llvm-project/llvm/test/CodeGen/X86/machine-combiner.ll

679 lines
22 KiB
LLVM
Raw Normal View History

; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=sse -enable-unsafe-fp-math -machine-combiner-verify-pattern-order=true < %s | FileCheck %s --check-prefix=SSE
; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=avx -enable-unsafe-fp-math -machine-combiner-verify-pattern-order=true < %s | FileCheck %s --check-prefix=AVX
Recommit [MachineCombiner] Update instruction depths incrementally for large BBs. This version of the patch fixes an off-by-one error causing PR34596. We do not need to use std::next(BlockIter) when calling updateDepths, as BlockIter already points to the next element. Original commit message: > For large basic blocks with lots of combinable instructions, the > MachineTraceMetrics computations in MachineCombiner can dominate the compile > time, as computing the trace information is quadratic in the number of > instructions in a BB and it's relevant successors/predecessors. > In most cases, knowing the instruction depth should be enough to make > combination decisions. As we already iterate over all instructions in a basic > block, the instruction depth can be computed incrementally. This reduces the > cost of machine-combine drastically in cases where lots of instructions > are combined. The major drawback is that AFAIK, computing the critical path > length cannot be done incrementally. Therefore we only compute > instruction depths incrementally, for basic blocks with more > instructions than inc_threshold. The -machine-combiner-inc-threshold > option can be used to set the threshold and allows for easier > experimenting and checking if using incremental updates for all basic > blocks has any impact on the performance. > > Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn > > Reviewed By: fhahn > > Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits > > Differential Revision: https://reviews.llvm.org/D36619 llvm-svn: 313751
2017-09-20 19:54:37 +08:00
; Incremental updates of the instruction depths should be enough for this test
; case.
; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=sse -enable-unsafe-fp-math -machine-combiner-inc-threshold=0 < %s | FileCheck %s --check-prefix=SSE
; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=avx -enable-unsafe-fp-math -machine-combiner-inc-threshold=0 < %s | FileCheck %s --check-prefix=AVX
; Verify that the first two adds are independent regardless of how the inputs are
; commuted. The destination registers are used as source registers for the third add.
define float @reassociate_adds1(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds1:
; SSE: # %bb.0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds1:
; AVX: # %bb.0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %t1, %x3
ret float %t2
}
define float @reassociate_adds2(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds2:
; SSE: # %bb.0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds2:
; AVX: # %bb.0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %t1, %x3
ret float %t2
}
define float @reassociate_adds3(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds3:
; SSE: # %bb.0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds3:
; AVX: # %bb.0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %x3, %t1
ret float %t2
}
define float @reassociate_adds4(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds4:
; SSE: # %bb.0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds4:
; AVX: # %bb.0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %x3, %t1
ret float %t2
}
; Verify that we reassociate some of these ops. The optimal balanced tree of adds is not
; produced because that would cost more compile time.
define float @reassociate_adds5(float %x0, float %x1, float %x2, float %x3, float %x4, float %x5, float %x6, float %x7) {
; SSE-LABEL: reassociate_adds5:
; SSE: # %bb.0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: addss %xmm5, %xmm4
; SSE-NEXT: addss %xmm6, %xmm4
; SSE-NEXT: addss %xmm4, %xmm0
; SSE-NEXT: addss %xmm7, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds5:
; AVX: # %bb.0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm5, %xmm4, %xmm1
; AVX-NEXT: vaddss %xmm6, %xmm1, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm7, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %t1, %x3
%t3 = fadd float %t2, %x4
%t4 = fadd float %t3, %x5
%t5 = fadd float %t4, %x6
%t6 = fadd float %t5, %x7
ret float %t6
}
; Verify that we only need two associative operations to reassociate the operands.
; Also, we should reassociate such that the result of the high latency division
; is used by the final 'add' rather than reassociating the %x3 operand with the
; division. The latter reassociation would not improve anything.
define float @reassociate_adds6(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds6:
; SSE: # %bb.0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds6:
; AVX: # %bb.0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %x3, %t1
ret float %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX scalar single-precision multiplies are reassociated.
define float @reassociate_muls1(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_muls1:
; SSE: # %bb.0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: mulss %xmm3, %xmm2
; SSE-NEXT: mulss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls1:
; AVX: # %bb.0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%t1 = fmul float %x2, %t0
%t2 = fmul float %x3, %t1
ret float %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX scalar double-precision adds are reassociated.
define double @reassociate_adds_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_adds_double:
; SSE: # %bb.0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: addsd %xmm3, %xmm2
; SSE-NEXT: addsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_double:
; AVX: # %bb.0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%t1 = fadd double %x2, %t0
%t2 = fadd double %x3, %t1
ret double %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX scalar double-precision multiplies are reassociated.
define double @reassociate_muls_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_muls_double:
; SSE: # %bb.0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: mulsd %xmm3, %xmm2
; SSE-NEXT: mulsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_double:
; AVX: # %bb.0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%t1 = fmul double %x2, %t0
%t2 = fmul double %x3, %t1
ret double %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX 128-bit vector single-precision adds are reassociated.
define <4 x float> @reassociate_adds_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_adds_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: mulps %xmm1, %xmm0
; SSE-NEXT: addps %xmm3, %xmm2
; SSE-NEXT: addps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fmul <4 x float> %x0, %x1
%t1 = fadd <4 x float> %x2, %t0
%t2 = fadd <4 x float> %x3, %t1
ret <4 x float> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX 128-bit vector double-precision adds are reassociated.
define <2 x double> @reassociate_adds_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_adds_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: mulpd %xmm1, %xmm0
; SSE-NEXT: addpd %xmm3, %xmm2
; SSE-NEXT: addpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fmul <2 x double> %x0, %x1
%t1 = fadd <2 x double> %x2, %t0
%t2 = fadd <2 x double> %x3, %t1
ret <2 x double> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX 128-bit vector single-precision multiplies are reassociated.
define <4 x float> @reassociate_muls_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_muls_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: mulps %xmm3, %xmm2
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%t1 = fmul <4 x float> %x2, %t0
%t2 = fmul <4 x float> %x3, %t1
ret <4 x float> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that SSE and AVX 128-bit vector double-precision multiplies are reassociated.
define <2 x double> @reassociate_muls_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_muls_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: mulpd %xmm3, %xmm2
; SSE-NEXT: mulpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%t1 = fmul <2 x double> %x2, %t0
%t2 = fmul <2 x double> %x3, %t1
ret <2 x double> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that AVX 256-bit vector single-precision adds are reassociated.
define <8 x float> @reassociate_adds_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_adds_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vaddps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fmul <8 x float> %x0, %x1
%t1 = fadd <8 x float> %x2, %t0
%t2 = fadd <8 x float> %x3, %t1
ret <8 x float> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that AVX 256-bit vector double-precision adds are reassociated.
define <4 x double> @reassociate_adds_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_adds_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vaddpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fmul <4 x double> %x0, %x1
%t1 = fadd <4 x double> %x2, %t0
%t2 = fadd <4 x double> %x3, %t1
ret <4 x double> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that AVX 256-bit vector single-precision multiplies are reassociated.
define <8 x float> @reassociate_muls_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_muls_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmulps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%t1 = fmul <8 x float> %x2, %t0
%t2 = fmul <8 x float> %x3, %t1
ret <8 x float> %t2
}
2015-08-16 00:53:08 +08:00
; Verify that AVX 256-bit vector double-precision multiplies are reassociated.
define <4 x double> @reassociate_muls_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_muls_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmulpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%t1 = fmul <4 x double> %x2, %t0
%t2 = fmul <4 x double> %x3, %t1
ret <4 x double> %t2
}
; Verify that SSE and AVX scalar single-precision minimum ops are reassociated.
define float @reassociate_mins_single(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_mins_single:
; SSE: # %bb.0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: minss %xmm3, %xmm2
; SSE-NEXT: minss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_single:
; AVX: # %bb.0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%cmp1 = fcmp olt float %x2, %t0
%sel1 = select i1 %cmp1, float %x2, float %t0
%cmp2 = fcmp olt float %x3, %sel1
%sel2 = select i1 %cmp2, float %x3, float %sel1
ret float %sel2
}
; Verify that SSE and AVX scalar single-precision maximum ops are reassociated.
define float @reassociate_maxs_single(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_maxs_single:
; SSE: # %bb.0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: maxss %xmm3, %xmm2
; SSE-NEXT: maxss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_single:
; AVX: # %bb.0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%cmp1 = fcmp ogt float %x2, %t0
%sel1 = select i1 %cmp1, float %x2, float %t0
%cmp2 = fcmp ogt float %x3, %sel1
%sel2 = select i1 %cmp2, float %x3, float %sel1
ret float %sel2
}
; Verify that SSE and AVX scalar double-precision minimum ops are reassociated.
define double @reassociate_mins_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_mins_double:
; SSE: # %bb.0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: minsd %xmm3, %xmm2
; SSE-NEXT: minsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_double:
; AVX: # %bb.0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%cmp1 = fcmp olt double %x2, %t0
%sel1 = select i1 %cmp1, double %x2, double %t0
%cmp2 = fcmp olt double %x3, %sel1
%sel2 = select i1 %cmp2, double %x3, double %sel1
ret double %sel2
}
; Verify that SSE and AVX scalar double-precision maximum ops are reassociated.
define double @reassociate_maxs_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_maxs_double:
; SSE: # %bb.0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: maxsd %xmm3, %xmm2
; SSE-NEXT: maxsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_double:
; AVX: # %bb.0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%cmp1 = fcmp ogt double %x2, %t0
%sel1 = select i1 %cmp1, double %x2, double %t0
%cmp2 = fcmp ogt double %x3, %sel1
%sel2 = select i1 %cmp2, double %x3, double %sel1
ret double %sel2
}
; Verify that SSE and AVX 128-bit vector single-precision minimum ops are reassociated.
define <4 x float> @reassociate_mins_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_mins_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: minps %xmm3, %xmm2
; SSE-NEXT: minps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%cmp1 = fcmp olt <4 x float> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0
%cmp2 = fcmp olt <4 x float> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1
ret <4 x float> %sel2
}
; Verify that SSE and AVX 128-bit vector single-precision maximum ops are reassociated.
define <4 x float> @reassociate_maxs_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_maxs_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: maxps %xmm3, %xmm2
; SSE-NEXT: maxps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%cmp1 = fcmp ogt <4 x float> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0
%cmp2 = fcmp ogt <4 x float> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1
ret <4 x float> %sel2
}
; Verify that SSE and AVX 128-bit vector double-precision minimum ops are reassociated.
define <2 x double> @reassociate_mins_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_mins_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: minpd %xmm3, %xmm2
; SSE-NEXT: minpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%cmp1 = fcmp olt <2 x double> %x2, %t0
%sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0
%cmp2 = fcmp olt <2 x double> %x3, %sel1
%sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1
ret <2 x double> %sel2
}
; Verify that SSE and AVX 128-bit vector double-precision maximum ops are reassociated.
define <2 x double> @reassociate_maxs_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_maxs_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: maxpd %xmm3, %xmm2
; SSE-NEXT: maxpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%cmp1 = fcmp ogt <2 x double> %x2, %t0
%sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0
%cmp2 = fcmp ogt <2 x double> %x3, %sel1
%sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1
ret <2 x double> %sel2
}
; Verify that AVX 256-bit vector single-precision minimum ops are reassociated.
define <8 x float> @reassociate_mins_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_mins_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vminps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vminps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%cmp1 = fcmp olt <8 x float> %x2, %t0
%sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0
%cmp2 = fcmp olt <8 x float> %x3, %sel1
%sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1
ret <8 x float> %sel2
}
; Verify that AVX 256-bit vector single-precision maximum ops are reassociated.
define <8 x float> @reassociate_maxs_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_maxs_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmaxps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmaxps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%cmp1 = fcmp ogt <8 x float> %x2, %t0
%sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0
%cmp2 = fcmp ogt <8 x float> %x3, %sel1
%sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1
ret <8 x float> %sel2
}
; Verify that AVX 256-bit vector double-precision minimum ops are reassociated.
define <4 x double> @reassociate_mins_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_mins_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vminpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vminpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%cmp1 = fcmp olt <4 x double> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0
%cmp2 = fcmp olt <4 x double> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1
ret <4 x double> %sel2
}
; Verify that AVX 256-bit vector double-precision maximum ops are reassociated.
define <4 x double> @reassociate_maxs_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_maxs_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmaxpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmaxpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%cmp1 = fcmp ogt <4 x double> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0
%cmp2 = fcmp ogt <4 x double> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1
ret <4 x double> %sel2
}
; PR25016: https://llvm.org/bugs/show_bug.cgi?id=25016
; Verify that reassociation is not happening needlessly or wrongly.
declare double @bar()
define double @reassociate_adds_from_calls() {
; AVX-LABEL: reassociate_adds_from_calls:
; AVX: callq bar
; AVX-NEXT: vmovsd %xmm0, 16(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, 8(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, (%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd 8(%rsp), %xmm1
; AVX: vaddsd 16(%rsp), %xmm1, %xmm1
; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0
%x0 = call double @bar()
%x1 = call double @bar()
%x2 = call double @bar()
%x3 = call double @bar()
%t0 = fadd double %x0, %x1
%t1 = fadd double %t0, %x2
%t2 = fadd double %t1, %x3
ret double %t2
}
define double @already_reassociated() {
; AVX-LABEL: already_reassociated:
; AVX: callq bar
; AVX-NEXT: vmovsd %xmm0, 16(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, 8(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, (%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd 8(%rsp), %xmm1
; AVX: vaddsd 16(%rsp), %xmm1, %xmm1
; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0
%x0 = call double @bar()
%x1 = call double @bar()
%x2 = call double @bar()
%x3 = call double @bar()
%t0 = fadd double %x0, %x1
%t1 = fadd double %x2, %x3
%t2 = fadd double %t0, %t1
ret double %t2
}