llvm-project/llvm/lib/DebugInfo/DWARF/DWARFVerifier.cpp

1514 lines
54 KiB
C++
Raw Normal View History

//===- DWARFVerifier.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
DWARFVerifier::DieRangeInfo::address_range_iterator
DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) {
auto Begin = Ranges.begin();
auto End = Ranges.end();
auto Pos = std::lower_bound(Begin, End, R);
if (Pos != End) {
if (Pos->intersects(R))
return Pos;
if (Pos != Begin) {
auto Iter = Pos - 1;
if (Iter->intersects(R))
return Iter;
}
}
Ranges.insert(Pos, R);
return Ranges.end();
}
DWARFVerifier::DieRangeInfo::die_range_info_iterator
DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) {
auto End = Children.end();
auto Iter = Children.begin();
while (Iter != End) {
if (Iter->intersects(RI))
return Iter;
++Iter;
}
Children.insert(RI);
return Children.end();
}
bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const {
// Both list of ranges are sorted so we can make this fast.
if (Ranges.empty() || RHS.Ranges.empty())
return false;
// Since the ranges are sorted we can advance where we start searching with
// this object's ranges as we traverse RHS.Ranges.
auto End = Ranges.end();
auto Iter = findRange(RHS.Ranges.front());
// Now linearly walk the ranges in this object and see if they contain each
// ranges from RHS.Ranges.
for (const auto &R : RHS.Ranges) {
while (Iter != End) {
if (Iter->contains(R))
break;
++Iter;
}
if (Iter == End)
return false;
}
return true;
}
bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const {
if (Ranges.empty() || RHS.Ranges.empty())
return false;
auto End = Ranges.end();
auto Iter = findRange(RHS.Ranges.front());
for (const auto &R : RHS.Ranges) {
if (Iter == End)
return false;
if (R.HighPC <= Iter->LowPC)
continue;
while (Iter != End) {
if (Iter->intersects(R))
return true;
++Iter;
}
}
return false;
}
bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData,
uint32_t *Offset, unsigned UnitIndex,
uint8_t &UnitType, bool &isUnitDWARF64) {
uint32_t AbbrOffset, Length;
uint8_t AddrSize = 0;
uint16_t Version;
bool Success = true;
bool ValidLength = false;
bool ValidVersion = false;
bool ValidAddrSize = false;
bool ValidType = true;
bool ValidAbbrevOffset = true;
uint32_t OffsetStart = *Offset;
Length = DebugInfoData.getU32(Offset);
if (Length == UINT32_MAX) {
isUnitDWARF64 = true;
OS << format(
"Unit[%d] is in 64-bit DWARF format; cannot verify from this point.\n",
UnitIndex);
return false;
}
Version = DebugInfoData.getU16(Offset);
if (Version >= 5) {
UnitType = DebugInfoData.getU8(Offset);
AddrSize = DebugInfoData.getU8(Offset);
AbbrOffset = DebugInfoData.getU32(Offset);
ValidType = dwarf::isUnitType(UnitType);
} else {
UnitType = 0;
AbbrOffset = DebugInfoData.getU32(Offset);
AddrSize = DebugInfoData.getU8(Offset);
}
if (!DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset))
ValidAbbrevOffset = false;
ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3);
ValidVersion = DWARFContext::isSupportedVersion(Version);
ValidAddrSize = AddrSize == 4 || AddrSize == 8;
if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset ||
!ValidType) {
Success = false;
error() << format("Units[%d] - start offset: 0x%08x \n", UnitIndex,
OffsetStart);
if (!ValidLength)
note() << "The length for this unit is too "
"large for the .debug_info provided.\n";
if (!ValidVersion)
note() << "The 16 bit unit header version is not valid.\n";
if (!ValidType)
note() << "The unit type encoding is not valid.\n";
if (!ValidAbbrevOffset)
note() << "The offset into the .debug_abbrev section is "
"not valid.\n";
if (!ValidAddrSize)
note() << "The address size is unsupported.\n";
}
*Offset = OffsetStart + Length + 4;
return Success;
}
unsigned DWARFVerifier::verifyUnitContents(DWARFUnit &Unit) {
unsigned NumUnitErrors = 0;
unsigned NumDies = Unit.getNumDIEs();
for (unsigned I = 0; I < NumDies; ++I) {
auto Die = Unit.getDIEAtIndex(I);
if (Die.getTag() == DW_TAG_null)
continue;
bool HasTypeAttr = false;
for (auto AttrValue : Die.attributes()) {
NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue);
NumUnitErrors += verifyDebugInfoForm(Die, AttrValue);
HasTypeAttr |= (AttrValue.Attr == DW_AT_type);
}
if (!HasTypeAttr && (Die.getTag() == DW_TAG_formal_parameter ||
Die.getTag() == DW_TAG_variable ||
Die.getTag() == DW_TAG_array_type)) {
error() << "DIE with tag " << TagString(Die.getTag())
<< " is missing type attribute:\n";
dump(Die) << '\n';
NumUnitErrors++;
}
NumUnitErrors += verifyDebugInfoCallSite(Die);
}
DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false);
if (!Die) {
error() << "Compilation unit without DIE.\n";
NumUnitErrors++;
return NumUnitErrors;
}
if (!dwarf::isUnitType(Die.getTag())) {
error() << "Compilation unit root DIE is not a unit DIE: "
<< dwarf::TagString(Die.getTag()) << ".\n";
NumUnitErrors++;
}
uint8_t UnitType = Unit.getUnitType();
if (!DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) {
error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType)
<< ") and root DIE (" << dwarf::TagString(Die.getTag())
<< ") do not match.\n";
NumUnitErrors++;
}
DieRangeInfo RI;
NumUnitErrors += verifyDieRanges(Die, RI);
return NumUnitErrors;
}
unsigned DWARFVerifier::verifyDebugInfoCallSite(const DWARFDie &Die) {
if (Die.getTag() != DW_TAG_call_site)
return 0;
DWARFDie Curr = Die.getParent();
for (; Curr.isValid() && !Curr.isSubprogramDIE(); Curr = Die.getParent()) {
if (Curr.getTag() == DW_TAG_inlined_subroutine) {
error() << "Call site entry nested within inlined subroutine:";
Curr.dump(OS);
return 1;
}
}
if (!Curr.isValid()) {
error() << "Call site entry not nested within a valid subprogram:";
Die.dump(OS);
return 1;
}
Optional<DWARFFormValue> CallAttr =
Curr.find({DW_AT_call_all_calls, DW_AT_call_all_source_calls,
DW_AT_call_all_tail_calls});
if (!CallAttr) {
error() << "Subprogram with call site entry has no DW_AT_call attribute:";
Curr.dump(OS);
Die.dump(OS, /*indent*/ 1);
return 1;
}
return 0;
}
unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) {
unsigned NumErrors = 0;
if (Abbrev) {
const DWARFAbbreviationDeclarationSet *AbbrDecls =
Abbrev->getAbbreviationDeclarationSet(0);
for (auto AbbrDecl : *AbbrDecls) {
SmallDenseSet<uint16_t> AttributeSet;
for (auto Attribute : AbbrDecl.attributes()) {
auto Result = AttributeSet.insert(Attribute.Attr);
if (!Result.second) {
error() << "Abbreviation declaration contains multiple "
<< AttributeString(Attribute.Attr) << " attributes.\n";
AbbrDecl.dump(OS);
++NumErrors;
}
}
}
}
return NumErrors;
}
bool DWARFVerifier::handleDebugAbbrev() {
OS << "Verifying .debug_abbrev...\n";
const DWARFObject &DObj = DCtx.getDWARFObj();
bool noDebugAbbrev = DObj.getAbbrevSection().empty();
bool noDebugAbbrevDWO = DObj.getAbbrevDWOSection().empty();
if (noDebugAbbrev && noDebugAbbrevDWO) {
return true;
}
unsigned NumErrors = 0;
if (!noDebugAbbrev)
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev());
if (!noDebugAbbrevDWO)
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO());
return NumErrors == 0;
}
unsigned DWARFVerifier::verifyUnitSection(const DWARFSection &S,
DWARFSectionKind SectionKind) {
const DWARFObject &DObj = DCtx.getDWARFObj();
DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0);
unsigned NumDebugInfoErrors = 0;
uint32_t OffsetStart = 0, Offset = 0, UnitIdx = 0;
uint8_t UnitType = 0;
bool isUnitDWARF64 = false;
bool isHeaderChainValid = true;
bool hasDIE = DebugInfoData.isValidOffset(Offset);
DWARFUnitVector TypeUnitVector;
DWARFUnitVector CompileUnitVector;
while (hasDIE) {
OffsetStart = Offset;
if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType,
isUnitDWARF64)) {
isHeaderChainValid = false;
if (isUnitDWARF64)
break;
} else {
DWARFUnitHeader Header;
Header.extract(DCtx, DebugInfoData, &OffsetStart, SectionKind);
DWARFUnit *Unit;
switch (UnitType) {
case dwarf::DW_UT_type:
case dwarf::DW_UT_split_type: {
Unit = TypeUnitVector.addUnit(llvm::make_unique<DWARFTypeUnit>(
DCtx, S, Header, DCtx.getDebugAbbrev(), &DObj.getRangeSection(),
&DObj.getLocSection(), DObj.getStringSection(),
DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(),
DObj.getLineSection(), DCtx.isLittleEndian(), false,
TypeUnitVector));
break;
}
case dwarf::DW_UT_skeleton:
case dwarf::DW_UT_split_compile:
case dwarf::DW_UT_compile:
case dwarf::DW_UT_partial:
// UnitType = 0 means that we are verifying a compile unit in DWARF v4.
case 0: {
Unit = CompileUnitVector.addUnit(llvm::make_unique<DWARFCompileUnit>(
DCtx, S, Header, DCtx.getDebugAbbrev(), &DObj.getRangeSection(),
&DObj.getLocSection(), DObj.getStringSection(),
DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(),
DObj.getLineSection(), DCtx.isLittleEndian(), false,
CompileUnitVector));
break;
}
default: { llvm_unreachable("Invalid UnitType."); }
}
NumDebugInfoErrors += verifyUnitContents(*Unit);
}
hasDIE = DebugInfoData.isValidOffset(Offset);
++UnitIdx;
}
if (UnitIdx == 0 && !hasDIE) {
warn() << "Section is empty.\n";
isHeaderChainValid = true;
}
if (!isHeaderChainValid)
++NumDebugInfoErrors;
NumDebugInfoErrors += verifyDebugInfoReferences();
return NumDebugInfoErrors;
}
bool DWARFVerifier::handleDebugInfo() {
const DWARFObject &DObj = DCtx.getDWARFObj();
unsigned NumErrors = 0;
OS << "Verifying .debug_info Unit Header Chain...\n";
DObj.forEachInfoSections([&](const DWARFSection &S) {
NumErrors += verifyUnitSection(S, DW_SECT_INFO);
});
OS << "Verifying .debug_types Unit Header Chain...\n";
DObj.forEachTypesSections([&](const DWARFSection &S) {
NumErrors += verifyUnitSection(S, DW_SECT_TYPES);
});
return NumErrors == 0;
}
unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die,
DieRangeInfo &ParentRI) {
unsigned NumErrors = 0;
if (!Die.isValid())
return NumErrors;
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
// FIXME: Report the error.
++NumErrors;
llvm::consumeError(RangesOrError.takeError());
return NumErrors;
}
DWARFAddressRangesVector Ranges = RangesOrError.get();
// Build RI for this DIE and check that ranges within this DIE do not
// overlap.
DieRangeInfo RI(Die);
// TODO support object files better
//
// Some object file formats (i.e. non-MachO) support COMDAT. ELF in
// particular does so by placing each function into a section. The DWARF data
// for the function at that point uses a section relative DW_FORM_addrp for
// the DW_AT_low_pc and a DW_FORM_data4 for the offset as the DW_AT_high_pc.
// In such a case, when the Die is the CU, the ranges will overlap, and we
// will flag valid conflicting ranges as invalid.
//
// For such targets, we should read the ranges from the CU and partition them
// by the section id. The ranges within a particular section should be
// disjoint, although the ranges across sections may overlap. We would map
// the child die to the entity that it references and the section with which
// it is associated. The child would then be checked against the range
// information for the associated section.
//
// For now, simply elide the range verification for the CU DIEs if we are
// processing an object file.
if (!IsObjectFile || IsMachOObject || Die.getTag() != DW_TAG_compile_unit) {
for (auto Range : Ranges) {
if (!Range.valid()) {
++NumErrors;
error() << "Invalid address range " << Range << "\n";
continue;
}
// Verify that ranges don't intersect.
const auto IntersectingRange = RI.insert(Range);
if (IntersectingRange != RI.Ranges.end()) {
++NumErrors;
error() << "DIE has overlapping address ranges: " << Range << " and "
<< *IntersectingRange << "\n";
break;
}
}
}
// Verify that children don't intersect.
const auto IntersectingChild = ParentRI.insert(RI);
if (IntersectingChild != ParentRI.Children.end()) {
++NumErrors;
error() << "DIEs have overlapping address ranges:";
dump(Die);
dump(IntersectingChild->Die) << '\n';
}
// Verify that ranges are contained within their parent.
bool ShouldBeContained = !Ranges.empty() && !ParentRI.Ranges.empty() &&
!(Die.getTag() == DW_TAG_subprogram &&
ParentRI.Die.getTag() == DW_TAG_subprogram);
if (ShouldBeContained && !ParentRI.contains(RI)) {
++NumErrors;
error() << "DIE address ranges are not contained in its parent's ranges:";
dump(ParentRI.Die);
dump(Die, 2) << '\n';
}
// Recursively check children.
for (DWARFDie Child : Die)
NumErrors += verifyDieRanges(Child, RI);
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die,
DWARFAttribute &AttrValue) {
unsigned NumErrors = 0;
auto ReportError = [&](const Twine &TitleMsg) {
++NumErrors;
error() << TitleMsg << '\n';
dump(Die) << '\n';
};
const DWARFObject &DObj = DCtx.getDWARFObj();
const auto Attr = AttrValue.Attr;
switch (Attr) {
case DW_AT_ranges:
// Make sure the offset in the DW_AT_ranges attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
if (*SectionOffset >= DObj.getRangeSection().Data.size())
ReportError("DW_AT_ranges offset is beyond .debug_ranges bounds:");
break;
}
ReportError("DIE has invalid DW_AT_ranges encoding:");
break;
case DW_AT_stmt_list:
// Make sure the offset in the DW_AT_stmt_list attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
if (*SectionOffset >= DObj.getLineSection().Data.size())
ReportError("DW_AT_stmt_list offset is beyond .debug_line bounds: " +
llvm::formatv("{0:x8}", *SectionOffset));
break;
}
ReportError("DIE has invalid DW_AT_stmt_list encoding:");
break;
case DW_AT_location: {
auto VerifyLocationExpr = [&](StringRef D) {
DWARFUnit *U = Die.getDwarfUnit();
DataExtractor Data(D, DCtx.isLittleEndian(), 0);
DWARFExpression Expression(Data, U->getVersion(),
U->getAddressByteSize());
bool Error = llvm::any_of(Expression, [](DWARFExpression::Operation &Op) {
return Op.isError();
});
if (Error || !Expression.verify(U))
ReportError("DIE contains invalid DWARF expression:");
};
if (Optional<ArrayRef<uint8_t>> Expr = AttrValue.Value.getAsBlock()) {
// Verify inlined location.
VerifyLocationExpr(llvm::toStringRef(*Expr));
} else if (auto LocOffset = AttrValue.Value.getAsSectionOffset()) {
// Verify location list.
if (auto DebugLoc = DCtx.getDebugLoc())
if (auto LocList = DebugLoc->getLocationListAtOffset(*LocOffset))
for (const auto &Entry : LocList->Entries)
VerifyLocationExpr({Entry.Loc.data(), Entry.Loc.size()});
}
break;
}
case DW_AT_specification:
case DW_AT_abstract_origin: {
if (auto ReferencedDie = Die.getAttributeValueAsReferencedDie(Attr)) {
auto DieTag = Die.getTag();
auto RefTag = ReferencedDie.getTag();
if (DieTag == RefTag)
break;
if (DieTag == DW_TAG_inlined_subroutine && RefTag == DW_TAG_subprogram)
break;
if (DieTag == DW_TAG_variable && RefTag == DW_TAG_member)
break;
ReportError("DIE with tag " + TagString(DieTag) + " has " +
AttributeString(Attr) +
" that points to DIE with "
"incompatible tag " +
TagString(RefTag));
}
break;
}
case DW_AT_type: {
DWARFDie TypeDie = Die.getAttributeValueAsReferencedDie(DW_AT_type);
if (TypeDie && !isType(TypeDie.getTag())) {
ReportError("DIE has " + AttributeString(Attr) +
" with incompatible tag " + TagString(TypeDie.getTag()));
}
break;
}
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die,
DWARFAttribute &AttrValue) {
const DWARFObject &DObj = DCtx.getDWARFObj();
auto DieCU = Die.getDwarfUnit();
unsigned NumErrors = 0;
const auto Form = AttrValue.Value.getForm();
switch (Form) {
case DW_FORM_ref1:
case DW_FORM_ref2:
case DW_FORM_ref4:
case DW_FORM_ref8:
case DW_FORM_ref_udata: {
// Verify all CU relative references are valid CU offsets.
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
assert(RefVal);
if (RefVal) {
auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset();
auto CUOffset = AttrValue.Value.getRawUValue();
if (CUOffset >= CUSize) {
++NumErrors;
error() << FormEncodingString(Form) << " CU offset "
<< format("0x%08" PRIx64, CUOffset)
<< " is invalid (must be less than CU size of "
<< format("0x%08" PRIx32, CUSize) << "):\n";
Die.dump(OS, 0, DumpOpts);
dump(Die) << '\n';
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
}
}
break;
}
case DW_FORM_ref_addr: {
// Verify all absolute DIE references have valid offsets in the
// .debug_info section.
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
assert(RefVal);
if (RefVal) {
if (*RefVal >= DieCU->getInfoSection().Data.size()) {
++NumErrors;
error() << "DW_FORM_ref_addr offset beyond .debug_info "
"bounds:\n";
dump(Die) << '\n';
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
}
}
break;
}
case DW_FORM_strp: {
auto SecOffset = AttrValue.Value.getAsSectionOffset();
assert(SecOffset); // DW_FORM_strp is a section offset.
if (SecOffset && *SecOffset >= DObj.getStringSection().size()) {
++NumErrors;
error() << "DW_FORM_strp offset beyond .debug_str bounds:\n";
dump(Die) << '\n';
}
break;
}
case DW_FORM_strx:
case DW_FORM_strx1:
case DW_FORM_strx2:
case DW_FORM_strx3:
case DW_FORM_strx4: {
auto Index = AttrValue.Value.getRawUValue();
auto DieCU = Die.getDwarfUnit();
// Check that we have a valid DWARF v5 string offsets table.
if (!DieCU->getStringOffsetsTableContribution()) {
++NumErrors;
error() << FormEncodingString(Form)
<< " used without a valid string offsets table:\n";
dump(Die) << '\n';
break;
}
// Check that the index is within the bounds of the section.
unsigned ItemSize = DieCU->getDwarfStringOffsetsByteSize();
// Use a 64-bit type to calculate the offset to guard against overflow.
uint64_t Offset =
(uint64_t)DieCU->getStringOffsetsBase() + Index * ItemSize;
if (DObj.getStringOffsetSection().Data.size() < Offset + ItemSize) {
++NumErrors;
error() << FormEncodingString(Form) << " uses index "
<< format("%" PRIu64, Index) << ", which is too large:\n";
dump(Die) << '\n';
break;
}
// Check that the string offset is valid.
uint64_t StringOffset = *DieCU->getStringOffsetSectionItem(Index);
if (StringOffset >= DObj.getStringSection().size()) {
++NumErrors;
error() << FormEncodingString(Form) << " uses index "
<< format("%" PRIu64, Index)
<< ", but the referenced string"
" offset is beyond .debug_str bounds:\n";
dump(Die) << '\n';
}
break;
}
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoReferences() {
// Take all references and make sure they point to an actual DIE by
// getting the DIE by offset and emitting an error
OS << "Verifying .debug_info references...\n";
unsigned NumErrors = 0;
for (auto Pair : ReferenceToDIEOffsets) {
auto Die = DCtx.getDIEForOffset(Pair.first);
if (Die)
continue;
++NumErrors;
error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first)
<< ". Offset is in between DIEs:\n";
for (auto Offset : Pair.second)
dump(DCtx.getDIEForOffset(Offset)) << '\n';
OS << "\n";
}
return NumErrors;
}
void DWARFVerifier::verifyDebugLineStmtOffsets() {
std::map<uint64_t, DWARFDie> StmtListToDie;
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
// Get the attribute value as a section offset. No need to produce an
// error here if the encoding isn't correct because we validate this in
// the .debug_info verifier.
auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list));
if (!StmtSectionOffset)
continue;
const uint32_t LineTableOffset = *StmtSectionOffset;
auto LineTable = DCtx.getLineTableForUnit(CU.get());
if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) {
if (!LineTable) {
++NumDebugLineErrors;
error() << ".debug_line[" << format("0x%08" PRIx32, LineTableOffset)
<< "] was not able to be parsed for CU:\n";
dump(Die) << '\n';
continue;
}
} else {
// Make sure we don't get a valid line table back if the offset is wrong.
assert(LineTable == nullptr);
// Skip this line table as it isn't valid. No need to create an error
// here because we validate this in the .debug_info verifier.
continue;
}
auto Iter = StmtListToDie.find(LineTableOffset);
if (Iter != StmtListToDie.end()) {
++NumDebugLineErrors;
error() << "two compile unit DIEs, "
<< format("0x%08" PRIx32, Iter->second.getOffset()) << " and "
<< format("0x%08" PRIx32, Die.getOffset())
<< ", have the same DW_AT_stmt_list section offset:\n";
dump(Iter->second);
dump(Die) << '\n';
// Already verified this line table before, no need to do it again.
continue;
}
StmtListToDie[LineTableOffset] = Die;
}
}
void DWARFVerifier::verifyDebugLineRows() {
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
auto LineTable = DCtx.getLineTableForUnit(CU.get());
// If there is no line table we will have created an error in the
// .debug_info verifier or in verifyDebugLineStmtOffsets().
if (!LineTable)
continue;
// Verify prologue.
uint32_t MaxFileIndex = LineTable->Prologue.FileNames.size();
uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size();
uint32_t FileIndex = 1;
StringMap<uint16_t> FullPathMap;
for (const auto &FileName : LineTable->Prologue.FileNames) {
// Verify directory index.
if (FileName.DirIdx > MaxDirIndex) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "].dir_idx contains an invalid index: " << FileName.DirIdx
<< "\n";
}
// Check file paths for duplicates.
std::string FullPath;
const bool HasFullPath = LineTable->getFileNameByIndex(
FileIndex, CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath);
assert(HasFullPath && "Invalid index?");
(void)HasFullPath;
auto It = FullPathMap.find(FullPath);
if (It == FullPathMap.end())
FullPathMap[FullPath] = FileIndex;
else if (It->second != FileIndex) {
warn() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "] is a duplicate of file_names[" << It->second << "]\n";
}
FileIndex++;
}
// Verify rows.
uint64_t PrevAddress = 0;
uint32_t RowIndex = 0;
for (const auto &Row : LineTable->Rows) {
// Verify row address.
if (Row.Address < PrevAddress) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "] row[" << RowIndex
<< "] decreases in address from previous row:\n";
DWARFDebugLine::Row::dumpTableHeader(OS);
if (RowIndex > 0)
LineTable->Rows[RowIndex - 1].dump(OS);
Row.dump(OS);
OS << '\n';
}
// Verify file index.
if (Row.File > MaxFileIndex) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "][" << RowIndex << "] has invalid file index " << Row.File
<< " (valid values are [1," << MaxFileIndex << "]):\n";
DWARFDebugLine::Row::dumpTableHeader(OS);
Row.dump(OS);
OS << '\n';
}
if (Row.EndSequence)
PrevAddress = 0;
else
PrevAddress = Row.Address;
++RowIndex;
}
}
}
DWARFVerifier::DWARFVerifier(raw_ostream &S, DWARFContext &D,
DIDumpOptions DumpOpts)
: OS(S), DCtx(D), DumpOpts(std::move(DumpOpts)), IsObjectFile(false),
IsMachOObject(false) {
if (const auto *F = DCtx.getDWARFObj().getFile()) {
IsObjectFile = F->isRelocatableObject();
IsMachOObject = F->isMachO();
}
}
bool DWARFVerifier::handleDebugLine() {
NumDebugLineErrors = 0;
OS << "Verifying .debug_line...\n";
verifyDebugLineStmtOffsets();
verifyDebugLineRows();
return NumDebugLineErrors == 0;
}
unsigned DWARFVerifier::verifyAppleAccelTable(const DWARFSection *AccelSection,
DataExtractor *StrData,
const char *SectionName) {
unsigned NumErrors = 0;
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection,
DCtx.isLittleEndian(), 0);
AppleAcceleratorTable AccelTable(AccelSectionData, *StrData);
OS << "Verifying " << SectionName << "...\n";
// Verify that the fixed part of the header is not too short.
if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) {
error() << "Section is too small to fit a section header.\n";
return 1;
}
// Verify that the section is not too short.
if (Error E = AccelTable.extract()) {
error() << toString(std::move(E)) << '\n';
return 1;
}
// Verify that all buckets have a valid hash index or are empty.
uint32_t NumBuckets = AccelTable.getNumBuckets();
uint32_t NumHashes = AccelTable.getNumHashes();
uint32_t BucketsOffset =
AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength();
uint32_t HashesBase = BucketsOffset + NumBuckets * 4;
uint32_t OffsetsBase = HashesBase + NumHashes * 4;
for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) {
uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset);
if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) {
error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx,
HashIdx);
++NumErrors;
}
}
uint32_t NumAtoms = AccelTable.getAtomsDesc().size();
if (NumAtoms == 0) {
error() << "No atoms: failed to read HashData.\n";
return 1;
}
if (!AccelTable.validateForms()) {
error() << "Unsupported form: failed to read HashData.\n";
return 1;
}
for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) {
uint32_t HashOffset = HashesBase + 4 * HashIdx;
uint32_t DataOffset = OffsetsBase + 4 * HashIdx;
uint32_t Hash = AccelSectionData.getU32(&HashOffset);
uint32_t HashDataOffset = AccelSectionData.getU32(&DataOffset);
if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset,
sizeof(uint64_t))) {
error() << format("Hash[%d] has invalid HashData offset: 0x%08x.\n",
HashIdx, HashDataOffset);
++NumErrors;
}
uint32_t StrpOffset;
uint32_t StringOffset;
uint32_t StringCount = 0;
unsigned Offset;
unsigned Tag;
while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) {
const uint32_t NumHashDataObjects =
AccelSectionData.getU32(&HashDataOffset);
for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects;
++HashDataIdx) {
std::tie(Offset, Tag) = AccelTable.readAtoms(HashDataOffset);
auto Die = DCtx.getDIEForOffset(Offset);
if (!Die) {
const uint32_t BucketIdx =
NumBuckets ? (Hash % NumBuckets) : UINT32_MAX;
StringOffset = StrpOffset;
const char *Name = StrData->getCStr(&StringOffset);
if (!Name)
Name = "<NULL>";
error() << format(
"%s Bucket[%d] Hash[%d] = 0x%08x "
"Str[%u] = 0x%08x "
"DIE[%d] = 0x%08x is not a valid DIE offset for \"%s\".\n",
SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset,
HashDataIdx, Offset, Name);
++NumErrors;
continue;
}
if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) {
error() << "Tag " << dwarf::TagString(Tag)
<< " in accelerator table does not match Tag "
<< dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx
<< "].\n";
++NumErrors;
}
}
++StringCount;
}
}
return NumErrors;
}
unsigned
DWARFVerifier::verifyDebugNamesCULists(const DWARFDebugNames &AccelTable) {
// A map from CU offset to the (first) Name Index offset which claims to index
// this CU.
DenseMap<uint32_t, uint32_t> CUMap;
const uint32_t NotIndexed = std::numeric_limits<uint32_t>::max();
CUMap.reserve(DCtx.getNumCompileUnits());
for (const auto &CU : DCtx.compile_units())
CUMap[CU->getOffset()] = NotIndexed;
unsigned NumErrors = 0;
for (const DWARFDebugNames::NameIndex &NI : AccelTable) {
if (NI.getCUCount() == 0) {
error() << formatv("Name Index @ {0:x} does not index any CU\n",
NI.getUnitOffset());
++NumErrors;
continue;
}
for (uint32_t CU = 0, End = NI.getCUCount(); CU < End; ++CU) {
uint32_t Offset = NI.getCUOffset(CU);
auto Iter = CUMap.find(Offset);
if (Iter == CUMap.end()) {
error() << formatv(
"Name Index @ {0:x} references a non-existing CU @ {1:x}\n",
NI.getUnitOffset(), Offset);
++NumErrors;
continue;
}
if (Iter->second != NotIndexed) {
error() << formatv("Name Index @ {0:x} references a CU @ {1:x}, but "
"this CU is already indexed by Name Index @ {2:x}\n",
NI.getUnitOffset(), Offset, Iter->second);
continue;
}
Iter->second = NI.getUnitOffset();
}
}
for (const auto &KV : CUMap) {
if (KV.second == NotIndexed)
warn() << formatv("CU @ {0:x} not covered by any Name Index\n", KV.first);
}
return NumErrors;
}
unsigned
DWARFVerifier::verifyNameIndexBuckets(const DWARFDebugNames::NameIndex &NI,
const DataExtractor &StrData) {
struct BucketInfo {
uint32_t Bucket;
uint32_t Index;
constexpr BucketInfo(uint32_t Bucket, uint32_t Index)
: Bucket(Bucket), Index(Index) {}
bool operator<(const BucketInfo &RHS) const { return Index < RHS.Index; };
};
uint32_t NumErrors = 0;
if (NI.getBucketCount() == 0) {
warn() << formatv("Name Index @ {0:x} does not contain a hash table.\n",
NI.getUnitOffset());
return NumErrors;
}
// Build up a list of (Bucket, Index) pairs. We use this later to verify that
// each Name is reachable from the appropriate bucket.
std::vector<BucketInfo> BucketStarts;
BucketStarts.reserve(NI.getBucketCount() + 1);
for (uint32_t Bucket = 0, End = NI.getBucketCount(); Bucket < End; ++Bucket) {
uint32_t Index = NI.getBucketArrayEntry(Bucket);
if (Index > NI.getNameCount()) {
error() << formatv("Bucket {0} of Name Index @ {1:x} contains invalid "
"value {2}. Valid range is [0, {3}].\n",
Bucket, NI.getUnitOffset(), Index, NI.getNameCount());
++NumErrors;
continue;
}
if (Index > 0)
BucketStarts.emplace_back(Bucket, Index);
}
// If there were any buckets with invalid values, skip further checks as they
// will likely produce many errors which will only confuse the actual root
// problem.
if (NumErrors > 0)
return NumErrors;
// Sort the list in the order of increasing "Index" entries.
array_pod_sort(BucketStarts.begin(), BucketStarts.end());
// Insert a sentinel entry at the end, so we can check that the end of the
// table is covered in the loop below.
BucketStarts.emplace_back(NI.getBucketCount(), NI.getNameCount() + 1);
// Loop invariant: NextUncovered is the (1-based) index of the first Name
// which is not reachable by any of the buckets we processed so far (and
// hasn't been reported as uncovered).
uint32_t NextUncovered = 1;
for (const BucketInfo &B : BucketStarts) {
// Under normal circumstances B.Index be equal to NextUncovered, but it can
// be less if a bucket points to names which are already known to be in some
// bucket we processed earlier. In that case, we won't trigger this error,
// but report the mismatched hash value error instead. (We know the hash
// will not match because we have already verified that the name's hash
// puts it into the previous bucket.)
if (B.Index > NextUncovered) {
error() << formatv("Name Index @ {0:x}: Name table entries [{1}, {2}] "
"are not covered by the hash table.\n",
NI.getUnitOffset(), NextUncovered, B.Index - 1);
++NumErrors;
}
uint32_t Idx = B.Index;
// The rest of the checks apply only to non-sentinel entries.
if (B.Bucket == NI.getBucketCount())
break;
// This triggers if a non-empty bucket points to a name with a mismatched
// hash. Clients are likely to interpret this as an empty bucket, because a
// mismatched hash signals the end of a bucket, but if this is indeed an
// empty bucket, the producer should have signalled this by marking the
// bucket as empty.
uint32_t FirstHash = NI.getHashArrayEntry(Idx);
if (FirstHash % NI.getBucketCount() != B.Bucket) {
error() << formatv(
"Name Index @ {0:x}: Bucket {1} is not empty but points to a "
"mismatched hash value {2:x} (belonging to bucket {3}).\n",
NI.getUnitOffset(), B.Bucket, FirstHash,
FirstHash % NI.getBucketCount());
++NumErrors;
}
// This find the end of this bucket and also verifies that all the hashes in
// this bucket are correct by comparing the stored hashes to the ones we
// compute ourselves.
while (Idx <= NI.getNameCount()) {
uint32_t Hash = NI.getHashArrayEntry(Idx);
if (Hash % NI.getBucketCount() != B.Bucket)
break;
const char *Str = NI.getNameTableEntry(Idx).getString();
if (caseFoldingDjbHash(Str) != Hash) {
error() << formatv("Name Index @ {0:x}: String ({1}) at index {2} "
"hashes to {3:x}, but "
"the Name Index hash is {4:x}\n",
NI.getUnitOffset(), Str, Idx,
caseFoldingDjbHash(Str), Hash);
++NumErrors;
}
++Idx;
}
NextUncovered = std::max(NextUncovered, Idx);
}
return NumErrors;
}
unsigned DWARFVerifier::verifyNameIndexAttribute(
const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::Abbrev &Abbr,
DWARFDebugNames::AttributeEncoding AttrEnc) {
StringRef FormName = dwarf::FormEncodingString(AttrEnc.Form);
if (FormName.empty()) {
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
"unknown form: {3}.\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
AttrEnc.Form);
return 1;
}
if (AttrEnc.Index == DW_IDX_type_hash) {
if (AttrEnc.Form != dwarf::DW_FORM_data8) {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_type_hash "
"uses an unexpected form {2} (should be {3}).\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Form, dwarf::DW_FORM_data8);
return 1;
}
}
// A list of known index attributes and their expected form classes.
// DW_IDX_type_hash is handled specially in the check above, as it has a
// specific form (not just a form class) we should expect.
struct FormClassTable {
dwarf::Index Index;
DWARFFormValue::FormClass Class;
StringLiteral ClassName;
};
static constexpr FormClassTable Table[] = {
{dwarf::DW_IDX_compile_unit, DWARFFormValue::FC_Constant, {"constant"}},
{dwarf::DW_IDX_type_unit, DWARFFormValue::FC_Constant, {"constant"}},
{dwarf::DW_IDX_die_offset, DWARFFormValue::FC_Reference, {"reference"}},
{dwarf::DW_IDX_parent, DWARFFormValue::FC_Constant, {"constant"}},
};
ArrayRef<FormClassTable> TableRef(Table);
auto Iter = find_if(TableRef, [AttrEnc](const FormClassTable &T) {
return T.Index == AttrEnc.Index;
});
if (Iter == TableRef.end()) {
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains an "
"unknown index attribute: {2}.\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index);
return 0;
}
if (!DWARFFormValue(AttrEnc.Form).isFormClass(Iter->Class)) {
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
"unexpected form {3} (expected form class {4}).\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
AttrEnc.Form, Iter->ClassName);
return 1;
}
return 0;
}
unsigned
DWARFVerifier::verifyNameIndexAbbrevs(const DWARFDebugNames::NameIndex &NI) {
if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) {
warn() << formatv("Name Index @ {0:x}: Verifying indexes of type units is "
"not currently supported.\n",
NI.getUnitOffset());
return 0;
}
unsigned NumErrors = 0;
for (const auto &Abbrev : NI.getAbbrevs()) {
StringRef TagName = dwarf::TagString(Abbrev.Tag);
if (TagName.empty()) {
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} references an "
"unknown tag: {2}.\n",
NI.getUnitOffset(), Abbrev.Code, Abbrev.Tag);
}
SmallSet<unsigned, 5> Attributes;
for (const auto &AttrEnc : Abbrev.Attributes) {
if (!Attributes.insert(AttrEnc.Index).second) {
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains "
"multiple {2} attributes.\n",
NI.getUnitOffset(), Abbrev.Code, AttrEnc.Index);
++NumErrors;
continue;
}
NumErrors += verifyNameIndexAttribute(NI, Abbrev, AttrEnc);
}
if (NI.getCUCount() > 1 && !Attributes.count(dwarf::DW_IDX_compile_unit)) {
error() << formatv("NameIndex @ {0:x}: Indexing multiple compile units "
"and abbreviation {1:x} has no {2} attribute.\n",
NI.getUnitOffset(), Abbrev.Code,
dwarf::DW_IDX_compile_unit);
++NumErrors;
}
if (!Attributes.count(dwarf::DW_IDX_die_offset)) {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x} has no {2} attribute.\n",
NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_die_offset);
++NumErrors;
}
}
return NumErrors;
}
static SmallVector<StringRef, 2> getNames(const DWARFDie &DIE,
bool IncludeLinkageName = true) {
SmallVector<StringRef, 2> Result;
if (const char *Str = DIE.getName(DINameKind::ShortName))
Result.emplace_back(Str);
else if (DIE.getTag() == dwarf::DW_TAG_namespace)
Result.emplace_back("(anonymous namespace)");
if (IncludeLinkageName) {
if (const char *Str = DIE.getName(DINameKind::LinkageName)) {
if (Result.empty() || Result[0] != Str)
Result.emplace_back(Str);
}
}
return Result;
}
unsigned DWARFVerifier::verifyNameIndexEntries(
const DWARFDebugNames::NameIndex &NI,
const DWARFDebugNames::NameTableEntry &NTE) {
// Verifying type unit indexes not supported.
if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0)
return 0;
const char *CStr = NTE.getString();
if (!CStr) {
error() << formatv(
"Name Index @ {0:x}: Unable to get string associated with name {1}.\n",
NI.getUnitOffset(), NTE.getIndex());
return 1;
}
StringRef Str(CStr);
unsigned NumErrors = 0;
unsigned NumEntries = 0;
uint32_t EntryID = NTE.getEntryOffset();
uint32_t NextEntryID = EntryID;
Expected<DWARFDebugNames::Entry> EntryOr = NI.getEntry(&NextEntryID);
for (; EntryOr; ++NumEntries, EntryID = NextEntryID,
EntryOr = NI.getEntry(&NextEntryID)) {
uint32_t CUIndex = *EntryOr->getCUIndex();
if (CUIndex > NI.getCUCount()) {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an "
"invalid CU index ({2}).\n",
NI.getUnitOffset(), EntryID, CUIndex);
++NumErrors;
continue;
}
uint32_t CUOffset = NI.getCUOffset(CUIndex);
uint64_t DIEOffset = CUOffset + *EntryOr->getDIEUnitOffset();
DWARFDie DIE = DCtx.getDIEForOffset(DIEOffset);
if (!DIE) {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a "
"non-existing DIE @ {2:x}.\n",
NI.getUnitOffset(), EntryID, DIEOffset);
++NumErrors;
continue;
}
if (DIE.getDwarfUnit()->getOffset() != CUOffset) {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched CU of "
"DIE @ {2:x}: index - {3:x}; debug_info - {4:x}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, CUOffset,
DIE.getDwarfUnit()->getOffset());
++NumErrors;
}
if (DIE.getTag() != EntryOr->tag()) {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Tag of "
"DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, EntryOr->tag(),
DIE.getTag());
++NumErrors;
}
auto EntryNames = getNames(DIE);
if (!is_contained(EntryNames, Str)) {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Name "
"of DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, Str,
make_range(EntryNames.begin(), EntryNames.end()));
++NumErrors;
}
}
handleAllErrors(EntryOr.takeError(),
[&](const DWARFDebugNames::SentinelError &) {
if (NumEntries > 0)
return;
error() << formatv("Name Index @ {0:x}: Name {1} ({2}) is "
"not associated with any entries.\n",
NI.getUnitOffset(), NTE.getIndex(), Str);
++NumErrors;
},
[&](const ErrorInfoBase &Info) {
error()
<< formatv("Name Index @ {0:x}: Name {1} ({2}): {3}\n",
NI.getUnitOffset(), NTE.getIndex(), Str,
Info.message());
++NumErrors;
});
return NumErrors;
}
static bool isVariableIndexable(const DWARFDie &Die, DWARFContext &DCtx) {
Optional<DWARFFormValue> Location = Die.findRecursively(DW_AT_location);
if (!Location)
return false;
auto ContainsInterestingOperators = [&](StringRef D) {
DWARFUnit *U = Die.getDwarfUnit();
DataExtractor Data(D, DCtx.isLittleEndian(), U->getAddressByteSize());
DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize());
return any_of(Expression, [](DWARFExpression::Operation &Op) {
return !Op.isError() && (Op.getCode() == DW_OP_addr ||
Op.getCode() == DW_OP_form_tls_address ||
Op.getCode() == DW_OP_GNU_push_tls_address);
});
};
if (Optional<ArrayRef<uint8_t>> Expr = Location->getAsBlock()) {
// Inlined location.
if (ContainsInterestingOperators(toStringRef(*Expr)))
return true;
} else if (Optional<uint64_t> Offset = Location->getAsSectionOffset()) {
// Location list.
if (const DWARFDebugLoc *DebugLoc = DCtx.getDebugLoc()) {
if (const DWARFDebugLoc::LocationList *LocList =
DebugLoc->getLocationListAtOffset(*Offset)) {
if (any_of(LocList->Entries, [&](const DWARFDebugLoc::Entry &E) {
return ContainsInterestingOperators({E.Loc.data(), E.Loc.size()});
}))
return true;
}
}
}
return false;
}
unsigned DWARFVerifier::verifyNameIndexCompleteness(
const DWARFDie &Die, const DWARFDebugNames::NameIndex &NI) {
// First check, if the Die should be indexed. The code follows the DWARF v5
// wording as closely as possible.
// "All non-defining declarations (that is, debugging information entries
// with a DW_AT_declaration attribute) are excluded."
if (Die.find(DW_AT_declaration))
return 0;
// "DW_TAG_namespace debugging information entries without a DW_AT_name
// attribute are included with the name “(anonymous namespace)”.
// All other debugging information entries without a DW_AT_name attribute
// are excluded."
// "If a subprogram or inlined subroutine is included, and has a
// DW_AT_linkage_name attribute, there will be an additional index entry for
// the linkage name."
auto IncludeLinkageName = Die.getTag() == DW_TAG_subprogram ||
Die.getTag() == DW_TAG_inlined_subroutine;
auto EntryNames = getNames(Die, IncludeLinkageName);
if (EntryNames.empty())
return 0;
// We deviate from the specification here, which says:
// "The name index must contain an entry for each debugging information entry
// that defines a named subprogram, label, variable, type, or namespace,
// subject to ..."
// Instead whitelisting all TAGs representing a "type" or a "subprogram", to
// make sure we catch any missing items, we instead blacklist all TAGs that we
// know shouldn't be indexed.
switch (Die.getTag()) {
// Compile units and modules have names but shouldn't be indexed.
case DW_TAG_compile_unit:
case DW_TAG_module:
return 0;
// Function and template parameters are not globally visible, so we shouldn't
// index them.
case DW_TAG_formal_parameter:
case DW_TAG_template_value_parameter:
case DW_TAG_template_type_parameter:
case DW_TAG_GNU_template_parameter_pack:
case DW_TAG_GNU_template_template_param:
return 0;
// Object members aren't globally visible.
case DW_TAG_member:
return 0;
// According to a strict reading of the specification, enumerators should not
// be indexed (and LLVM currently does not do that). However, this causes
// problems for the debuggers, so we may need to reconsider this.
case DW_TAG_enumerator:
return 0;
// Imported declarations should not be indexed according to the specification
// and LLVM currently does not do that.
case DW_TAG_imported_declaration:
return 0;
// "DW_TAG_subprogram, DW_TAG_inlined_subroutine, and DW_TAG_label debugging
// information entries without an address attribute (DW_AT_low_pc,
// DW_AT_high_pc, DW_AT_ranges, or DW_AT_entry_pc) are excluded."
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
case DW_TAG_label:
if (Die.findRecursively(
{DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc}))
break;
return 0;
// "DW_TAG_variable debugging information entries with a DW_AT_location
// attribute that includes a DW_OP_addr or DW_OP_form_tls_address operator are
// included; otherwise, they are excluded."
//
// LLVM extension: We also add DW_OP_GNU_push_tls_address to this list.
case DW_TAG_variable:
if (isVariableIndexable(Die, DCtx))
break;
return 0;
default:
break;
}
// Now we know that our Die should be present in the Index. Let's check if
// that's the case.
unsigned NumErrors = 0;
uint64_t DieUnitOffset = Die.getOffset() - Die.getDwarfUnit()->getOffset();
for (StringRef Name : EntryNames) {
if (none_of(NI.equal_range(Name), [&](const DWARFDebugNames::Entry &E) {
return E.getDIEUnitOffset() == DieUnitOffset;
})) {
error() << formatv("Name Index @ {0:x}: Entry for DIE @ {1:x} ({2}) with "
"name {3} missing.\n",
NI.getUnitOffset(), Die.getOffset(), Die.getTag(),
Name);
++NumErrors;
}
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugNames(const DWARFSection &AccelSection,
const DataExtractor &StrData) {
unsigned NumErrors = 0;
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), AccelSection,
DCtx.isLittleEndian(), 0);
DWARFDebugNames AccelTable(AccelSectionData, StrData);
OS << "Verifying .debug_names...\n";
// This verifies that we can read individual name indices and their
// abbreviation tables.
if (Error E = AccelTable.extract()) {
error() << toString(std::move(E)) << '\n';
return 1;
}
NumErrors += verifyDebugNamesCULists(AccelTable);
for (const auto &NI : AccelTable)
NumErrors += verifyNameIndexBuckets(NI, StrData);
for (const auto &NI : AccelTable)
NumErrors += verifyNameIndexAbbrevs(NI);
// Don't attempt Entry validation if any of the previous checks found errors
if (NumErrors > 0)
return NumErrors;
for (const auto &NI : AccelTable)
for (DWARFDebugNames::NameTableEntry NTE : NI)
NumErrors += verifyNameIndexEntries(NI, NTE);
if (NumErrors > 0)
return NumErrors;
for (const std::unique_ptr<DWARFUnit> &U : DCtx.compile_units()) {
if (const DWARFDebugNames::NameIndex *NI =
AccelTable.getCUNameIndex(U->getOffset())) {
auto *CU = cast<DWARFCompileUnit>(U.get());
for (const DWARFDebugInfoEntry &Die : CU->dies())
NumErrors += verifyNameIndexCompleteness(DWARFDie(CU, &Die), *NI);
}
}
return NumErrors;
}
bool DWARFVerifier::handleAccelTables() {
const DWARFObject &D = DCtx.getDWARFObj();
DataExtractor StrData(D.getStringSection(), DCtx.isLittleEndian(), 0);
unsigned NumErrors = 0;
if (!D.getAppleNamesSection().Data.empty())
NumErrors += verifyAppleAccelTable(&D.getAppleNamesSection(), &StrData,
".apple_names");
if (!D.getAppleTypesSection().Data.empty())
NumErrors += verifyAppleAccelTable(&D.getAppleTypesSection(), &StrData,
".apple_types");
if (!D.getAppleNamespacesSection().Data.empty())
NumErrors += verifyAppleAccelTable(&D.getAppleNamespacesSection(), &StrData,
".apple_namespaces");
if (!D.getAppleObjCSection().Data.empty())
NumErrors += verifyAppleAccelTable(&D.getAppleObjCSection(), &StrData,
".apple_objc");
if (!D.getDebugNamesSection().Data.empty())
NumErrors += verifyDebugNames(D.getDebugNamesSection(), StrData);
return NumErrors == 0;
}
raw_ostream &DWARFVerifier::error() const { return WithColor::error(OS); }
raw_ostream &DWARFVerifier::warn() const { return WithColor::warning(OS); }
raw_ostream &DWARFVerifier::note() const { return WithColor::note(OS); }
raw_ostream &DWARFVerifier::dump(const DWARFDie &Die, unsigned indent) const {
Die.dump(OS, indent, DumpOpts);
return OS;
}