llvm-project/llvm/test/CodeGen/AMDGPU/trunc.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

126 lines
5.1 KiB
LLVM
Raw Normal View History

AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; RUN: llc -amdgpu-scalarize-global-loads=false -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=GCN -check-prefix=SI %s
; RUN: llc -amdgpu-scalarize-global-loads=false -march=amdgcn -mcpu=fiji -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=GCN -check-prefix=VI %s
; RUN: llc -amdgpu-scalarize-global-loads=false -march=r600 -mcpu=cypress < %s | FileCheck -enable-var-scope -check-prefix=EG %s
declare i32 @llvm.amdgcn.workitem.id.x() nounwind readnone
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @trunc_i64_to_i32_store(i32 addrspace(1)* %out, [8 x i32], i64 %in) {
; GCN-LABEL: {{^}}trunc_i64_to_i32_store:
; GCN: s_load_dword [[SLOAD:s[0-9]+]], s[0:1],
; GCN: v_mov_b32_e32 [[VLOAD:v[0-9]+]], [[SLOAD]]
R600/SI: Change all instruction assembly names to lowercase. This matches the format produced by the AMD proprietary driver. //==================================================================// // Shell script for converting .ll test cases: (Pass the .ll files you want to convert to this script as arguments). //==================================================================// ; This was necessary on my system so that A-Z in sed would match only ; upper case. I'm not sure why. export LC_ALL='C' TEST_FILES="$*" MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r` for f in $TEST_FILES; do # Check that there are SI tests: grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f if [ $? -eq 0 ]; then for match in $MATCHES; do sed -i -e "s/\([ :]$match\)/\L\1/" $f done # Try to get check lines with partial instruction names sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f fi done sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll //==================================================================// // Shell script for converting .td files (run this last) //==================================================================// export LC_ALL='C' sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td llvm-svn: 221350
2014-11-05 22:50:53 +08:00
; SI: buffer_store_dword [[VLOAD]]
; VI: flat_store_dword v[{{[0-9:]+}}], [[VLOAD]]
; EG-LABEL: {{^}}trunc_i64_to_i32_store:
; EG: MEM_RAT_CACHELESS STORE_RAW T0.X, T1.X, 1
; EG: LSHR
; EG-NEXT: 2(
%result = trunc i64 %in to i32 store i32 %result, i32 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}trunc_load_shl_i64:
; GCN-DAG: s_load_dwordx2
; GCN-DAG: s_load_dword [[SREG:s[0-9]+]],
; GCN: s_lshl_b32 [[SHL:s[0-9]+]], [[SREG]], 2
; GCN: v_mov_b32_e32 [[VSHL:v[0-9]+]], [[SHL]]
; SI: buffer_store_dword [[VSHL]]
; VI: flat_store_dword v[{{[0-9:]+}}], [[VSHL]]
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @trunc_load_shl_i64(i32 addrspace(1)* %out, [8 x i32], i64 %a) {
%b = shl i64 %a, 2
%result = trunc i64 %b to i32
store i32 %result, i32 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}trunc_shl_i64:
R600/SI: Change all instruction assembly names to lowercase. This matches the format produced by the AMD proprietary driver. //==================================================================// // Shell script for converting .ll test cases: (Pass the .ll files you want to convert to this script as arguments). //==================================================================// ; This was necessary on my system so that A-Z in sed would match only ; upper case. I'm not sure why. export LC_ALL='C' TEST_FILES="$*" MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r` for f in $TEST_FILES; do # Check that there are SI tests: grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f if [ $? -eq 0 ]; then for match in $MATCHES; do sed -i -e "s/\([ :]$match\)/\L\1/" $f done # Try to get check lines with partial instruction names sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f fi done sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll //==================================================================// // Shell script for converting .td files (run this last) //==================================================================// export LC_ALL='C' sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td llvm-svn: 221350
2014-11-05 22:50:53 +08:00
; SI: s_load_dwordx2 s{{\[}}[[LO_SREG:[0-9]+]]:{{[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0xd
; VI: s_load_dwordx2 s{{\[}}[[LO_SREG:[0-9]+]]:{{[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0x34
; GCN: s_lshl_b64 s{{\[}}[[LO_SHL:[0-9]+]]:{{[0-9]+\]}}, s{{\[}}[[LO_SREG]]:{{[0-9]+\]}}, 2
; GCN: s_add_u32 s[[LO_SREG2:[0-9]+]], s[[LO_SHL]],
; GCN: v_mov_b32_e32 v[[LO_VREG:[0-9]+]], s[[LO_SREG2]]
; GCN: s_addc_u32
; SI: buffer_store_dword v[[LO_VREG]],
; VI: flat_store_dword v[{{[0-9:]+}}], v[[LO_VREG]]
; GCN: v_mov_b32_e32
; GCN: v_mov_b32_e32
define amdgpu_kernel void @trunc_shl_i64(i64 addrspace(1)* %out2, i32 addrspace(1)* %out, i64 %a) {
%aa = add i64 %a, 234 ; Prevent shrinking store.
%b = shl i64 %aa, 2
%result = trunc i64 %b to i32
store i32 %result, i32 addrspace(1)* %out, align 4
store i64 %b, i64 addrspace(1)* %out2, align 8 ; Prevent reducing ops to 32-bits
ret void
}
; GCN-LABEL: {{^}}trunc_i32_to_i1:
; GCN: v_and_b32_e32 [[VREG:v[0-9]+]], 1, v{{[0-9]+}}
define amdgpu_kernel void @trunc_i32_to_i1(i32 addrspace(1)* %out, i32 addrspace(1)* %ptr) {
%a = load i32, i32 addrspace(1)* %ptr, align 4
%trunc = trunc i32 %a to i1
%result = select i1 %trunc, i32 1, i32 0
store i32 %result, i32 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}trunc_i8_to_i1:
; GCN: v_and_b32_e32 [[VREG:v[0-9]+]], 1, v{{[0-9]+}}
define amdgpu_kernel void @trunc_i8_to_i1(i8 addrspace(1)* %out, i8 addrspace(1)* %ptr) {
%a = load i8, i8 addrspace(1)* %ptr, align 4
%trunc = trunc i8 %a to i1
%result = select i1 %trunc, i8 1, i8 0
store i8 %result, i8 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}sgpr_trunc_i16_to_i1:
; GCN: s_and_b32 s{{[0-9]+}}, s{{[0-9]+}}, 1
define amdgpu_kernel void @sgpr_trunc_i16_to_i1(i16 addrspace(1)* %out, i16 %a) {
%trunc = trunc i16 %a to i1
%result = select i1 %trunc, i16 1, i16 0
store i16 %result, i16 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}sgpr_trunc_i32_to_i1:
; GCN: s_and_b32 s{{[0-9]+}}, s{{[0-9]+}}, 1
define amdgpu_kernel void @sgpr_trunc_i32_to_i1(i32 addrspace(1)* %out, i32 %a) {
%trunc = trunc i32 %a to i1
%result = select i1 %trunc, i32 1, i32 0
store i32 %result, i32 addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}s_trunc_i64_to_i1:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; SI: s_load_dwordx2 s{{\[}}[[SLO:[0-9]+]]:{{[0-9]+\]}}, {{s\[[0-9]+:[0-9]+\]}}, 0x13
; VI: s_load_dwordx2 s{{\[}}[[SLO:[0-9]+]]:{{[0-9]+\]}}, {{s\[[0-9]+:[0-9]+\]}}, 0x4c
; GCN: s_and_b32 [[MASKED:s[0-9]+]], 1, s[[SLO]]
; GCN: v_cmp_eq_u32_e64 s{{\[}}[[VLO:[0-9]+]]:[[VHI:[0-9]+]]], [[MASKED]], 1{{$}}
; GCN: v_cndmask_b32_e64 {{v[0-9]+}}, -12, 63, s{{\[}}[[VLO]]:[[VHI]]]
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @s_trunc_i64_to_i1(i32 addrspace(1)* %out, [8 x i32], i64 %x) {
%trunc = trunc i64 %x to i1
%sel = select i1 %trunc, i32 63, i32 -12
store i32 %sel, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}v_trunc_i64_to_i1:
; SI: buffer_load_dwordx2 v{{\[}}[[VLO:[0-9]+]]:{{[0-9]+\]}}
; VI: flat_load_dwordx2 v{{\[}}[[VLO:[0-9]+]]:{{[0-9]+\]}}
; GCN: v_and_b32_e32 [[MASKED:v[0-9]+]], 1, v[[VLO]]
; GCN: v_cmp_eq_u32_e32 vcc, 1, [[MASKED]]
; GCN: v_cndmask_b32_e64 {{v[0-9]+}}, -12, 63, vcc
define amdgpu_kernel void @v_trunc_i64_to_i1(i32 addrspace(1)* %out, i64 addrspace(1)* %in) {
%tid = call i32 @llvm.amdgcn.workitem.id.x() nounwind readnone
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr i64, i64 addrspace(1)* %in, i32 %tid
%out.gep = getelementptr i32, i32 addrspace(1)* %out, i32 %tid
%x = load i64, i64 addrspace(1)* %gep
%trunc = trunc i64 %x to i1
%sel = select i1 %trunc, i32 63, i32 -12
store i32 %sel, i32 addrspace(1)* %out.gep
ret void
}