llvm-project/lldb/examples/python/x86_64_target_definition.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

778 lines
20 KiB
Python
Raw Normal View History

#!/usr/bin/env python
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
#===-- x86_64_target_definition.py -----------------------------*- C++ -*-===//
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
#
#===----------------------------------------------------------------------===//
#----------------------------------------------------------------------
# DESCRIPTION
#
# This file can be used with the following setting:
# plugin.process.gdb-remote.target-definition-file
# This setting should be used when you are trying to connect to a
# remote GDB server that doesn't support any of the register discovery
# packets that LLDB normally uses.
#
# Why is this necessary? LLDB doesn't require a new build of LLDB that
# targets each new architecture you will debug with. Instead, all
# architectures are supported and LLDB relies on extra GDB server
# packets to discover the target we are connecting to so that is can
# show the right registers for each target. This allows the GDB server
# to change and add new registers without requiring a new LLDB build
# just so we can see new registers.
#
# This file implements the x86_64 registers for the darwin version of
# GDB and allows you to connect to servers that use this register set.
#
# USAGE
#
# (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/x86_64_target_definition.py
# (lldb) gdb-remote other.baz.com:1234
#
# The target definition file will get used if and only if the
# qRegisterInfo packets are not supported when connecting to a remote
# GDB server.
#----------------------------------------------------------------------
from lldb import *
# Compiler and DWARF register numbers
name_to_gcc_dwarf_regnum = {
'rax': 0,
'rdx': 1,
'rcx': 2,
'rbx': 3,
'rsi': 4,
'rdi': 5,
'rbp': 6,
'rsp': 7,
'r8': 8,
'r9': 9,
'r10': 10,
'r11': 11,
'r12': 12,
'r13': 13,
'r14': 14,
'r15': 15,
'rip': 16,
'xmm0': 17,
'xmm1': 18,
'xmm2': 19,
'xmm3': 20,
'xmm4': 21,
'xmm5': 22,
'xmm6': 23,
'xmm7': 24,
'xmm8': 25,
'xmm9': 26,
'xmm10': 27,
'xmm11': 28,
'xmm12': 29,
'xmm13': 30,
'xmm14': 31,
'xmm15': 32,
'stmm0': 33,
'stmm1': 34,
'stmm2': 35,
'stmm3': 36,
'stmm4': 37,
'stmm5': 38,
'stmm6': 39,
'stmm7': 30,
'ymm0': 41,
'ymm1': 42,
'ymm2': 43,
'ymm3': 44,
'ymm4': 45,
'ymm5': 46,
'ymm6': 47,
'ymm7': 48,
'ymm8': 49,
'ymm9': 40,
'ymm10': 41,
'ymm11': 42,
'ymm12': 43,
'ymm13': 44,
'ymm14': 45,
'ymm15': 46
}
name_to_gdb_regnum = {
'rax': 0,
'rbx': 1,
'rcx': 2,
'rdx': 3,
'rsi': 4,
'rdi': 5,
'rbp': 6,
'rsp': 7,
'r8': 8,
'r9': 9,
'r10': 10,
'r11': 11,
'r12': 12,
'r13': 13,
'r14': 14,
'r15': 15,
'rip': 16,
'rflags': 17,
'cs': 18,
'ss': 19,
'ds': 20,
'es': 21,
'fs': 22,
'gs': 23,
'stmm0': 24,
'stmm1': 25,
'stmm2': 26,
'stmm3': 27,
'stmm4': 28,
'stmm5': 29,
'stmm6': 30,
'stmm7': 31,
'fctrl': 32,
'fstat': 33,
'ftag': 34,
'fiseg': 35,
'fioff': 36,
'foseg': 37,
'fooff': 38,
'fop': 39,
'xmm0': 40,
'xmm1': 41,
'xmm2': 42,
'xmm3': 43,
'xmm4': 44,
'xmm5': 45,
'xmm6': 46,
'xmm7': 47,
'xmm8': 48,
'xmm9': 49,
'xmm10': 50,
'xmm11': 51,
'xmm12': 52,
'xmm13': 53,
'xmm14': 54,
'xmm15': 55,
'mxcsr': 56,
'ymm0': 57,
'ymm1': 58,
'ymm2': 59,
'ymm3': 60,
'ymm4': 61,
'ymm5': 62,
'ymm6': 63,
'ymm7': 64,
'ymm8': 65,
'ymm9': 66,
'ymm10': 67,
'ymm11': 68,
'ymm12': 69,
'ymm13': 70,
'ymm14': 71,
'ymm15': 72
}
name_to_generic_regnum = {
'rip': LLDB_REGNUM_GENERIC_PC,
'rsp': LLDB_REGNUM_GENERIC_SP,
'rbp': LLDB_REGNUM_GENERIC_FP,
'rdi': LLDB_REGNUM_GENERIC_ARG1,
'rsi': LLDB_REGNUM_GENERIC_ARG2,
'rdx': LLDB_REGNUM_GENERIC_ARG3,
'rcx': LLDB_REGNUM_GENERIC_ARG4,
'r8': LLDB_REGNUM_GENERIC_ARG5,
'r9': LLDB_REGNUM_GENERIC_ARG6
}
def get_reg_num(reg_num_dict, reg_name):
if reg_name in reg_num_dict:
return reg_num_dict[reg_name]
return LLDB_INVALID_REGNUM
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
def get_reg_num(reg_num_dict, reg_name):
if reg_name in reg_num_dict:
return reg_num_dict[reg_name]
return LLDB_INVALID_REGNUM
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
x86_64_register_infos = [
{'name': 'rax',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'rbx',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'rcx', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg4'},
{'name': 'rdx', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg3'},
{'name': 'rsi', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg2'},
{'name': 'rdi', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg1'},
{'name': 'rbp', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'fp'},
{'name': 'rsp', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'sp'},
{'name': 'r8', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg5'},
{'name': 'r9', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'arg6'},
{'name': 'r10',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'r11',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'r12',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'r13',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'r14',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'r15',
'set': 0,
'bitsize': 64,
'encoding': eEncodingUint,
'format': eFormatAddressInfo},
{'name': 'rip', 'set': 0, 'bitsize': 64, 'encoding': eEncodingUint,
'format': eFormatAddressInfo, 'alt-name': 'pc'},
{'name': 'rflags', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'cs', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'ss', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'ds', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'es', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fs', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'gs', 'set': 0, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'stmm0',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm1',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm2',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm3',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm4',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm5',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm6',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'stmm7',
'set': 1,
'bitsize': 80,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'fctrl', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fstat', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'ftag', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fiseg', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fioff', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'foseg', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fooff', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'fop', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
{'name': 'xmm0',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm1',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm2',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm3',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm4',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm5',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm6',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm7',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm8',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm9',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm10',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm11',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm12',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm13',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm14',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'xmm15',
'set': 1,
'bitsize': 128,
'encoding': eEncodingVector,
'format': eFormatVectorOfUInt8},
{'name': 'mxcsr', 'set': 1, 'bitsize': 32,
'encoding': eEncodingUint, 'format': eFormatHex},
# Registers that are contained in or composed of one of more other
# registers
{'name': 'eax',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rax[31:0]'},
{'name': 'ebx',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbx[31:0]'},
{'name': 'ecx',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rcx[31:0]'},
{'name': 'edx',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdx[31:0]'},
{'name': 'edi',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdi[31:0]'},
{'name': 'esi',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsi[31:0]'},
{'name': 'ebp',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbp[31:0]'},
{'name': 'esp',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsp[31:0]'},
{'name': 'r8d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r8[31:0]'},
{'name': 'r9d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r9[31:0]'},
{'name': 'r10d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r10[31:0]'},
{'name': 'r11d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r11[31:0]'},
{'name': 'r12d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r12[31:0]'},
{'name': 'r13d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r13[31:0]'},
{'name': 'r14d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r14[31:0]'},
{'name': 'r15d',
'set': 0,
'bitsize': 32,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r15[31:0]'},
{'name': 'ax',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rax[15:0]'},
{'name': 'bx',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbx[15:0]'},
{'name': 'cx',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rcx[15:0]'},
{'name': 'dx',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdx[15:0]'},
{'name': 'di',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdi[15:0]'},
{'name': 'si',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsi[15:0]'},
{'name': 'bp',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbp[15:0]'},
{'name': 'sp',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsp[15:0]'},
{'name': 'r8w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r8[15:0]'},
{'name': 'r9w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r9[15:0]'},
{'name': 'r10w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r10[15:0]'},
{'name': 'r11w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r11[15:0]'},
{'name': 'r12w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r12[15:0]'},
{'name': 'r13w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r13[15:0]'},
{'name': 'r14w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r14[15:0]'},
{'name': 'r15w',
'set': 0,
'bitsize': 16,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r15[15:0]'},
{'name': 'ah',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rax[15:8]'},
{'name': 'bh',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbx[15:8]'},
{'name': 'ch',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rcx[15:8]'},
{'name': 'dh',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdx[15:8]'},
{'name': 'al',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rax[7:0]'},
{'name': 'bl',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbx[7:0]'},
{'name': 'cl',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rcx[7:0]'},
{'name': 'dl',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdx[7:0]'},
{'name': 'dil',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rdi[7:0]'},
{'name': 'sil',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsi[7:0]'},
{'name': 'bpl',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rbp[7:0]'},
{'name': 'spl',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'rsp[7:0]'},
{'name': 'r8l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r8[7:0]'},
{'name': 'r9l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r9[7:0]'},
{'name': 'r10l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r10[7:0]'},
{'name': 'r11l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r11[7:0]'},
{'name': 'r12l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r12[7:0]'},
{'name': 'r13l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r13[7:0]'},
{'name': 'r14l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r14[7:0]'},
{'name': 'r15l',
'set': 0,
'bitsize': 8,
'encoding': eEncodingUint,
'format': eFormatHex,
'slice': 'r15[7:0]'},
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
]
g_target_definition = None
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
def get_target_definition():
global g_target_definition
if g_target_definition is None:
g_target_definition = {}
offset = 0
for reg_info in x86_64_register_infos:
reg_name = reg_info['name']
# Only fill in the offset if there is no 'slice' in the register
# info
if 'slice' not in reg_info and 'composite' not in reg_info:
reg_info['offset'] = offset
offset += reg_info['bitsize'] // 8
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
# Set the GCC/DWARF register number for this register if it has one
reg_num = get_reg_num(name_to_gcc_dwarf_regnum, reg_name)
if reg_num != LLDB_INVALID_REGNUM:
reg_info['gcc'] = reg_num
reg_info['dwarf'] = reg_num
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
# Set the generic register number for this register if it has one
reg_num = get_reg_num(name_to_generic_regnum, reg_name)
if reg_num != LLDB_INVALID_REGNUM:
reg_info['generic'] = reg_num
# Set the GDB register number for this register if it has one
reg_num = get_reg_num(name_to_gdb_regnum, reg_name)
if reg_num != LLDB_INVALID_REGNUM:
reg_info['gdb'] = reg_num
g_target_definition['sets'] = [
'General Purpose Registers',
'Floating Point Registers']
g_target_definition['registers'] = x86_64_register_infos
g_target_definition[
'host-info'] = {'triple': 'x86_64-apple-macosx', 'endian': eByteOrderLittle}
g_target_definition['g-packet-size'] = offset
return g_target_definition
<rdar://problem/14972424> When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the registers on the remote server. When those packets aren't supported, LLDB doesn't know what the registers look like. This checkin implements a setting that can be used to specify a python file that contains the registers definitions. The setting is: (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py Inside module there should be a function: def get_dynamic_setting(target, setting_name): This dynamic setting function is handed the "target" which is a SBTarget, and the "setting_name", which is the name of the dynamic setting to retrieve. For the GDB remote target definition the setting name is 'gdb-server-target-definition'. The return value is a dictionary that follows the same format as the OperatingSystem plugins follow. I have checked in an example file that implements the x86_64 GDB register set for people to see: examples/python/x86_64_target_definition.py This allows LLDB to debug to any archticture that is support and allows users to define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo) are not supported by the remote GDB server. A few benefits of doing this in Python: 1 - The dynamic register context was already supported in the OperatingSystem plug-in 2 - Register contexts can use all of the LLDB enumerations and definitions for things like lldb::Format, lldb::Encoding, generic register numbers, invalid registers numbers, etc. 3 - The code that generates the register context can use the program to calculate the register context contents (like offsets, register numbers, and more) 4 - True dynamic detection could be used where variables and types could be read from the target program itself in order to determine which registers are available since the target is passed into the python function. This is designed to be used instead of XML since it is more dynamic and code flow and functions can be used to make the dictionary. llvm-svn: 192646
2013-10-15 08:14:28 +08:00
def get_dynamic_setting(target, setting_name):
if setting_name == 'gdb-server-target-definition':
return get_target_definition()