefaultCC = llvm::CallingConv::PTX_Device;
|
2011-10-06 01:58:44 +08:00
|
|
|
} else {
|
|
|
|
// If we are in standard C/C++ mode, use the triple to decide on the default
|
|
|
|
StringRef Env =
|
|
|
|
getContext().getTargetInfo().getTriple().getEnvironmentName();
|
|
|
|
if (Env == "device")
|
|
|
|
DefaultCC = llvm::CallingConv::PTX_Device;
|
|
|
|
else
|
|
|
|
DefaultCC = llvm::CallingConv::PTX_Kernel;
|
|
|
|
}
|
2011-04-22 19:10:38 +08:00
|
|
|
FI.setEffectiveCallingConvention(DefaultCC);
|
2011-10-06 01:58:44 +08:00
|
|
|
|
2011-04-22 19:10:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CFG) const {
|
|
|
|
llvm_unreachable("NVPTX does not support varargs");
|
2011-04-22 19:10:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-25 01:43:12 +08:00
|
|
|
void NVPTXTargetCodeGenInfo::
|
|
|
|
SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const{
|
2011-10-06 01:58:44 +08:00
|
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
|
|
if (!FD) return;
|
|
|
|
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
|
|
|
|
// Perform special handling in OpenCL mode
|
2012-03-11 15:00:24 +08:00
|
|
|
if (M.getLangOpts().OpenCL) {
|
2011-10-06 01:58:44 +08:00
|
|
|
// Use OpenCL function attributes to set proper calling conventions
|
|
|
|
// By default, all functions are device functions
|
|
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
|
|
// OpenCL __kernel functions get a kernel calling convention
|
2011-10-07 00:49:54 +08:00
|
|
|
F->setCallingConv(llvm::CallingConv::PTX_Kernel);
|
2011-10-06 01:58:44 +08:00
|
|
|
// And kernel functions are not subject to inlining
|
2012-10-10 11:13:20 +08:00
|
|
|
F->addFnAttr(llvm::Attributes::NoInline);
|
2011-10-06 01:58:44 +08:00
|
|
|
}
|
2011-10-07 00:49:54 +08:00
|
|
|
}
|
2011-10-06 01:58:44 +08:00
|
|
|
|
2011-10-07 00:49:54 +08:00
|
|
|
// Perform special handling in CUDA mode.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (M.getLangOpts().CUDA) {
|
2011-10-07 00:49:54 +08:00
|
|
|
// CUDA __global__ functions get a kernel calling convention. Since
|
|
|
|
// __global__ functions cannot be called from the device, we do not
|
|
|
|
// need to set the noinline attribute.
|
|
|
|
if (FD->getAttr<CUDAGlobalAttr>())
|
|
|
|
F->setCallingConv(llvm::CallingConv::PTX_Kernel);
|
2011-10-06 01:58:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-04-22 19:10:38 +08:00
|
|
|
}
|
|
|
|
|
2010-12-20 03:57:51 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// MBlaze ABI Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class MBlazeABIInfo : public ABIInfo {
|
|
|
|
public:
|
|
|
|
MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
|
|
|
|
bool isPromotableIntegerType(QualType Ty) const;
|
|
|
|
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classifyArgumentType(it->type);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
|
|
|
|
// MBlaze ABI requires all 8 and 16 bit quantities to be extended.
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
|
|
switch (BT->getKind()) {
|
|
|
|
case BuiltinType::Bool:
|
|
|
|
case BuiltinType::Char_S:
|
|
|
|
case BuiltinType::Char_U:
|
|
|
|
case BuiltinType::SChar:
|
|
|
|
case BuiltinType::UChar:
|
|
|
|
case BuiltinType::Short:
|
|
|
|
case BuiltinType::UShort:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
|
|
|
// FIXME: Implement
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
|
|
|
|
if (RetTy->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
return (isPromotableIntegerType(RetTy) ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
|
|
|
|
if (isAggregateTypeForABI(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
return (isPromotableIntegerType(Ty) ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
|
|
llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M)
|
|
|
|
const {
|
|
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
|
|
if (!FD) return;
|
2011-02-17 16:50:50 +08:00
|
|
|
|
2010-12-20 03:57:51 +08:00
|
|
|
llvm::CallingConv::ID CC = llvm::CallingConv::C;
|
|
|
|
if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
|
|
|
|
CC = llvm::CallingConv::MBLAZE_INTR;
|
|
|
|
else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
|
|
|
|
CC = llvm::CallingConv::MBLAZE_SVOL;
|
|
|
|
|
|
|
|
if (CC != llvm::CallingConv::C) {
|
|
|
|
// Handle 'interrupt_handler' attribute:
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
|
|
|
|
// Step 1: Set ISR calling convention.
|
|
|
|
F->setCallingConv(CC);
|
|
|
|
|
|
|
|
// Step 2: Add attributes goodness.
|
2012-10-10 11:13:20 +08:00
|
|
|
F->addFnAttr(llvm::Attributes::NoInline);
|
2010-12-20 03:57:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Step 3: Emit _interrupt_handler alias.
|
|
|
|
if (CC == llvm::CallingConv::MBLAZE_INTR)
|
|
|
|
new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
|
|
|
|
"_interrupt_handler", GV, &M.getModule());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2010-01-10 20:58:08 +08:00
|
|
|
// MSP430 ABI Implementation
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2010-01-10 20:58:08 +08:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
2010-07-29 10:01:43 +08:00
|
|
|
MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
2010-01-10 20:58:08 +08:00
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const;
|
|
|
|
};
|
|
|
|
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
|
|
llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const {
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
|
|
if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
|
|
|
|
// Handle 'interrupt' attribute:
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
|
|
|
|
// Step 1: Set ISR calling convention.
|
|
|
|
F->setCallingConv(llvm::CallingConv::MSP430_INTR);
|
|
|
|
|
|
|
|
// Step 2: Add attributes goodness.
|
2012-10-10 11:13:20 +08:00
|
|
|
F->addFnAttr(llvm::Attributes::NoInline);
|
2010-01-10 20:58:08 +08:00
|
|
|
|
|
|
|
// Step 3: Emit ISR vector alias.
|
|
|
|
unsigned Num = attr->getNumber() + 0xffe0;
|
|
|
|
new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
|
2011-07-23 18:55:15 +08:00
|
|
|
"vector_" + Twine::utohexstr(Num),
|
2010-01-10 20:58:08 +08:00
|
|
|
GV, &M.getModule());
|
|
|
|
}
|
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
|
|
|
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2010-05-27 14:19:26 +08:00
|
|
|
// MIPS ABI Implementation. This works for both little-endian and
|
|
|
|
// big-endian variants.
|
2010-06-29 04:05:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2010-05-27 14:19:26 +08:00
|
|
|
namespace {
|
2011-06-02 08:09:17 +08:00
|
|
|
class MipsABIInfo : public ABIInfo {
|
2011-11-03 07:14:57 +08:00
|
|
|
bool IsO32;
|
2012-07-04 03:24:06 +08:00
|
|
|
unsigned MinABIStackAlignInBytes, StackAlignInBytes;
|
|
|
|
void CoerceToIntArgs(uint64_t TySize,
|
|
|
|
SmallVector<llvm::Type*, 8> &ArgList) const;
|
2012-05-12 05:56:58 +08:00
|
|
|
llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
|
2012-01-04 11:34:42 +08:00
|
|
|
llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
|
2012-01-10 03:31:25 +08:00
|
|
|
llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
|
2011-06-02 08:09:17 +08:00
|
|
|
public:
|
2011-11-03 08:05:50 +08:00
|
|
|
MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
|
2012-07-04 03:24:06 +08:00
|
|
|
ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
|
|
|
|
StackAlignInBytes(IsO32 ? 8 : 16) {}
|
2011-06-02 08:09:17 +08:00
|
|
|
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
2012-01-07 08:25:33 +08:00
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
|
2011-06-02 08:09:17 +08:00
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
2010-05-27 14:19:26 +08:00
|
|
|
class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
|
2011-09-21 02:23:28 +08:00
|
|
|
unsigned SizeOfUnwindException;
|
2010-05-27 14:19:26 +08:00
|
|
|
public:
|
2011-11-03 07:14:57 +08:00
|
|
|
MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
|
|
|
|
: TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
|
|
|
|
SizeOfUnwindException(IsO32 ? 24 : 32) {}
|
2010-05-27 14:19:26 +08:00
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
|
|
|
return 29;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
2010-08-26 02:17:27 +08:00
|
|
|
llvm::Value *Address) const;
|
2011-08-30 09:42:09 +08:00
|
|
|
|
|
|
|
unsigned getSizeOfUnwindException() const {
|
2011-09-21 02:23:28 +08:00
|
|
|
return SizeOfUnwindException;
|
2011-08-30 09:42:09 +08:00
|
|
|
}
|
2010-05-27 14:19:26 +08:00
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
|
|
|
|
SmallVector<llvm::Type*, 8> &ArgList) const {
|
|
|
|
llvm::IntegerType *IntTy =
|
|
|
|
llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
|
2012-05-12 05:56:58 +08:00
|
|
|
|
|
|
|
// Add (TySize / MinABIStackAlignInBytes) args of IntTy.
|
|
|
|
for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
|
|
|
|
ArgList.push_back(IntTy);
|
|
|
|
|
|
|
|
// If necessary, add one more integer type to ArgList.
|
|
|
|
unsigned R = TySize % (MinABIStackAlignInBytes * 8);
|
|
|
|
|
|
|
|
if (R)
|
|
|
|
ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
|
|
|
|
}
|
|
|
|
|
2011-11-03 07:54:49 +08:00
|
|
|
// In N32/64, an aligned double precision floating point field is passed in
|
|
|
|
// a register.
|
2012-05-12 05:56:58 +08:00
|
|
|
llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
|
2012-07-04 03:24:06 +08:00
|
|
|
SmallVector<llvm::Type*, 8> ArgList, IntArgList;
|
|
|
|
|
|
|
|
if (IsO32) {
|
|
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
|
|
}
|
2011-11-03 07:54:49 +08:00
|
|
|
|
2012-01-12 08:52:17 +08:00
|
|
|
if (Ty->isComplexType())
|
|
|
|
return CGT.ConvertType(Ty);
|
2012-01-11 07:12:19 +08:00
|
|
|
|
2012-02-10 03:54:16 +08:00
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
2011-11-03 07:54:49 +08:00
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
// Unions/vectors are passed in integer registers.
|
|
|
|
if (!RT || !RT->isStructureOrClassType()) {
|
|
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
|
|
}
|
2011-11-03 07:54:49 +08:00
|
|
|
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
2012-05-12 05:56:58 +08:00
|
|
|
assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
|
2011-11-03 07:54:49 +08:00
|
|
|
|
|
|
|
uint64_t LastOffset = 0;
|
|
|
|
unsigned idx = 0;
|
|
|
|
llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
|
|
|
|
|
2012-02-10 03:54:16 +08:00
|
|
|
// Iterate over fields in the struct/class and check if there are any aligned
|
|
|
|
// double fields.
|
2011-11-03 07:54:49 +08:00
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
|
|
i != e; ++i, ++idx) {
|
2012-04-30 10:36:29 +08:00
|
|
|
const QualType Ty = i->getType();
|
2011-11-03 07:54:49 +08:00
|
|
|
const BuiltinType *BT = Ty->getAs<BuiltinType>();
|
|
|
|
|
|
|
|
if (!BT || BT->getKind() != BuiltinType::Double)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
uint64_t Offset = Layout.getFieldOffset(idx);
|
|
|
|
if (Offset % 64) // Ignore doubles that are not aligned.
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Add ((Offset - LastOffset) / 64) args of type i64.
|
|
|
|
for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
|
|
|
|
ArgList.push_back(I64);
|
|
|
|
|
|
|
|
// Add double type.
|
|
|
|
ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
|
|
|
|
LastOffset = Offset + 64;
|
|
|
|
}
|
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
CoerceToIntArgs(TySize - LastOffset, IntArgList);
|
|
|
|
ArgList.append(IntArgList.begin(), IntArgList.end());
|
2011-11-03 07:54:49 +08:00
|
|
|
|
|
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
|
|
}
|
|
|
|
|
2012-01-10 03:31:25 +08:00
|
|
|
llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
|
2012-05-12 05:56:58 +08:00
|
|
|
assert((Offset % MinABIStackAlignInBytes) == 0);
|
|
|
|
|
|
|
|
if ((Align - 1) & Offset)
|
|
|
|
return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
|
2012-01-10 03:31:25 +08:00
|
|
|
|
2012-05-12 05:56:58 +08:00
|
|
|
return 0;
|
2012-01-10 03:31:25 +08:00
|
|
|
}
|
2012-01-11 06:44:52 +08:00
|
|
|
|
2012-01-07 08:25:33 +08:00
|
|
|
ABIArgInfo
|
|
|
|
MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
|
2012-01-10 03:31:25 +08:00
|
|
|
uint64_t OrigOffset = Offset;
|
2012-05-12 05:56:58 +08:00
|
|
|
uint64_t TySize = getContext().getTypeSize(Ty);
|
2012-01-10 03:31:25 +08:00
|
|
|
uint64_t Align = getContext().getTypeAlign(Ty) / 8;
|
2012-05-12 05:56:58 +08:00
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
|
|
|
|
(uint64_t)StackAlignInBytes);
|
2012-05-12 05:56:58 +08:00
|
|
|
Offset = llvm::RoundUpToAlignment(Offset, Align);
|
|
|
|
Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
|
2012-01-10 03:31:25 +08:00
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
|
2011-06-02 08:09:17 +08:00
|
|
|
// Ignore empty aggregates.
|
2012-01-07 08:25:33 +08:00
|
|
|
if (TySize == 0)
|
2011-06-02 08:09:17 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2011-08-02 02:09:58 +08:00
|
|
|
// Records with non trivial destructors/constructors should not be passed
|
|
|
|
// by value.
|
2012-01-07 08:25:33 +08:00
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
|
2012-05-12 05:56:58 +08:00
|
|
|
Offset = OrigOffset + MinABIStackAlignInBytes;
|
2011-08-02 02:09:58 +08:00
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
2012-01-07 08:25:33 +08:00
|
|
|
}
|
2011-08-02 02:09:58 +08:00
|
|
|
|
2012-05-12 05:56:58 +08:00
|
|
|
// If we have reached here, aggregates are passed directly by coercing to
|
|
|
|
// another structure type. Padding is inserted if the offset of the
|
|
|
|
// aggregate is unaligned.
|
|
|
|
return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
|
|
|
|
getPaddingType(Align, OrigOffset));
|
2011-06-02 08:09:17 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
2012-01-10 03:31:25 +08:00
|
|
|
if (Ty->isPromotableIntegerType())
|
|
|
|
return ABIArgInfo::getExtend();
|
|
|
|
|
|
|
|
return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
|
2011-06-02 08:09:17 +08:00
|
|
|
}
|
|
|
|
|
2012-01-04 11:34:42 +08:00
|
|
|
llvm::Type*
|
|
|
|
MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
|
2012-02-10 02:49:26 +08:00
|
|
|
const RecordType *RT = RetTy->getAs<RecordType>();
|
2012-07-04 03:24:06 +08:00
|
|
|
SmallVector<llvm::Type*, 8> RTList;
|
2012-01-04 11:34:42 +08:00
|
|
|
|
2012-02-10 02:49:26 +08:00
|
|
|
if (RT && RT->isStructureOrClassType()) {
|
2012-01-04 11:34:42 +08:00
|
|
|
const RecordDecl *RD = RT->getDecl();
|
2012-02-10 02:49:26 +08:00
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
|
|
unsigned FieldCnt = Layout.getFieldCount();
|
|
|
|
|
|
|
|
// N32/64 returns struct/classes in floating point registers if the
|
|
|
|
// following conditions are met:
|
|
|
|
// 1. The size of the struct/class is no larger than 128-bit.
|
|
|
|
// 2. The struct/class has one or two fields all of which are floating
|
|
|
|
// point types.
|
|
|
|
// 3. The offset of the first field is zero (this follows what gcc does).
|
|
|
|
//
|
|
|
|
// Any other composite results are returned in integer registers.
|
|
|
|
//
|
|
|
|
if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
|
|
|
|
RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
|
|
|
|
for (; b != e; ++b) {
|
2012-04-30 10:36:29 +08:00
|
|
|
const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
|
2012-01-04 11:34:42 +08:00
|
|
|
|
2012-02-10 02:49:26 +08:00
|
|
|
if (!BT || !BT->isFloatingPoint())
|
|
|
|
break;
|
2012-01-04 11:34:42 +08:00
|
|
|
|
2012-04-30 10:36:29 +08:00
|
|
|
RTList.push_back(CGT.ConvertType(b->getType()));
|
2012-02-10 02:49:26 +08:00
|
|
|
}
|
2012-01-04 11:34:42 +08:00
|
|
|
|
2012-02-10 02:49:26 +08:00
|
|
|
if (b == e)
|
|
|
|
return llvm::StructType::get(getVMContext(), RTList,
|
|
|
|
RD->hasAttr<PackedAttr>());
|
2012-01-04 11:34:42 +08:00
|
|
|
|
2012-02-10 02:49:26 +08:00
|
|
|
RTList.clear();
|
|
|
|
}
|
2012-01-04 11:34:42 +08:00
|
|
|
}
|
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
CoerceToIntArgs(Size, RTList);
|
2012-01-04 11:34:42 +08:00
|
|
|
return llvm::StructType::get(getVMContext(), RTList);
|
|
|
|
}
|
|
|
|
|
2011-06-02 08:09:17 +08:00
|
|
|
ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
|
2012-01-24 07:18:57 +08:00
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
|
|
|
|
if (RetTy->isVoidType() || Size == 0)
|
2011-06-02 08:09:17 +08:00
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
2012-05-12 05:01:17 +08:00
|
|
|
if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
|
2012-01-04 11:34:42 +08:00
|
|
|
if (Size <= 128) {
|
|
|
|
if (RetTy->isAnyComplexType())
|
|
|
|
return ABIArgInfo::getDirect();
|
|
|
|
|
2012-07-04 03:24:06 +08:00
|
|
|
// O32 returns integer vectors in registers.
|
|
|
|
if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
|
|
|
|
return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
|
|
|
|
|
2012-02-08 09:31:22 +08:00
|
|
|
if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
|
2012-01-04 11:34:42 +08:00
|
|
|
return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
|
|
|
|
}
|
2011-06-02 08:09:17 +08:00
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
2012-01-12 09:10:09 +08:00
|
|
|
ABIArgInfo &RetInfo = FI.getReturnInfo();
|
|
|
|
RetInfo = classifyReturnType(FI.getReturnType());
|
|
|
|
|
|
|
|
// Check if a pointer to an aggregate is passed as a hidden argument.
|
2012-05-12 05:56:58 +08:00
|
|
|
uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
|
2012-01-12 09:10:09 +08:00
|
|
|
|
2011-06-02 08:09:17 +08:00
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
2012-01-07 08:25:33 +08:00
|
|
|
it->info = classifyArgumentType(it->type, Offset);
|
2011-06-02 08:09:17 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const {
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
2011-08-02 04:48:01 +08:00
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
2012-01-24 07:59:52 +08:00
|
|
|
int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
2011-08-02 04:48:01 +08:00
|
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
|
|
llvm::Value *AddrTyped;
|
2012-01-24 07:59:52 +08:00
|
|
|
unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
|
|
|
|
llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
|
2011-08-02 04:48:01 +08:00
|
|
|
|
|
|
|
if (TypeAlign > MinABIStackAlignInBytes) {
|
2012-01-24 07:59:52 +08:00
|
|
|
llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
|
|
|
|
llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
|
|
|
|
llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
|
|
|
|
llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
|
2011-08-02 04:48:01 +08:00
|
|
|
llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
|
|
|
|
AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
|
|
|
|
llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
|
2012-01-24 07:59:52 +08:00
|
|
|
TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
|
2011-08-02 04:48:01 +08:00
|
|
|
uint64_t Offset =
|
|
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
|
|
|
|
llvm::Value *NextAddr =
|
2012-01-24 07:59:52 +08:00
|
|
|
Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
|
2011-08-02 04:48:01 +08:00
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
|
|
|
|
return AddrTyped;
|
2011-06-02 08:09:17 +08:00
|
|
|
}
|
|
|
|
|
2010-05-27 14:19:26 +08:00
|
|
|
bool
|
|
|
|
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
|
|
llvm::Value *Address) const {
|
|
|
|
// This information comes from gcc's implementation, which seems to
|
|
|
|
// as canonical as it gets.
|
|
|
|
|
|
|
|
// Everything on MIPS is 4 bytes. Double-precision FP registers
|
|
|
|
// are aliased to pairs of single-precision FP registers.
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
2010-05-27 14:19:26 +08:00
|
|
|
|
|
|
|
// 0-31 are the general purpose registers, $0 - $31.
|
|
|
|
// 32-63 are the floating-point registers, $f0 - $f31.
|
|
|
|
// 64 and 65 are the multiply/divide registers, $hi and $lo.
|
|
|
|
// 66 is the (notional, I think) register for signal-handler return.
|
2012-02-07 08:39:47 +08:00
|
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
|
2010-05-27 14:19:26 +08:00
|
|
|
|
|
|
|
// 67-74 are the floating-point status registers, $fcc0 - $fcc7.
|
|
|
|
// They are one bit wide and ignored here.
|
|
|
|
|
|
|
|
// 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
|
|
|
|
// (coprocessor 1 is the FP unit)
|
|
|
|
// 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
|
|
|
|
// 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
|
|
|
|
// 176-181 are the DSP accumulator registers.
|
2012-02-07 08:39:47 +08:00
|
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
|
2010-05-27 14:19:26 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2011-10-14 00:24:41 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
|
|
|
|
// Currently subclassed only to implement custom OpenCL C function attribute
|
|
|
|
// handling.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
TCETargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
: DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
|
|
|
|
virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
|
|
llvm::GlobalValue *GV,
|
|
|
|
CodeGen::CodeGenModule &M) const {
|
|
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
|
|
if (!FD) return;
|
|
|
|
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
|
2012-03-11 15:00:24 +08:00
|
|
|
if (M.getLangOpts().OpenCL) {
|
2011-10-14 00:24:41 +08:00
|
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
|
|
// OpenCL C Kernel functions are not subject to inlining
|
2012-10-10 11:13:20 +08:00
|
|
|
F->addFnAttr(llvm::Attributes::NoInline);
|
2011-10-14 00:24:41 +08:00
|
|
|
|
|
|
|
if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
|
|
|
|
|
|
|
|
// Convert the reqd_work_group_size() attributes to metadata.
|
|
|
|
llvm::LLVMContext &Context = F->getContext();
|
|
|
|
llvm::NamedMDNode *OpenCLMetadata =
|
|
|
|
M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
|
|
|
|
|
|
|
|
SmallVector<llvm::Value*, 5> Operands;
|
|
|
|
Operands.push_back(F);
|
|
|
|
|
2012-02-07 08:39:47 +08:00
|
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
|
|
llvm::APInt(32,
|
|
|
|
FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
|
|
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
|
|
llvm::APInt(32,
|
2011-10-14 00:24:41 +08:00
|
|
|
FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
|
2012-02-07 08:39:47 +08:00
|
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
|
|
llvm::APInt(32,
|
2011-10-14 00:24:41 +08:00
|
|
|
FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
|
|
|
|
|
|
|
|
// Add a boolean constant operand for "required" (true) or "hint" (false)
|
|
|
|
// for implementing the work_group_size_hint attr later. Currently
|
|
|
|
// always true as the hint is not yet implemented.
|
2012-02-07 08:39:47 +08:00
|
|
|
Operands.push_back(llvm::ConstantInt::getTrue(Context));
|
2011-10-14 00:24:41 +08:00
|
|
|
OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2010-05-27 14:19:26 +08:00
|
|
|
|
2011-12-13 05:14:55 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Hexagon ABI Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class HexagonABIInfo : public ABIInfo {
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const;
|
|
|
|
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
|
|
CodeGenFunction &CGF) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
|
|
HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
|
|
:TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
|
|
|
|
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
|
|
|
return 29;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
|
|
it != ie; ++it)
|
|
|
|
it->info = classifyArgumentType(it->type);
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ignore empty records.
|
|
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
if (Size > 64)
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
|
|
|
|
// Pass in the smallest viable integer type.
|
|
|
|
else if (Size > 32)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
|
|
|
|
else if (Size > 16)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
else if (Size > 8)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
else
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
|
|
}
|
|
|
|
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
|
|
|
|
if (RetTy->isVoidType())
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
// Large vector types should be returned via memory.
|
|
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
|
|
// Treat an enum type as its underlying type.
|
|
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
|
|
// copy constructor are always indirect.
|
|
|
|
if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
|
|
|
|
// Aggregates <= 8 bytes are returned in r0; other aggregates
|
|
|
|
// are returned indirectly.
|
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
if (Size <= 64) {
|
|
|
|
// Return in the smallest viable integer type.
|
|
|
|
if (Size <= 8)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
|
|
if (Size <= 16)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
if (Size <= 32)
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
|
|
|
|
}
|
|
|
|
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
2012-02-07 08:39:47 +08:00
|
|
|
CodeGenFunction &CGF) const {
|
2011-12-13 05:14:55 +08:00
|
|
|
// FIXME: Need to handle alignment
|
2012-02-07 08:39:47 +08:00
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
2011-12-13 05:14:55 +08:00
|
|
|
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
|
|
"ap");
|
|
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
llvm::Type *PTy =
|
|
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
|
|
|
|
uint64_t Offset =
|
|
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
|
|
llvm::Value *NextAddr =
|
|
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
|
|
"ap.next");
|
|
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
|
|
|
|
return AddrTyped;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-07-29 10:01:43 +08:00
|
|
|
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
|
2010-01-10 20:58:08 +08:00
|
|
|
if (TheTargetCodeGenInfo)
|
|
|
|
return *TheTargetCodeGenInfo;
|
2009-06-06 06:08:42 +08:00
|
|
|
|
2011-09-02 08:18:52 +08:00
|
|
|
const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
|
2009-08-24 17:10:05 +08:00
|
|
|
switch (Triple.getArch()) {
|
2009-08-24 16:52:16 +08:00
|
|
|
default:
|
2010-07-29 10:01:43 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
|
2009-08-24 16:52:16 +08:00
|
|
|
|
2012-09-07 01:37:28 +08:00
|
|
|
case llvm::Triple::le32:
|
|
|
|
return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
|
2010-05-27 14:19:26 +08:00
|
|
|
case llvm::Triple::mips:
|
|
|
|
case llvm::Triple::mipsel:
|
2011-11-03 07:14:57 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
|
2010-05-27 14:19:26 +08:00
|
|
|
|
2011-09-21 02:30:57 +08:00
|
|
|
case llvm::Triple::mips64:
|
|
|
|
case llvm::Triple::mips64el:
|
2011-11-03 07:14:57 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
|
2011-09-21 02:30:57 +08:00
|
|
|
|
2009-09-12 08:59:49 +08:00
|
|
|
case llvm::Triple::arm:
|
|
|
|
case llvm::Triple::thumb:
|
2011-04-05 08:23:47 +08:00
|
|
|
{
|
|
|
|
ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
|
2009-09-12 09:00:39 +08:00
|
|
|
|
2011-09-02 08:18:52 +08:00
|
|
|
if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
|
2011-04-05 08:23:47 +08:00
|
|
|
Kind = ARMABIInfo::APCS;
|
|
|
|
else if (CodeGenOpts.FloatABI == "hard")
|
|
|
|
Kind = ARMABIInfo::AAPCS_VFP;
|
|
|
|
|
|
|
|
return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
|
|
|
|
}
|
2009-09-12 08:59:49 +08:00
|
|
|
|
2010-03-11 08:10:12 +08:00
|
|
|
case llvm::Triple::ppc:
|
2010-07-29 10:01:43 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
|
2012-05-10 02:22:46 +08:00
|
|
|
case llvm::Triple::ppc64:
|
2012-10-04 03:18:57 +08:00
|
|
|
if (Triple.isOSBinFormatELF())
|
|
|
|
return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
|
|
|
|
else
|
|
|
|
return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
|
2010-03-11 08:10:12 +08:00
|
|
|
|
2012-05-21 07:28:41 +08:00
|
|
|
case llvm::Triple::nvptx:
|
|
|
|
case llvm::Triple::nvptx64:
|
2012-05-25 01:43:12 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
|
2011-04-22 19:10:38 +08:00
|
|
|
|
2010-12-20 03:57:51 +08:00
|
|
|
case llvm::Triple::mblaze:
|
|
|
|
return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
|
|
|
|
|
2010-01-10 20:58:08 +08:00
|
|
|
case llvm::Triple::msp430:
|
2010-07-29 10:01:43 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
|
2009-09-12 08:59:49 +08:00
|
|
|
|
2011-10-14 00:24:41 +08:00
|
|
|
case llvm::Triple::tce:
|
|
|
|
return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
|
|
|
|
|
2011-07-09 07:31:17 +08:00
|
|
|
case llvm::Triple::x86: {
|
2011-09-02 08:18:52 +08:00
|
|
|
bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
|
2011-07-09 07:31:17 +08:00
|
|
|
|
2011-04-20 05:43:27 +08:00
|
|
|
if (Triple.isOSDarwin())
|
2010-01-10 20:58:08 +08:00
|
|
|
return *(TheTargetCodeGenInfo =
|
2012-07-31 10:44:24 +08:00
|
|
|
new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
|
|
|
|
CodeGenOpts.NumRegisterParameters));
|
2011-04-20 05:43:27 +08:00
|
|
|
|
|
|
|
switch (Triple.getOS()) {
|
2009-08-24 16:52:16 +08:00
|
|
|
case llvm::Triple::Cygwin:
|
|
|
|
case llvm::Triple::MinGW32:
|
2009-10-21 19:58:24 +08:00
|
|
|
case llvm::Triple::AuroraUX:
|
|
|
|
case llvm::Triple::DragonFly:
|
2009-09-03 09:48:05 +08:00
|
|
|
case llvm::Triple::FreeBSD:
|
2009-08-24 16:52:16 +08:00
|
|
|
case llvm::Triple::OpenBSD:
|
2012-08-09 07:57:20 +08:00
|
|
|
case llvm::Triple::Bitrig:
|
2010-01-10 20:58:08 +08:00
|
|
|
return *(TheTargetCodeGenInfo =
|
2012-07-31 10:44:24 +08:00
|
|
|
new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
|
|
|
|
false,
|
|
|
|
CodeGenOpts.NumRegisterParameters));
|
2012-01-26 06:46:34 +08:00
|
|
|
|
|
|
|
case llvm::Triple::Win32:
|
|
|
|
return *(TheTargetCodeGenInfo =
|
2012-07-31 10:44:24 +08:00
|
|
|
new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
|
|
|
|
CodeGenOpts.NumRegisterParameters));
|
2009-08-24 16:52:16 +08:00
|
|
|
|
|
|
|
default:
|
2010-01-10 20:58:08 +08:00
|
|
|
return *(TheTargetCodeGenInfo =
|
2012-07-31 10:44:24 +08:00
|
|
|
new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
|
|
|
|
false,
|
|
|
|
CodeGenOpts.NumRegisterParameters));
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
2011-07-09 07:31:17 +08:00
|
|
|
}
|
2009-08-24 16:52:16 +08:00
|
|
|
|
2011-12-02 08:11:43 +08:00
|
|
|
case llvm::Triple::x86_64: {
|
|
|
|
bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
|
|
|
|
|
2010-09-01 00:44:54 +08:00
|
|
|
switch (Triple.getOS()) {
|
|
|
|
case llvm::Triple::Win32:
|
2011-02-17 16:51:38 +08:00
|
|
|
case llvm::Triple::MinGW32:
|
2010-09-01 00:44:54 +08:00
|
|
|
case llvm::Triple::Cygwin:
|
|
|
|
return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
|
|
|
|
default:
|
2011-12-02 08:11:43 +08:00
|
|
|
return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
|
|
|
|
HasAVX));
|
2010-09-01 00:44:54 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|
2011-12-13 05:14:55 +08:00
|
|
|
case llvm::Triple::hexagon:
|
|
|
|
return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
|
2011-12-02 08:11:43 +08:00
|
|
|
}
|
2009-06-06 06:08:42 +08:00
|
|
|
}
|