llvm-project/llvm/test/CodeGen/AMDGPU/frem.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1052 lines
43 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -amdgpu-scalarize-global-loads=false -enable-misched=0 -march=amdgcn -mattr=+mad-mac-f32-insts -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,SI %s
; RUN: llc -amdgpu-scalarize-global-loads=false -enable-misched=0 -march=amdgcn -mcpu=bonaire -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,CI %s
; RUN: llc -amdgpu-scalarize-global-loads=false -enable-misched=0 -march=amdgcn -mcpu=tonga -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,VI %s
define amdgpu_kernel void @frem_f32(float addrspace(1)* %out, float addrspace(1)* %in1,
; SI-LABEL: frem_f32:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s0, s4
; SI-NEXT: s_mov_b32 s1, s5
; SI-NEXT: s_mov_b32 s4, s6
; SI-NEXT: s_mov_b32 s5, s7
; SI-NEXT: s_mov_b32 s6, s2
; SI-NEXT: s_mov_b32 s7, s3
; SI-NEXT: s_mov_b32 s10, s2
; SI-NEXT: s_mov_b32 s11, s3
; SI-NEXT: buffer_load_dword v0, off, s[4:7], 0
; SI-NEXT: buffer_load_dword v1, off, s[8:11], 0 offset:16
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_div_scale_f32 v2, vcc, v0, v1, v0
; SI-NEXT: v_div_scale_f32 v3, s[4:5], v1, v1, v0
; SI-NEXT: v_rcp_f32_e32 v4, v3
; SI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 3
; SI-NEXT: v_fma_f32 v5, -v3, v4, 1.0
; SI-NEXT: v_fma_f32 v4, v5, v4, v4
; SI-NEXT: v_mul_f32_e32 v5, v2, v4
; SI-NEXT: v_fma_f32 v6, -v3, v5, v2
; SI-NEXT: v_fma_f32 v5, v6, v4, v5
; SI-NEXT: v_fma_f32 v2, -v3, v5, v2
; SI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 0
; SI-NEXT: v_div_fmas_f32 v2, v2, v4, v5
; SI-NEXT: v_div_fixup_f32 v2, v2, v1, v0
; SI-NEXT: v_trunc_f32_e32 v2, v2
; SI-NEXT: v_mad_f32 v0, -v2, v1, v0
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: frem_f32:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s11, 0xf000
; CI-NEXT: s_mov_b32 s10, -1
; CI-NEXT: s_mov_b32 s2, s10
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s8, s4
; CI-NEXT: s_mov_b32 s9, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s10
; CI-NEXT: s_mov_b32 s7, s11
; CI-NEXT: s_mov_b32 s3, s11
; CI-NEXT: buffer_load_dword v0, off, s[4:7], 0
; CI-NEXT: buffer_load_dword v1, off, s[0:3], 0 offset:16
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_div_scale_f32 v3, s[0:1], v1, v1, v0
; CI-NEXT: v_div_scale_f32 v2, vcc, v0, v1, v0
; CI-NEXT: v_rcp_f32_e32 v4, v3
; CI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 3
; CI-NEXT: v_fma_f32 v5, -v3, v4, 1.0
; CI-NEXT: v_fma_f32 v4, v5, v4, v4
; CI-NEXT: v_mul_f32_e32 v5, v2, v4
; CI-NEXT: v_fma_f32 v6, -v3, v5, v2
; CI-NEXT: v_fma_f32 v5, v6, v4, v5
; CI-NEXT: v_fma_f32 v2, -v3, v5, v2
; CI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 0
; CI-NEXT: v_div_fmas_f32 v2, v2, v4, v5
; CI-NEXT: v_div_fixup_f32 v2, v2, v1, v0
; CI-NEXT: v_trunc_f32_e32 v2, v2
; CI-NEXT: v_mad_f32 v0, -v2, v1, v0
; CI-NEXT: buffer_store_dword v0, off, s[8:11], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: frem_f32:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v2, s6
; VI-NEXT: s_add_u32 s0, s0, 16
; VI-NEXT: v_mov_b32_e32 v3, s7
; VI-NEXT: s_addc_u32 s1, s1, 0
; VI-NEXT: flat_load_dword v4, v[2:3]
; VI-NEXT: v_mov_b32_e32 v3, s1
; VI-NEXT: v_mov_b32_e32 v2, s0
; VI-NEXT: flat_load_dword v2, v[2:3]
; VI-NEXT: v_mov_b32_e32 v0, s4
; VI-NEXT: v_mov_b32_e32 v1, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_div_scale_f32 v5, s[0:1], v2, v2, v4
; VI-NEXT: v_div_scale_f32 v3, vcc, v4, v2, v4
; VI-NEXT: v_rcp_f32_e32 v6, v5
; VI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 3
; VI-NEXT: v_fma_f32 v7, -v5, v6, 1.0
; VI-NEXT: v_fma_f32 v6, v7, v6, v6
; VI-NEXT: v_mul_f32_e32 v7, v3, v6
; VI-NEXT: v_fma_f32 v8, -v5, v7, v3
; VI-NEXT: v_fma_f32 v7, v8, v6, v7
; VI-NEXT: v_fma_f32 v3, -v5, v7, v3
; VI-NEXT: s_setreg_imm32_b32 hwreg(HW_REG_MODE, 4, 2), 0
; VI-NEXT: v_div_fmas_f32 v3, v3, v6, v7
; VI-NEXT: v_div_fixup_f32 v3, v3, v2, v4
; VI-NEXT: v_trunc_f32_e32 v3, v3
; VI-NEXT: v_mad_f32 v2, -v3, v2, v4
; VI-NEXT: flat_store_dword v[0:1], v2
; VI-NEXT: s_endpgm
float addrspace(1)* %in2) #0 {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr float, float addrspace(1)* %in2, i32 4
%r0 = load float, float addrspace(1)* %in1, align 4
%r1 = load float, float addrspace(1)* %gep2, align 4
%r2 = frem float %r0, %r1
store float %r2, float addrspace(1)* %out, align 4
ret void
}
define amdgpu_kernel void @unsafe_frem_f32(float addrspace(1)* %out, float addrspace(1)* %in1,
; SI-LABEL: unsafe_frem_f32:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s0, s4
; SI-NEXT: s_mov_b32 s1, s5
; SI-NEXT: s_mov_b32 s4, s6
; SI-NEXT: s_mov_b32 s5, s7
; SI-NEXT: s_mov_b32 s6, s2
; SI-NEXT: s_mov_b32 s7, s3
; SI-NEXT: s_mov_b32 s10, s2
; SI-NEXT: s_mov_b32 s11, s3
; SI-NEXT: buffer_load_dword v0, off, s[4:7], 0
; SI-NEXT: buffer_load_dword v1, off, s[8:11], 0 offset:16
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_rcp_f32_e32 v2, v1
; SI-NEXT: v_mul_f32_e32 v2, v0, v2
; SI-NEXT: v_trunc_f32_e32 v2, v2
; SI-NEXT: v_mad_f32 v0, -v2, v1, v0
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: unsafe_frem_f32:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s11, 0xf000
; CI-NEXT: s_mov_b32 s10, -1
; CI-NEXT: s_mov_b32 s2, s10
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s8, s4
; CI-NEXT: s_mov_b32 s9, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s10
; CI-NEXT: s_mov_b32 s7, s11
; CI-NEXT: s_mov_b32 s3, s11
; CI-NEXT: buffer_load_dword v0, off, s[4:7], 0
; CI-NEXT: buffer_load_dword v1, off, s[0:3], 0 offset:16
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_rcp_f32_e32 v2, v1
; CI-NEXT: v_mul_f32_e32 v2, v0, v2
; CI-NEXT: v_trunc_f32_e32 v2, v2
; CI-NEXT: v_mad_f32 v0, -v2, v1, v0
; CI-NEXT: buffer_store_dword v0, off, s[8:11], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: unsafe_frem_f32:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v2, s6
; VI-NEXT: s_add_u32 s0, s0, 16
; VI-NEXT: v_mov_b32_e32 v3, s7
; VI-NEXT: s_addc_u32 s1, s1, 0
; VI-NEXT: flat_load_dword v4, v[2:3]
; VI-NEXT: v_mov_b32_e32 v3, s1
; VI-NEXT: v_mov_b32_e32 v2, s0
; VI-NEXT: flat_load_dword v2, v[2:3]
; VI-NEXT: v_mov_b32_e32 v0, s4
; VI-NEXT: v_mov_b32_e32 v1, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_rcp_f32_e32 v3, v2
; VI-NEXT: v_mul_f32_e32 v3, v4, v3
; VI-NEXT: v_trunc_f32_e32 v3, v3
; VI-NEXT: v_mad_f32 v2, -v3, v2, v4
; VI-NEXT: flat_store_dword v[0:1], v2
; VI-NEXT: s_endpgm
float addrspace(1)* %in2) #1 {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr float, float addrspace(1)* %in2, i32 4
%r0 = load float, float addrspace(1)* %in1, align 4
%r1 = load float, float addrspace(1)* %gep2, align 4
%r2 = frem float %r0, %r1
store float %r2, float addrspace(1)* %out, align 4
ret void
}
define amdgpu_kernel void @frem_f64(double addrspace(1)* %out, double addrspace(1)* %in1,
; SI-LABEL: frem_f64:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[12:13], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s4, s8
; SI-NEXT: s_mov_b32 s5, s9
; SI-NEXT: s_mov_b32 s0, s10
; SI-NEXT: s_mov_b32 s1, s11
; SI-NEXT: s_mov_b32 s2, s6
; SI-NEXT: s_mov_b32 s3, s7
; SI-NEXT: s_mov_b32 s14, s6
; SI-NEXT: s_mov_b32 s15, s7
; SI-NEXT: buffer_load_dwordx2 v[0:1], off, s[0:3], 0
; SI-NEXT: buffer_load_dwordx2 v[2:3], off, s[12:15], 0
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_div_scale_f64 v[4:5], s[0:1], v[2:3], v[2:3], v[0:1]
; SI-NEXT: v_rcp_f64_e32 v[6:7], v[4:5]
; SI-NEXT: v_fma_f64 v[8:9], -v[4:5], v[6:7], 1.0
; SI-NEXT: v_fma_f64 v[6:7], v[6:7], v[8:9], v[6:7]
; SI-NEXT: v_fma_f64 v[8:9], -v[4:5], v[6:7], 1.0
; SI-NEXT: v_fma_f64 v[6:7], v[6:7], v[8:9], v[6:7]
; SI-NEXT: v_div_scale_f64 v[8:9], s[0:1], v[0:1], v[2:3], v[0:1]
; SI-NEXT: v_mul_f64 v[10:11], v[8:9], v[6:7]
; SI-NEXT: v_fma_f64 v[12:13], -v[4:5], v[10:11], v[8:9]
; SI-NEXT: v_cmp_eq_u32_e32 vcc, v3, v5
; SI-NEXT: v_cmp_eq_u32_e64 s[0:1], v1, v9
; SI-NEXT: s_xor_b64 vcc, s[0:1], vcc
; SI-NEXT: s_nop 0
; SI-NEXT: s_nop 0
; SI-NEXT: v_div_fmas_f64 v[4:5], v[12:13], v[6:7], v[10:11]
; SI-NEXT: v_div_fixup_f64 v[4:5], v[4:5], v[2:3], v[0:1]
; SI-NEXT: v_bfe_u32 v6, v5, 20, 11
; SI-NEXT: v_add_i32_e32 v8, vcc, 0xfffffc01, v6
; SI-NEXT: s_mov_b32 s1, 0xfffff
; SI-NEXT: s_mov_b32 s0, s6
; SI-NEXT: v_lshr_b64 v[6:7], s[0:1], v8
; SI-NEXT: v_not_b32_e32 v6, v6
; SI-NEXT: v_and_b32_e32 v6, v4, v6
; SI-NEXT: v_not_b32_e32 v7, v7
; SI-NEXT: v_and_b32_e32 v7, v5, v7
; SI-NEXT: v_and_b32_e32 v9, 0x80000000, v5
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v8
; SI-NEXT: v_cndmask_b32_e32 v7, v7, v9, vcc
; SI-NEXT: v_cmp_lt_i32_e64 s[0:1], 51, v8
; SI-NEXT: v_cndmask_b32_e64 v5, v7, v5, s[0:1]
; SI-NEXT: v_cndmask_b32_e64 v6, v6, 0, vcc
; SI-NEXT: v_cndmask_b32_e64 v4, v6, v4, s[0:1]
; SI-NEXT: v_mul_f64 v[2:3], v[4:5], v[2:3]
; SI-NEXT: v_add_f64 v[0:1], v[0:1], -v[2:3]
; SI-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: frem_f64:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s11, 0xf000
; CI-NEXT: s_mov_b32 s10, -1
; CI-NEXT: s_mov_b32 s2, s10
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s8, s4
; CI-NEXT: s_mov_b32 s9, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s10
; CI-NEXT: s_mov_b32 s7, s11
; CI-NEXT: s_mov_b32 s3, s11
; CI-NEXT: buffer_load_dwordx2 v[0:1], off, s[4:7], 0
; CI-NEXT: buffer_load_dwordx2 v[2:3], off, s[0:3], 0
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_div_scale_f64 v[4:5], s[0:1], v[2:3], v[2:3], v[0:1]
; CI-NEXT: v_rcp_f64_e32 v[6:7], v[4:5]
; CI-NEXT: v_fma_f64 v[8:9], -v[4:5], v[6:7], 1.0
; CI-NEXT: v_fma_f64 v[6:7], v[6:7], v[8:9], v[6:7]
; CI-NEXT: v_fma_f64 v[8:9], -v[4:5], v[6:7], 1.0
; CI-NEXT: v_fma_f64 v[6:7], v[6:7], v[8:9], v[6:7]
; CI-NEXT: v_div_scale_f64 v[8:9], vcc, v[0:1], v[2:3], v[0:1]
; CI-NEXT: v_mul_f64 v[10:11], v[8:9], v[6:7]
; CI-NEXT: v_fma_f64 v[4:5], -v[4:5], v[10:11], v[8:9]
; CI-NEXT: s_nop 1
; CI-NEXT: v_div_fmas_f64 v[4:5], v[4:5], v[6:7], v[10:11]
; CI-NEXT: v_div_fixup_f64 v[4:5], v[4:5], v[2:3], v[0:1]
; CI-NEXT: v_trunc_f64_e32 v[4:5], v[4:5]
; CI-NEXT: v_mul_f64 v[2:3], v[4:5], v[2:3]
; CI-NEXT: v_add_f64 v[0:1], v[0:1], -v[2:3]
; CI-NEXT: buffer_store_dwordx2 v[0:1], off, s[8:11], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: frem_f64:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v2, s6
; VI-NEXT: v_mov_b32_e32 v3, s7
; VI-NEXT: v_mov_b32_e32 v4, s0
; VI-NEXT: v_mov_b32_e32 v5, s1
; VI-NEXT: flat_load_dwordx2 v[2:3], v[2:3]
; VI-NEXT: flat_load_dwordx2 v[4:5], v[4:5]
; VI-NEXT: v_mov_b32_e32 v0, s4
; VI-NEXT: v_mov_b32_e32 v1, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_div_scale_f64 v[6:7], s[0:1], v[4:5], v[4:5], v[2:3]
; VI-NEXT: v_rcp_f64_e32 v[8:9], v[6:7]
; VI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; VI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; VI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; VI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; VI-NEXT: v_div_scale_f64 v[10:11], vcc, v[2:3], v[4:5], v[2:3]
; VI-NEXT: v_mul_f64 v[12:13], v[10:11], v[8:9]
; VI-NEXT: v_fma_f64 v[6:7], -v[6:7], v[12:13], v[10:11]
; VI-NEXT: s_nop 1
; VI-NEXT: v_div_fmas_f64 v[6:7], v[6:7], v[8:9], v[12:13]
; VI-NEXT: v_div_fixup_f64 v[6:7], v[6:7], v[4:5], v[2:3]
; VI-NEXT: v_trunc_f64_e32 v[6:7], v[6:7]
; VI-NEXT: v_mul_f64 v[4:5], v[6:7], v[4:5]
; VI-NEXT: v_add_f64 v[2:3], v[2:3], -v[4:5]
; VI-NEXT: flat_store_dwordx2 v[0:1], v[2:3]
; VI-NEXT: s_endpgm
double addrspace(1)* %in2) #0 {
%r0 = load double, double addrspace(1)* %in1, align 8
%r1 = load double, double addrspace(1)* %in2, align 8
%r2 = frem double %r0, %r1
store double %r2, double addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @unsafe_frem_f64(double addrspace(1)* %out, double addrspace(1)* %in1,
; SI-LABEL: unsafe_frem_f64:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s15, 0xf000
; SI-NEXT: s_mov_b32 s14, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s12, s4
; SI-NEXT: s_mov_b32 s13, s5
; SI-NEXT: s_mov_b32 s0, s6
; SI-NEXT: s_mov_b32 s1, s7
; SI-NEXT: s_mov_b32 s2, s14
; SI-NEXT: s_mov_b32 s3, s15
; SI-NEXT: s_mov_b32 s10, s14
; SI-NEXT: s_mov_b32 s11, s15
; SI-NEXT: buffer_load_dwordx2 v[0:1], off, s[0:3], 0
; SI-NEXT: buffer_load_dwordx2 v[2:3], off, s[8:11], 0
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_rcp_f64_e32 v[4:5], v[2:3]
; SI-NEXT: v_mul_f64 v[4:5], v[0:1], v[4:5]
; SI-NEXT: v_bfe_u32 v6, v5, 20, 11
; SI-NEXT: v_add_i32_e32 v8, vcc, 0xfffffc01, v6
; SI-NEXT: s_mov_b32 s1, 0xfffff
; SI-NEXT: s_mov_b32 s0, s14
; SI-NEXT: v_lshr_b64 v[6:7], s[0:1], v8
; SI-NEXT: v_not_b32_e32 v6, v6
; SI-NEXT: v_and_b32_e32 v6, v4, v6
; SI-NEXT: v_not_b32_e32 v7, v7
; SI-NEXT: v_and_b32_e32 v7, v5, v7
; SI-NEXT: v_and_b32_e32 v9, 0x80000000, v5
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v8
; SI-NEXT: v_cndmask_b32_e32 v7, v7, v9, vcc
; SI-NEXT: v_cmp_lt_i32_e64 s[0:1], 51, v8
; SI-NEXT: v_cndmask_b32_e64 v5, v7, v5, s[0:1]
; SI-NEXT: v_cndmask_b32_e64 v6, v6, 0, vcc
; SI-NEXT: v_cndmask_b32_e64 v4, v6, v4, s[0:1]
; SI-NEXT: v_mul_f64 v[2:3], v[4:5], v[2:3]
; SI-NEXT: v_add_f64 v[0:1], v[0:1], -v[2:3]
; SI-NEXT: buffer_store_dwordx2 v[0:1], off, s[12:15], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: unsafe_frem_f64:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s11, 0xf000
; CI-NEXT: s_mov_b32 s10, -1
; CI-NEXT: s_mov_b32 s2, s10
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s8, s4
; CI-NEXT: s_mov_b32 s9, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s10
; CI-NEXT: s_mov_b32 s7, s11
; CI-NEXT: s_mov_b32 s3, s11
; CI-NEXT: buffer_load_dwordx2 v[0:1], off, s[4:7], 0
; CI-NEXT: buffer_load_dwordx2 v[2:3], off, s[0:3], 0
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_rcp_f64_e32 v[4:5], v[2:3]
; CI-NEXT: v_mul_f64 v[4:5], v[0:1], v[4:5]
; CI-NEXT: v_trunc_f64_e32 v[4:5], v[4:5]
; CI-NEXT: v_mul_f64 v[2:3], v[4:5], v[2:3]
; CI-NEXT: v_add_f64 v[0:1], v[0:1], -v[2:3]
; CI-NEXT: buffer_store_dwordx2 v[0:1], off, s[8:11], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: unsafe_frem_f64:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v2, s6
; VI-NEXT: v_mov_b32_e32 v3, s7
; VI-NEXT: v_mov_b32_e32 v4, s0
; VI-NEXT: v_mov_b32_e32 v5, s1
; VI-NEXT: flat_load_dwordx2 v[2:3], v[2:3]
; VI-NEXT: flat_load_dwordx2 v[4:5], v[4:5]
; VI-NEXT: v_mov_b32_e32 v0, s4
; VI-NEXT: v_mov_b32_e32 v1, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_rcp_f64_e32 v[6:7], v[4:5]
; VI-NEXT: v_mul_f64 v[6:7], v[2:3], v[6:7]
; VI-NEXT: v_trunc_f64_e32 v[6:7], v[6:7]
; VI-NEXT: v_mul_f64 v[4:5], v[6:7], v[4:5]
; VI-NEXT: v_add_f64 v[2:3], v[2:3], -v[4:5]
; VI-NEXT: flat_store_dwordx2 v[0:1], v[2:3]
; VI-NEXT: s_endpgm
double addrspace(1)* %in2) #1 {
%r0 = load double, double addrspace(1)* %in1, align 8
%r1 = load double, double addrspace(1)* %in2, align 8
%r2 = frem double %r0, %r1
store double %r2, double addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @frem_v2f32(<2 x float> addrspace(1)* %out, <2 x float> addrspace(1)* %in1,
; SI-LABEL: frem_v2f32:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s0, s4
; SI-NEXT: s_mov_b32 s1, s5
; SI-NEXT: s_mov_b32 s4, s6
; SI-NEXT: s_mov_b32 s5, s7
; SI-NEXT: s_mov_b32 s6, s2
; SI-NEXT: s_mov_b32 s7, s3
; SI-NEXT: s_mov_b32 s10, s2
; SI-NEXT: s_mov_b32 s11, s3
; SI-NEXT: buffer_load_dwordx2 v[0:1], off, s[4:7], 0
; SI-NEXT: buffer_load_dwordx2 v[2:3], off, s[8:11], 0 offset:32
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_div_scale_f32 v4, vcc, v1, v3, v1
; SI-NEXT: v_div_scale_f32 v5, s[4:5], v3, v3, v1
; SI-NEXT: v_rcp_f32_e32 v6, v5
; SI-NEXT: s_mov_b32 s6, 3
; SI-NEXT: s_mov_b32 s7, 0
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v7, -v5, v6, 1.0
; SI-NEXT: v_fma_f32 v6, v7, v6, v6
; SI-NEXT: v_mul_f32_e32 v7, v4, v6
; SI-NEXT: v_fma_f32 v8, -v5, v7, v4
; SI-NEXT: v_fma_f32 v7, v8, v6, v7
; SI-NEXT: v_fma_f32 v4, -v5, v7, v4
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v4, v4, v6, v7
; SI-NEXT: v_div_fixup_f32 v4, v4, v3, v1
; SI-NEXT: v_trunc_f32_e32 v4, v4
; SI-NEXT: v_mad_f32 v1, -v4, v3, v1
; SI-NEXT: v_div_scale_f32 v3, vcc, v0, v2, v0
; SI-NEXT: v_div_scale_f32 v4, s[4:5], v2, v2, v0
; SI-NEXT: v_rcp_f32_e32 v5, v4
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v6, -v4, v5, 1.0
; SI-NEXT: v_fma_f32 v5, v6, v5, v5
; SI-NEXT: v_mul_f32_e32 v6, v3, v5
; SI-NEXT: v_fma_f32 v7, -v4, v6, v3
; SI-NEXT: v_fma_f32 v6, v7, v5, v6
; SI-NEXT: v_fma_f32 v3, -v4, v6, v3
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v3, v3, v5, v6
; SI-NEXT: v_div_fixup_f32 v3, v3, v2, v0
; SI-NEXT: v_trunc_f32_e32 v3, v3
; SI-NEXT: v_mad_f32 v0, -v3, v2, v0
; SI-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: frem_v2f32:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s3, 0xf000
; CI-NEXT: s_mov_b32 s2, -1
; CI-NEXT: s_mov_b32 s10, s2
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s0, s4
; CI-NEXT: s_mov_b32 s1, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s2
; CI-NEXT: s_mov_b32 s7, s3
; CI-NEXT: s_mov_b32 s11, s3
; CI-NEXT: buffer_load_dwordx2 v[0:1], off, s[4:7], 0
; CI-NEXT: buffer_load_dwordx2 v[2:3], off, s[8:11], 0 offset:32
; CI-NEXT: s_mov_b32 s6, 3
; CI-NEXT: s_mov_b32 s7, 0
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_div_scale_f32 v5, s[4:5], v3, v3, v1
; CI-NEXT: v_div_scale_f32 v4, vcc, v1, v3, v1
; CI-NEXT: v_rcp_f32_e32 v6, v5
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v7, -v5, v6, 1.0
; CI-NEXT: v_fma_f32 v6, v7, v6, v6
; CI-NEXT: v_mul_f32_e32 v7, v4, v6
; CI-NEXT: v_fma_f32 v8, -v5, v7, v4
; CI-NEXT: v_fma_f32 v7, v8, v6, v7
; CI-NEXT: v_fma_f32 v4, -v5, v7, v4
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v4, v4, v6, v7
; CI-NEXT: v_div_fixup_f32 v4, v4, v3, v1
; CI-NEXT: v_trunc_f32_e32 v4, v4
; CI-NEXT: v_mad_f32 v1, -v4, v3, v1
; CI-NEXT: v_div_scale_f32 v4, s[4:5], v2, v2, v0
; CI-NEXT: v_div_scale_f32 v3, vcc, v0, v2, v0
; CI-NEXT: v_rcp_f32_e32 v5, v4
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v6, -v4, v5, 1.0
; CI-NEXT: v_fma_f32 v5, v6, v5, v5
; CI-NEXT: v_mul_f32_e32 v6, v3, v5
; CI-NEXT: v_fma_f32 v7, -v4, v6, v3
; CI-NEXT: v_fma_f32 v6, v7, v5, v6
; CI-NEXT: v_fma_f32 v3, -v4, v6, v3
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v3, v3, v5, v6
; CI-NEXT: v_div_fixup_f32 v3, v3, v2, v0
; CI-NEXT: v_trunc_f32_e32 v3, v3
; CI-NEXT: v_mad_f32 v0, -v3, v2, v0
; CI-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: frem_v2f32:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_mov_b32 s2, 3
; VI-NEXT: s_mov_b32 s3, 0
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v2, s6
; VI-NEXT: s_add_u32 s0, s0, 32
; VI-NEXT: s_addc_u32 s1, s1, 0
; VI-NEXT: v_mov_b32_e32 v5, s1
; VI-NEXT: v_mov_b32_e32 v3, s7
; VI-NEXT: v_mov_b32_e32 v4, s0
; VI-NEXT: flat_load_dwordx2 v[2:3], v[2:3]
; VI-NEXT: flat_load_dwordx2 v[4:5], v[4:5]
; VI-NEXT: v_mov_b32_e32 v0, s4
; VI-NEXT: v_mov_b32_e32 v1, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_div_scale_f32 v7, s[0:1], v5, v5, v3
; VI-NEXT: v_div_scale_f32 v6, vcc, v3, v5, v3
; VI-NEXT: v_rcp_f32_e32 v8, v7
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v9, -v7, v8, 1.0
; VI-NEXT: v_fma_f32 v8, v9, v8, v8
; VI-NEXT: v_mul_f32_e32 v9, v6, v8
; VI-NEXT: v_fma_f32 v10, -v7, v9, v6
; VI-NEXT: v_fma_f32 v9, v10, v8, v9
; VI-NEXT: v_fma_f32 v6, -v7, v9, v6
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v6, v6, v8, v9
; VI-NEXT: v_div_fixup_f32 v6, v6, v5, v3
; VI-NEXT: v_trunc_f32_e32 v6, v6
; VI-NEXT: v_mad_f32 v3, -v6, v5, v3
; VI-NEXT: v_div_scale_f32 v6, s[0:1], v4, v4, v2
; VI-NEXT: v_div_scale_f32 v5, vcc, v2, v4, v2
; VI-NEXT: v_rcp_f32_e32 v7, v6
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v8, -v6, v7, 1.0
; VI-NEXT: v_fma_f32 v7, v8, v7, v7
; VI-NEXT: v_mul_f32_e32 v8, v5, v7
; VI-NEXT: v_fma_f32 v9, -v6, v8, v5
; VI-NEXT: v_fma_f32 v8, v9, v7, v8
; VI-NEXT: v_fma_f32 v5, -v6, v8, v5
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v5, v5, v7, v8
; VI-NEXT: v_div_fixup_f32 v5, v5, v4, v2
; VI-NEXT: v_trunc_f32_e32 v5, v5
; VI-NEXT: v_mad_f32 v2, -v5, v4, v2
; VI-NEXT: flat_store_dwordx2 v[0:1], v[2:3]
; VI-NEXT: s_endpgm
<2 x float> addrspace(1)* %in2) #0 {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr <2 x float>, <2 x float> addrspace(1)* %in2, i32 4
%r0 = load <2 x float>, <2 x float> addrspace(1)* %in1, align 8
%r1 = load <2 x float>, <2 x float> addrspace(1)* %gep2, align 8
%r2 = frem <2 x float> %r0, %r1
store <2 x float> %r2, <2 x float> addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @frem_v4f32(<4 x float> addrspace(1)* %out, <4 x float> addrspace(1)* %in1,
; SI-LABEL: frem_v4f32:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s0, s4
; SI-NEXT: s_mov_b32 s1, s5
; SI-NEXT: s_mov_b32 s4, s6
; SI-NEXT: s_mov_b32 s5, s7
; SI-NEXT: s_mov_b32 s6, s2
; SI-NEXT: s_mov_b32 s7, s3
; SI-NEXT: s_mov_b32 s10, s2
; SI-NEXT: s_mov_b32 s11, s3
; SI-NEXT: buffer_load_dwordx4 v[0:3], off, s[4:7], 0
; SI-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:64
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_div_scale_f32 v8, vcc, v3, v7, v3
; SI-NEXT: v_div_scale_f32 v9, s[4:5], v7, v7, v3
; SI-NEXT: v_rcp_f32_e32 v10, v9
; SI-NEXT: s_mov_b32 s6, 3
; SI-NEXT: s_mov_b32 s7, 0
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v11, -v9, v10, 1.0
; SI-NEXT: v_fma_f32 v10, v11, v10, v10
; SI-NEXT: v_mul_f32_e32 v11, v8, v10
; SI-NEXT: v_fma_f32 v12, -v9, v11, v8
; SI-NEXT: v_fma_f32 v11, v12, v10, v11
; SI-NEXT: v_fma_f32 v8, -v9, v11, v8
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v8, v8, v10, v11
; SI-NEXT: v_div_fixup_f32 v8, v8, v7, v3
; SI-NEXT: v_trunc_f32_e32 v8, v8
; SI-NEXT: v_mad_f32 v3, -v8, v7, v3
; SI-NEXT: v_div_scale_f32 v7, vcc, v2, v6, v2
; SI-NEXT: v_div_scale_f32 v8, s[4:5], v6, v6, v2
; SI-NEXT: v_rcp_f32_e32 v9, v8
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v10, -v8, v9, 1.0
; SI-NEXT: v_fma_f32 v9, v10, v9, v9
; SI-NEXT: v_mul_f32_e32 v10, v7, v9
; SI-NEXT: v_fma_f32 v11, -v8, v10, v7
; SI-NEXT: v_fma_f32 v10, v11, v9, v10
; SI-NEXT: v_fma_f32 v7, -v8, v10, v7
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v7, v7, v9, v10
; SI-NEXT: v_div_fixup_f32 v7, v7, v6, v2
; SI-NEXT: v_trunc_f32_e32 v7, v7
; SI-NEXT: v_mad_f32 v2, -v7, v6, v2
; SI-NEXT: v_div_scale_f32 v6, vcc, v1, v5, v1
; SI-NEXT: v_div_scale_f32 v7, s[4:5], v5, v5, v1
; SI-NEXT: v_rcp_f32_e32 v8, v7
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v9, -v7, v8, 1.0
; SI-NEXT: v_fma_f32 v8, v9, v8, v8
; SI-NEXT: v_mul_f32_e32 v9, v6, v8
; SI-NEXT: v_fma_f32 v10, -v7, v9, v6
; SI-NEXT: v_fma_f32 v9, v10, v8, v9
; SI-NEXT: v_fma_f32 v6, -v7, v9, v6
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v6, v6, v8, v9
; SI-NEXT: v_div_fixup_f32 v6, v6, v5, v1
; SI-NEXT: v_trunc_f32_e32 v6, v6
; SI-NEXT: v_mad_f32 v1, -v6, v5, v1
; SI-NEXT: v_div_scale_f32 v5, vcc, v0, v4, v0
; SI-NEXT: v_div_scale_f32 v6, s[4:5], v4, v4, v0
; SI-NEXT: v_rcp_f32_e32 v7, v6
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; SI-NEXT: v_fma_f32 v8, -v6, v7, 1.0
; SI-NEXT: v_fma_f32 v7, v8, v7, v7
; SI-NEXT: v_mul_f32_e32 v8, v5, v7
; SI-NEXT: v_fma_f32 v9, -v6, v8, v5
; SI-NEXT: v_fma_f32 v8, v9, v7, v8
; SI-NEXT: v_fma_f32 v5, -v6, v8, v5
; SI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; SI-NEXT: v_div_fmas_f32 v5, v5, v7, v8
; SI-NEXT: v_div_fixup_f32 v5, v5, v4, v0
; SI-NEXT: v_trunc_f32_e32 v5, v5
; SI-NEXT: v_mad_f32 v0, -v5, v4, v0
; SI-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: frem_v4f32:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s3, 0xf000
; CI-NEXT: s_mov_b32 s2, -1
; CI-NEXT: s_mov_b32 s10, s2
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s0, s4
; CI-NEXT: s_mov_b32 s1, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s2
; CI-NEXT: s_mov_b32 s7, s3
; CI-NEXT: s_mov_b32 s11, s3
; CI-NEXT: buffer_load_dwordx4 v[0:3], off, s[4:7], 0
; CI-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:64
; CI-NEXT: s_mov_b32 s6, 3
; CI-NEXT: s_mov_b32 s7, 0
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_div_scale_f32 v9, s[4:5], v7, v7, v3
; CI-NEXT: v_div_scale_f32 v8, vcc, v3, v7, v3
; CI-NEXT: v_rcp_f32_e32 v10, v9
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v11, -v9, v10, 1.0
; CI-NEXT: v_fma_f32 v10, v11, v10, v10
; CI-NEXT: v_mul_f32_e32 v11, v8, v10
; CI-NEXT: v_fma_f32 v12, -v9, v11, v8
; CI-NEXT: v_fma_f32 v11, v12, v10, v11
; CI-NEXT: v_fma_f32 v8, -v9, v11, v8
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v8, v8, v10, v11
; CI-NEXT: v_div_fixup_f32 v8, v8, v7, v3
; CI-NEXT: v_trunc_f32_e32 v8, v8
; CI-NEXT: v_mad_f32 v3, -v8, v7, v3
; CI-NEXT: v_div_scale_f32 v8, s[4:5], v6, v6, v2
; CI-NEXT: v_div_scale_f32 v7, vcc, v2, v6, v2
; CI-NEXT: v_rcp_f32_e32 v9, v8
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v10, -v8, v9, 1.0
; CI-NEXT: v_fma_f32 v9, v10, v9, v9
; CI-NEXT: v_mul_f32_e32 v10, v7, v9
; CI-NEXT: v_fma_f32 v11, -v8, v10, v7
; CI-NEXT: v_fma_f32 v10, v11, v9, v10
; CI-NEXT: v_fma_f32 v7, -v8, v10, v7
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v7, v7, v9, v10
; CI-NEXT: v_div_fixup_f32 v7, v7, v6, v2
; CI-NEXT: v_trunc_f32_e32 v7, v7
; CI-NEXT: v_mad_f32 v2, -v7, v6, v2
; CI-NEXT: v_div_scale_f32 v7, s[4:5], v5, v5, v1
; CI-NEXT: v_div_scale_f32 v6, vcc, v1, v5, v1
; CI-NEXT: v_rcp_f32_e32 v8, v7
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v9, -v7, v8, 1.0
; CI-NEXT: v_fma_f32 v8, v9, v8, v8
; CI-NEXT: v_mul_f32_e32 v9, v6, v8
; CI-NEXT: v_fma_f32 v10, -v7, v9, v6
; CI-NEXT: v_fma_f32 v9, v10, v8, v9
; CI-NEXT: v_fma_f32 v6, -v7, v9, v6
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v6, v6, v8, v9
; CI-NEXT: v_div_fixup_f32 v6, v6, v5, v1
; CI-NEXT: v_trunc_f32_e32 v6, v6
; CI-NEXT: v_mad_f32 v1, -v6, v5, v1
; CI-NEXT: v_div_scale_f32 v6, s[4:5], v4, v4, v0
; CI-NEXT: v_div_scale_f32 v5, vcc, v0, v4, v0
; CI-NEXT: v_rcp_f32_e32 v7, v6
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s6
; CI-NEXT: v_fma_f32 v8, -v6, v7, 1.0
; CI-NEXT: v_fma_f32 v7, v8, v7, v7
; CI-NEXT: v_mul_f32_e32 v8, v5, v7
; CI-NEXT: v_fma_f32 v9, -v6, v8, v5
; CI-NEXT: v_fma_f32 v8, v9, v7, v8
; CI-NEXT: v_fma_f32 v5, -v6, v8, v5
; CI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s7
; CI-NEXT: v_div_fmas_f32 v5, v5, v7, v8
; CI-NEXT: v_div_fixup_f32 v5, v5, v4, v0
; CI-NEXT: v_trunc_f32_e32 v5, v5
; CI-NEXT: v_mad_f32 v0, -v5, v4, v0
; CI-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: frem_v4f32:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_mov_b32 s2, 3
; VI-NEXT: s_mov_b32 s3, 0
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v0, s6
; VI-NEXT: s_add_u32 s0, s0, 64
; VI-NEXT: s_addc_u32 s1, s1, 0
; VI-NEXT: v_mov_b32_e32 v5, s1
; VI-NEXT: v_mov_b32_e32 v1, s7
; VI-NEXT: v_mov_b32_e32 v4, s0
; VI-NEXT: flat_load_dwordx4 v[0:3], v[0:1]
; VI-NEXT: flat_load_dwordx4 v[4:7], v[4:5]
; VI-NEXT: v_mov_b32_e32 v8, s4
; VI-NEXT: v_mov_b32_e32 v9, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_div_scale_f32 v11, s[0:1], v7, v7, v3
; VI-NEXT: v_div_scale_f32 v10, vcc, v3, v7, v3
; VI-NEXT: v_rcp_f32_e32 v12, v11
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v13, -v11, v12, 1.0
; VI-NEXT: v_fma_f32 v12, v13, v12, v12
; VI-NEXT: v_mul_f32_e32 v13, v10, v12
; VI-NEXT: v_fma_f32 v14, -v11, v13, v10
; VI-NEXT: v_fma_f32 v13, v14, v12, v13
; VI-NEXT: v_fma_f32 v10, -v11, v13, v10
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v10, v10, v12, v13
; VI-NEXT: v_div_fixup_f32 v10, v10, v7, v3
; VI-NEXT: v_trunc_f32_e32 v10, v10
; VI-NEXT: v_mad_f32 v3, -v10, v7, v3
; VI-NEXT: v_div_scale_f32 v10, s[0:1], v6, v6, v2
; VI-NEXT: v_div_scale_f32 v7, vcc, v2, v6, v2
; VI-NEXT: v_rcp_f32_e32 v11, v10
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v12, -v10, v11, 1.0
; VI-NEXT: v_fma_f32 v11, v12, v11, v11
; VI-NEXT: v_mul_f32_e32 v12, v7, v11
; VI-NEXT: v_fma_f32 v13, -v10, v12, v7
; VI-NEXT: v_fma_f32 v12, v13, v11, v12
; VI-NEXT: v_fma_f32 v7, -v10, v12, v7
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v7, v7, v11, v12
; VI-NEXT: v_div_fixup_f32 v7, v7, v6, v2
; VI-NEXT: v_trunc_f32_e32 v7, v7
; VI-NEXT: v_mad_f32 v2, -v7, v6, v2
; VI-NEXT: v_div_scale_f32 v7, s[0:1], v5, v5, v1
; VI-NEXT: v_div_scale_f32 v6, vcc, v1, v5, v1
; VI-NEXT: v_rcp_f32_e32 v10, v7
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v11, -v7, v10, 1.0
; VI-NEXT: v_fma_f32 v10, v11, v10, v10
; VI-NEXT: v_mul_f32_e32 v11, v6, v10
; VI-NEXT: v_fma_f32 v12, -v7, v11, v6
; VI-NEXT: v_fma_f32 v11, v12, v10, v11
; VI-NEXT: v_fma_f32 v6, -v7, v11, v6
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v6, v6, v10, v11
; VI-NEXT: v_div_fixup_f32 v6, v6, v5, v1
; VI-NEXT: v_trunc_f32_e32 v6, v6
; VI-NEXT: v_mad_f32 v1, -v6, v5, v1
; VI-NEXT: v_div_scale_f32 v6, s[0:1], v4, v4, v0
; VI-NEXT: v_div_scale_f32 v5, vcc, v0, v4, v0
; VI-NEXT: v_rcp_f32_e32 v7, v6
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s2
; VI-NEXT: v_fma_f32 v10, -v6, v7, 1.0
; VI-NEXT: v_fma_f32 v7, v10, v7, v7
; VI-NEXT: v_mul_f32_e32 v10, v5, v7
; VI-NEXT: v_fma_f32 v11, -v6, v10, v5
; VI-NEXT: v_fma_f32 v10, v11, v7, v10
; VI-NEXT: v_fma_f32 v5, -v6, v10, v5
; VI-NEXT: s_setreg_b32 hwreg(HW_REG_MODE, 4, 2), s3
; VI-NEXT: v_div_fmas_f32 v5, v5, v7, v10
; VI-NEXT: v_div_fixup_f32 v5, v5, v4, v0
; VI-NEXT: v_trunc_f32_e32 v5, v5
; VI-NEXT: v_mad_f32 v0, -v5, v4, v0
; VI-NEXT: flat_store_dwordx4 v[8:9], v[0:3]
; VI-NEXT: s_endpgm
<4 x float> addrspace(1)* %in2) #0 {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr <4 x float>, <4 x float> addrspace(1)* %in2, i32 4
%r0 = load <4 x float>, <4 x float> addrspace(1)* %in1, align 16
%r1 = load <4 x float>, <4 x float> addrspace(1)* %gep2, align 16
%r2 = frem <4 x float> %r0, %r1
store <4 x float> %r2, <4 x float> addrspace(1)* %out, align 16
ret void
}
define amdgpu_kernel void @frem_v2f64(<2 x double> addrspace(1)* %out, <2 x double> addrspace(1)* %in1,
; SI-LABEL: frem_v2f64:
; SI: ; %bb.0:
; SI-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[12:13], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s4, s8
; SI-NEXT: s_mov_b32 s5, s9
; SI-NEXT: s_mov_b32 s0, s10
; SI-NEXT: s_mov_b32 s1, s11
; SI-NEXT: s_mov_b32 s2, s6
; SI-NEXT: s_mov_b32 s3, s7
; SI-NEXT: s_mov_b32 s14, s6
; SI-NEXT: s_mov_b32 s15, s7
; SI-NEXT: buffer_load_dwordx4 v[0:3], off, s[0:3], 0
; SI-NEXT: buffer_load_dwordx4 v[4:7], off, s[12:15], 0 offset:64
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_div_scale_f64 v[8:9], s[0:1], v[6:7], v[6:7], v[2:3]
; SI-NEXT: v_rcp_f64_e32 v[10:11], v[8:9]
; SI-NEXT: v_fma_f64 v[12:13], -v[8:9], v[10:11], 1.0
; SI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; SI-NEXT: v_fma_f64 v[12:13], -v[8:9], v[10:11], 1.0
; SI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; SI-NEXT: v_div_scale_f64 v[12:13], s[0:1], v[2:3], v[6:7], v[2:3]
; SI-NEXT: v_mul_f64 v[14:15], v[12:13], v[10:11]
; SI-NEXT: v_fma_f64 v[16:17], -v[8:9], v[14:15], v[12:13]
; SI-NEXT: v_cmp_eq_u32_e32 vcc, v7, v9
; SI-NEXT: v_cmp_eq_u32_e64 s[0:1], v3, v13
; SI-NEXT: s_xor_b64 vcc, s[0:1], vcc
; SI-NEXT: s_nop 0
; SI-NEXT: s_nop 0
; SI-NEXT: v_div_fmas_f64 v[8:9], v[16:17], v[10:11], v[14:15]
; SI-NEXT: v_div_fixup_f64 v[8:9], v[8:9], v[6:7], v[2:3]
; SI-NEXT: v_bfe_u32 v10, v9, 20, 11
; SI-NEXT: s_movk_i32 s8, 0xfc01
; SI-NEXT: v_add_i32_e32 v12, vcc, s8, v10
; SI-NEXT: s_mov_b32 s3, 0xfffff
; SI-NEXT: v_lshr_b64 v[10:11], s[2:3], v12
; SI-NEXT: v_not_b32_e32 v10, v10
; SI-NEXT: v_and_b32_e32 v10, v8, v10
; SI-NEXT: v_not_b32_e32 v11, v11
; SI-NEXT: v_and_b32_e32 v11, v9, v11
; SI-NEXT: s_brev_b32 s9, 1
; SI-NEXT: v_and_b32_e32 v13, s9, v9
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v12
; SI-NEXT: v_cndmask_b32_e32 v11, v11, v13, vcc
; SI-NEXT: v_cmp_lt_i32_e64 s[0:1], 51, v12
; SI-NEXT: v_cndmask_b32_e64 v9, v11, v9, s[0:1]
; SI-NEXT: v_cndmask_b32_e64 v10, v10, 0, vcc
; SI-NEXT: v_cndmask_b32_e64 v8, v10, v8, s[0:1]
; SI-NEXT: v_mul_f64 v[6:7], v[8:9], v[6:7]
; SI-NEXT: v_add_f64 v[2:3], v[2:3], -v[6:7]
; SI-NEXT: v_div_scale_f64 v[6:7], s[0:1], v[4:5], v[4:5], v[0:1]
; SI-NEXT: v_rcp_f64_e32 v[8:9], v[6:7]
; SI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; SI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; SI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; SI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; SI-NEXT: v_div_scale_f64 v[10:11], s[0:1], v[0:1], v[4:5], v[0:1]
; SI-NEXT: v_mul_f64 v[12:13], v[10:11], v[8:9]
; SI-NEXT: v_fma_f64 v[14:15], -v[6:7], v[12:13], v[10:11]
; SI-NEXT: v_cmp_eq_u32_e32 vcc, v5, v7
; SI-NEXT: v_cmp_eq_u32_e64 s[0:1], v1, v11
; SI-NEXT: s_xor_b64 vcc, s[0:1], vcc
; SI-NEXT: s_nop 0
; SI-NEXT: s_nop 0
; SI-NEXT: v_div_fmas_f64 v[6:7], v[14:15], v[8:9], v[12:13]
; SI-NEXT: v_div_fixup_f64 v[6:7], v[6:7], v[4:5], v[0:1]
; SI-NEXT: v_bfe_u32 v8, v7, 20, 11
; SI-NEXT: v_add_i32_e32 v10, vcc, s8, v8
; SI-NEXT: v_lshr_b64 v[8:9], s[2:3], v10
; SI-NEXT: v_not_b32_e32 v8, v8
; SI-NEXT: v_and_b32_e32 v8, v6, v8
; SI-NEXT: v_not_b32_e32 v9, v9
; SI-NEXT: v_and_b32_e32 v9, v7, v9
; SI-NEXT: v_and_b32_e32 v11, s9, v7
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v10
; SI-NEXT: v_cndmask_b32_e32 v9, v9, v11, vcc
; SI-NEXT: v_cmp_lt_i32_e64 s[0:1], 51, v10
; SI-NEXT: v_cndmask_b32_e64 v7, v9, v7, s[0:1]
; SI-NEXT: v_cndmask_b32_e64 v8, v8, 0, vcc
; SI-NEXT: v_cndmask_b32_e64 v6, v8, v6, s[0:1]
; SI-NEXT: v_mul_f64 v[4:5], v[6:7], v[4:5]
; SI-NEXT: v_add_f64 v[0:1], v[0:1], -v[4:5]
; SI-NEXT: buffer_store_dwordx4 v[0:3], off, s[4:7], 0
; SI-NEXT: s_endpgm
;
; CI-LABEL: frem_v2f64:
; CI: ; %bb.0:
; CI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; CI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; CI-NEXT: s_mov_b32 s3, 0xf000
; CI-NEXT: s_mov_b32 s2, -1
; CI-NEXT: s_mov_b32 s10, s2
; CI-NEXT: s_waitcnt lgkmcnt(0)
; CI-NEXT: s_mov_b32 s0, s4
; CI-NEXT: s_mov_b32 s1, s5
; CI-NEXT: s_mov_b32 s4, s6
; CI-NEXT: s_mov_b32 s5, s7
; CI-NEXT: s_mov_b32 s6, s2
; CI-NEXT: s_mov_b32 s7, s3
; CI-NEXT: s_mov_b32 s11, s3
; CI-NEXT: buffer_load_dwordx4 v[0:3], off, s[4:7], 0
; CI-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:64
; CI-NEXT: s_waitcnt vmcnt(0)
; CI-NEXT: v_div_scale_f64 v[8:9], s[4:5], v[6:7], v[6:7], v[2:3]
; CI-NEXT: v_rcp_f64_e32 v[10:11], v[8:9]
; CI-NEXT: v_fma_f64 v[12:13], -v[8:9], v[10:11], 1.0
; CI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; CI-NEXT: v_fma_f64 v[12:13], -v[8:9], v[10:11], 1.0
; CI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; CI-NEXT: v_div_scale_f64 v[12:13], vcc, v[2:3], v[6:7], v[2:3]
; CI-NEXT: v_mul_f64 v[14:15], v[12:13], v[10:11]
; CI-NEXT: v_fma_f64 v[8:9], -v[8:9], v[14:15], v[12:13]
; CI-NEXT: s_nop 1
; CI-NEXT: v_div_fmas_f64 v[8:9], v[8:9], v[10:11], v[14:15]
; CI-NEXT: v_div_fixup_f64 v[8:9], v[8:9], v[6:7], v[2:3]
; CI-NEXT: v_trunc_f64_e32 v[8:9], v[8:9]
; CI-NEXT: v_mul_f64 v[6:7], v[8:9], v[6:7]
; CI-NEXT: v_add_f64 v[2:3], v[2:3], -v[6:7]
; CI-NEXT: v_div_scale_f64 v[6:7], s[4:5], v[4:5], v[4:5], v[0:1]
; CI-NEXT: v_rcp_f64_e32 v[8:9], v[6:7]
; CI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; CI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; CI-NEXT: v_fma_f64 v[10:11], -v[6:7], v[8:9], 1.0
; CI-NEXT: v_fma_f64 v[8:9], v[8:9], v[10:11], v[8:9]
; CI-NEXT: v_div_scale_f64 v[10:11], vcc, v[0:1], v[4:5], v[0:1]
; CI-NEXT: v_mul_f64 v[12:13], v[10:11], v[8:9]
; CI-NEXT: v_fma_f64 v[6:7], -v[6:7], v[12:13], v[10:11]
; CI-NEXT: s_nop 1
; CI-NEXT: v_div_fmas_f64 v[6:7], v[6:7], v[8:9], v[12:13]
; CI-NEXT: v_div_fixup_f64 v[6:7], v[6:7], v[4:5], v[0:1]
; CI-NEXT: v_trunc_f64_e32 v[6:7], v[6:7]
; CI-NEXT: v_mul_f64 v[4:5], v[6:7], v[4:5]
; CI-NEXT: v_add_f64 v[0:1], v[0:1], -v[4:5]
; CI-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; CI-NEXT: s_endpgm
;
; VI-LABEL: frem_v2f64:
; VI: ; %bb.0:
; VI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x24
; VI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x34
; VI-NEXT: s_waitcnt lgkmcnt(0)
; VI-NEXT: v_mov_b32_e32 v0, s6
; VI-NEXT: s_add_u32 s0, s0, 64
; VI-NEXT: s_addc_u32 s1, s1, 0
; VI-NEXT: v_mov_b32_e32 v5, s1
; VI-NEXT: v_mov_b32_e32 v1, s7
; VI-NEXT: v_mov_b32_e32 v4, s0
; VI-NEXT: flat_load_dwordx4 v[0:3], v[0:1]
; VI-NEXT: flat_load_dwordx4 v[4:7], v[4:5]
; VI-NEXT: v_mov_b32_e32 v8, s4
; VI-NEXT: v_mov_b32_e32 v9, s5
; VI-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; VI-NEXT: v_div_scale_f64 v[10:11], s[0:1], v[6:7], v[6:7], v[2:3]
; VI-NEXT: v_rcp_f64_e32 v[12:13], v[10:11]
; VI-NEXT: v_fma_f64 v[14:15], -v[10:11], v[12:13], 1.0
; VI-NEXT: v_fma_f64 v[12:13], v[12:13], v[14:15], v[12:13]
; VI-NEXT: v_fma_f64 v[14:15], -v[10:11], v[12:13], 1.0
; VI-NEXT: v_fma_f64 v[12:13], v[12:13], v[14:15], v[12:13]
; VI-NEXT: v_div_scale_f64 v[14:15], vcc, v[2:3], v[6:7], v[2:3]
; VI-NEXT: v_mul_f64 v[16:17], v[14:15], v[12:13]
; VI-NEXT: v_fma_f64 v[10:11], -v[10:11], v[16:17], v[14:15]
; VI-NEXT: s_nop 1
; VI-NEXT: v_div_fmas_f64 v[10:11], v[10:11], v[12:13], v[16:17]
; VI-NEXT: v_div_fixup_f64 v[10:11], v[10:11], v[6:7], v[2:3]
; VI-NEXT: v_trunc_f64_e32 v[10:11], v[10:11]
; VI-NEXT: v_mul_f64 v[6:7], v[10:11], v[6:7]
; VI-NEXT: v_add_f64 v[2:3], v[2:3], -v[6:7]
; VI-NEXT: v_div_scale_f64 v[6:7], s[0:1], v[4:5], v[4:5], v[0:1]
; VI-NEXT: v_rcp_f64_e32 v[10:11], v[6:7]
; VI-NEXT: v_fma_f64 v[12:13], -v[6:7], v[10:11], 1.0
; VI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; VI-NEXT: v_fma_f64 v[12:13], -v[6:7], v[10:11], 1.0
; VI-NEXT: v_fma_f64 v[10:11], v[10:11], v[12:13], v[10:11]
; VI-NEXT: v_div_scale_f64 v[12:13], vcc, v[0:1], v[4:5], v[0:1]
; VI-NEXT: v_mul_f64 v[14:15], v[12:13], v[10:11]
; VI-NEXT: v_fma_f64 v[6:7], -v[6:7], v[14:15], v[12:13]
; VI-NEXT: s_nop 1
; VI-NEXT: v_div_fmas_f64 v[6:7], v[6:7], v[10:11], v[14:15]
; VI-NEXT: v_div_fixup_f64 v[6:7], v[6:7], v[4:5], v[0:1]
; VI-NEXT: v_trunc_f64_e32 v[6:7], v[6:7]
; VI-NEXT: v_mul_f64 v[4:5], v[6:7], v[4:5]
; VI-NEXT: v_add_f64 v[0:1], v[0:1], -v[4:5]
; VI-NEXT: flat_store_dwordx4 v[8:9], v[0:3]
; VI-NEXT: s_endpgm
<2 x double> addrspace(1)* %in2) #0 {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr <2 x double>, <2 x double> addrspace(1)* %in2, i32 4
%r0 = load <2 x double>, <2 x double> addrspace(1)* %in1, align 16
%r1 = load <2 x double>, <2 x double> addrspace(1)* %gep2, align 16
%r2 = frem <2 x double> %r0, %r1
store <2 x double> %r2, <2 x double> addrspace(1)* %out, align 16
ret void
}
attributes #0 = { nounwind "unsafe-fp-math"="false" "denormal-fp-math-f32"="preserve-sign,preserve-sign" }
attributes #1 = { nounwind "unsafe-fp-math"="true" "denormal-fp-math-f32"="preserve-sign,preserve-sign" }