llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp

589 lines
23 KiB
C++
Raw Normal View History

//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "module-summary-analysis"
// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
static void findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
SetVector<ValueInfo> &RefEdges,
SmallPtrSet<const User *, 8> &Visited) {
SmallVector<const User *, 32> Worklist;
Worklist.push_back(CurUser);
while (!Worklist.empty()) {
const User *U = Worklist.pop_back_val();
if (!Visited.insert(U).second)
continue;
ImmutableCallSite CS(U);
for (const auto &OI : U->operands()) {
const User *Operand = dyn_cast<User>(OI);
if (!Operand)
continue;
if (isa<BlockAddress>(Operand))
continue;
if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
// We have a reference to a global value. This should be added to
// the reference set unless it is a callee. Callees are handled
// specially by WriteFunction and are added to a separate list.
if (!(CS && CS.isCallee(&OI)))
RefEdges.insert(Index.getOrInsertValueInfo(GV));
continue;
}
Worklist.push_back(Operand);
}
}
}
static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
ProfileSummaryInfo *PSI) {
if (!PSI)
return CalleeInfo::HotnessType::Unknown;
if (PSI->isHotCount(ProfileCount))
return CalleeInfo::HotnessType::Hot;
if (PSI->isColdCount(ProfileCount))
return CalleeInfo::HotnessType::Cold;
return CalleeInfo::HotnessType::None;
}
static bool isNonRenamableLocal(const GlobalValue &GV) {
return GV.hasSection() && GV.hasLocalLinkage();
}
/// Determine whether this call has all constant integer arguments (excluding
/// "this") and summarize it to VCalls or ConstVCalls as appropriate.
static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
SetVector<FunctionSummary::VFuncId> &VCalls,
SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
std::vector<uint64_t> Args;
// Start from the second argument to skip the "this" pointer.
for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) {
auto *CI = dyn_cast<ConstantInt>(Arg);
if (!CI || CI->getBitWidth() > 64) {
VCalls.insert({Guid, Call.Offset});
return;
}
Args.push_back(CI->getZExtValue());
}
ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
}
/// If this intrinsic call requires that we add information to the function
/// summary, do so via the non-constant reference arguments.
static void addIntrinsicToSummary(
const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls) {
switch (CI->getCalledFunction()->getIntrinsicID()) {
case Intrinsic::type_test: {
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
if (!TypeId)
break;
GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
// Produce a summary from type.test intrinsics. We only summarize type.test
// intrinsics that are used other than by an llvm.assume intrinsic.
// Intrinsics that are assumed are relevant only to the devirtualization
// pass, not the type test lowering pass.
bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
if (!AssumeCI)
return true;
Function *F = AssumeCI->getCalledFunction();
return !F || F->getIntrinsicID() != Intrinsic::assume;
});
if (HasNonAssumeUses)
TypeTests.insert(Guid);
SmallVector<DevirtCallSite, 4> DevirtCalls;
SmallVector<CallInst *, 4> Assumes;
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
for (auto &Call : DevirtCalls)
addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
TypeTestAssumeConstVCalls);
break;
}
case Intrinsic::type_checked_load: {
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
if (!TypeId)
break;
GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
SmallVector<DevirtCallSite, 4> DevirtCalls;
SmallVector<Instruction *, 4> LoadedPtrs;
SmallVector<Instruction *, 4> Preds;
bool HasNonCallUses = false;
findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
HasNonCallUses, CI);
// Any non-call uses of the result of llvm.type.checked.load will
// prevent us from optimizing away the llvm.type.test.
if (HasNonCallUses)
TypeTests.insert(Guid);
for (auto &Call : DevirtCalls)
addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
TypeCheckedLoadConstVCalls);
break;
}
default:
break;
}
}
static void
computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
const Function &F, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, bool HasLocalsInUsedOrAsm,
DenseSet<GlobalValue::GUID> &CantBePromoted) {
// Summary not currently supported for anonymous functions, they should
// have been named.
assert(F.hasName());
unsigned NumInsts = 0;
// Map from callee ValueId to profile count. Used to accumulate profile
// counts for all static calls to a given callee.
MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
SetVector<ValueInfo> RefEdges;
SetVector<GlobalValue::GUID> TypeTests;
SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
TypeCheckedLoadVCalls;
SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
TypeCheckedLoadConstVCalls;
ICallPromotionAnalysis ICallAnalysis;
bool HasInlineAsmMaybeReferencingInternal = false;
SmallPtrSet<const User *, 8> Visited;
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
if (isa<DbgInfoIntrinsic>(I))
continue;
++NumInsts;
findRefEdges(Index, &I, RefEdges, Visited);
auto CS = ImmutableCallSite(&I);
if (!CS)
continue;
const auto *CI = dyn_cast<CallInst>(&I);
// Since we don't know exactly which local values are referenced in inline
// assembly, conservatively mark the function as possibly referencing
// a local value from inline assembly to ensure we don't export a
// reference (which would require renaming and promotion of the
// referenced value).
if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
HasInlineAsmMaybeReferencingInternal = true;
auto *CalledValue = CS.getCalledValue();
auto *CalledFunction = CS.getCalledFunction();
// Check if this is an alias to a function. If so, get the
// called aliasee for the checks below.
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
assert(!CalledFunction && "Expected null called function in callsite for alias");
CalledFunction = dyn_cast<Function>(GA->getBaseObject());
}
// Check if this is a direct call to a known function or a known
// intrinsic, or an indirect call with profile data.
if (CalledFunction) {
if (CI && CalledFunction->isIntrinsic()) {
addIntrinsicToSummary(
CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls);
continue;
}
// We should have named any anonymous globals
assert(CalledFunction->hasName());
auto ScaledCount = PSI->getProfileCount(&I, BFI);
auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
: CalleeInfo::HotnessType::Unknown;
// Use the original CalledValue, in case it was an alias. We want
// to record the call edge to the alias in that case. Eventually
// an alias summary will be created to associate the alias and
// aliasee.
CallGraphEdges[Index.getOrInsertValueInfo(
cast<GlobalValue>(CalledValue))]
.updateHotness(Hotness);
} else {
// Skip inline assembly calls.
if (CI && CI->isInlineAsm())
continue;
// Skip direct calls.
if (!CS.getCalledValue() || isa<Constant>(CS.getCalledValue()))
continue;
uint32_t NumVals, NumCandidates;
uint64_t TotalCount;
auto CandidateProfileData =
ICallAnalysis.getPromotionCandidatesForInstruction(
&I, NumVals, TotalCount, NumCandidates);
for (auto &Candidate : CandidateProfileData)
CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
.updateHotness(getHotness(Candidate.Count, PSI));
}
}
// Explicit add hot edges to enforce importing for designated GUIDs for
// sample PGO, to enable the same inlines as the profiled optimized binary.
for (auto &I : F.getImportGUIDs())
CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
CalleeInfo::HotnessType::Critical);
bool NonRenamableLocal = isNonRenamableLocal(F);
bool NotEligibleForImport =
NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
// Inliner doesn't handle variadic functions.
// FIXME: refactor this to use the same code that inliner is using.
F.isVarArg();
GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
/* Live = */ false);
FunctionSummary::FFlags FunFlags{
F.hasFnAttribute(Attribute::ReadNone),
F.hasFnAttribute(Attribute::ReadOnly),
F.hasFnAttribute(Attribute::NoRecurse),
F.returnDoesNotAlias(),
};
auto FuncSummary = llvm::make_unique<FunctionSummary>(
Flags, NumInsts, FunFlags, RefEdges.takeVector(),
CallGraphEdges.takeVector(), TypeTests.takeVector(),
TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
TypeTestAssumeConstVCalls.takeVector(),
TypeCheckedLoadConstVCalls.takeVector());
if (NonRenamableLocal)
CantBePromoted.insert(F.getGUID());
Index.addGlobalValueSummary(F.getName(), std::move(FuncSummary));
}
static void
computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V,
DenseSet<GlobalValue::GUID> &CantBePromoted) {
SetVector<ValueInfo> RefEdges;
SmallPtrSet<const User *, 8> Visited;
findRefEdges(Index, &V, RefEdges, Visited);
bool NonRenamableLocal = isNonRenamableLocal(V);
GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
/* Live = */ false);
auto GVarSummary =
llvm::make_unique<GlobalVarSummary>(Flags, RefEdges.takeVector());
if (NonRenamableLocal)
CantBePromoted.insert(V.getGUID());
Index.addGlobalValueSummary(V.getName(), std::move(GVarSummary));
}
static void
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
DenseSet<GlobalValue::GUID> &CantBePromoted) {
bool NonRenamableLocal = isNonRenamableLocal(A);
GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
/* Live = */ false);
auto AS = llvm::make_unique<AliasSummary>(Flags, ArrayRef<ValueInfo>{});
auto *Aliasee = A.getBaseObject();
auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee);
assert(AliaseeSummary && "Alias expects aliasee summary to be parsed");
AS->setAliasee(AliaseeSummary);
if (NonRenamableLocal)
CantBePromoted.insert(A.getGUID());
Index.addGlobalValueSummary(A.getName(), std::move(AS));
}
// Set LiveRoot flag on entries matching the given value name.
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
for (auto &Summary : VI.getSummaryList())
Summary->setLive(true);
}
ModuleSummaryIndex llvm::buildModuleSummaryIndex(
const Module &M,
std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
ProfileSummaryInfo *PSI) {
assert(PSI);
ModuleSummaryIndex Index;
// Identify the local values in the llvm.used and llvm.compiler.used sets,
// which should not be exported as they would then require renaming and
// promotion, but we may have opaque uses e.g. in inline asm. We collect them
// here because we use this information to mark functions containing inline
// assembly calls as not importable.
SmallPtrSet<GlobalValue *, 8> LocalsUsed;
SmallPtrSet<GlobalValue *, 8> Used;
// First collect those in the llvm.used set.
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
// Next collect those in the llvm.compiler.used set.
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
DenseSet<GlobalValue::GUID> CantBePromoted;
for (auto *V : Used) {
if (V->hasLocalLinkage()) {
LocalsUsed.insert(V);
CantBePromoted.insert(V->getGUID());
}
}
bool HasLocalInlineAsmSymbol = false;
if (!M.getModuleInlineAsm().empty()) {
// Collect the local values defined by module level asm, and set up
// summaries for these symbols so that they can be marked as NoRename,
// to prevent export of any use of them in regular IR that would require
// renaming within the module level asm. Note we don't need to create a
// summary for weak or global defs, as they don't need to be flagged as
// NoRename, and defs in module level asm can't be imported anyway.
// Also, any values used but not defined within module level asm should
// be listed on the llvm.used or llvm.compiler.used global and marked as
// referenced from there.
ModuleSymbolTable::CollectAsmSymbols(
M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
// Symbols not marked as Weak or Global are local definitions.
if (Flags & (object::BasicSymbolRef::SF_Weak |
object::BasicSymbolRef::SF_Global))
return;
HasLocalInlineAsmSymbol = true;
GlobalValue *GV = M.getNamedValue(Name);
if (!GV)
return;
assert(GV->isDeclaration() && "Def in module asm already has definition");
GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
/* NotEligibleToImport = */ true,
/* Live = */ true);
CantBePromoted.insert(GlobalValue::getGUID(Name));
// Create the appropriate summary type.
if (Function *F = dyn_cast<Function>(GV)) {
std::unique_ptr<FunctionSummary> Summary =
llvm::make_unique<FunctionSummary>(
GVFlags, 0,
FunctionSummary::FFlags{
F->hasFnAttribute(Attribute::ReadNone),
F->hasFnAttribute(Attribute::ReadOnly),
F->hasFnAttribute(Attribute::NoRecurse),
F->returnDoesNotAlias()},
ArrayRef<ValueInfo>{}, ArrayRef<FunctionSummary::EdgeTy>{},
ArrayRef<GlobalValue::GUID>{},
ArrayRef<FunctionSummary::VFuncId>{},
ArrayRef<FunctionSummary::VFuncId>{},
ArrayRef<FunctionSummary::ConstVCall>{},
ArrayRef<FunctionSummary::ConstVCall>{});
Index.addGlobalValueSummary(Name, std::move(Summary));
} else {
std::unique_ptr<GlobalVarSummary> Summary =
llvm::make_unique<GlobalVarSummary>(GVFlags,
ArrayRef<ValueInfo>{});
Index.addGlobalValueSummary(Name, std::move(Summary));
}
});
}
// Compute summaries for all functions defined in module, and save in the
// index.
for (auto &F : M) {
if (F.isDeclaration())
continue;
BlockFrequencyInfo *BFI = nullptr;
std::unique_ptr<BlockFrequencyInfo> BFIPtr;
if (GetBFICallback)
BFI = GetBFICallback(F);
else if (F.getEntryCount().hasValue()) {
LoopInfo LI{DominatorTree(const_cast<Function &>(F))};
BranchProbabilityInfo BPI{F, LI};
BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI);
BFI = BFIPtr.get();
}
computeFunctionSummary(Index, M, F, BFI, PSI,
!LocalsUsed.empty() || HasLocalInlineAsmSymbol,
CantBePromoted);
}
// Set live flag for all personality functions. That allows to
// preserve them during DCE.
for (const llvm::Function &F : M)
if (!F.isDeclaration() && F.hasPersonalityFn())
setLiveRoot(Index, F.getPersonalityFn()->getName());
// Compute summaries for all variables defined in module, and save in the
// index.
for (const GlobalVariable &G : M.globals()) {
if (G.isDeclaration())
continue;
computeVariableSummary(Index, G, CantBePromoted);
}
// Compute summaries for all aliases defined in module, and save in the
// index.
for (const GlobalAlias &A : M.aliases())
computeAliasSummary(Index, A, CantBePromoted);
for (auto *V : LocalsUsed) {
auto *Summary = Index.getGlobalValueSummary(*V);
assert(Summary && "Missing summary for global value");
Summary->setNotEligibleToImport();
}
// The linker doesn't know about these LLVM produced values, so we need
// to flag them as live in the index to ensure index-based dead value
// analysis treats them as live roots of the analysis.
setLiveRoot(Index, "llvm.used");
setLiveRoot(Index, "llvm.compiler.used");
setLiveRoot(Index, "llvm.global_ctors");
setLiveRoot(Index, "llvm.global_dtors");
setLiveRoot(Index, "llvm.global.annotations");
bool IsThinLTO = true;
if (auto *MD =
mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
IsThinLTO = MD->getZExtValue();
for (auto &GlobalList : Index) {
// Ignore entries for references that are undefined in the current module.
if (GlobalList.second.SummaryList.empty())
continue;
assert(GlobalList.second.SummaryList.size() == 1 &&
"Expected module's index to have one summary per GUID");
auto &Summary = GlobalList.second.SummaryList[0];
if (!IsThinLTO) {
Summary->setNotEligibleToImport();
continue;
}
bool AllRefsCanBeExternallyReferenced =
llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
return !CantBePromoted.count(VI.getGUID());
});
if (!AllRefsCanBeExternallyReferenced) {
Summary->setNotEligibleToImport();
continue;
}
if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
bool AllCallsCanBeExternallyReferenced = llvm::all_of(
FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
return !CantBePromoted.count(Edge.first.getGUID());
});
if (!AllCallsCanBeExternallyReferenced)
Summary->setNotEligibleToImport();
}
}
return Index;
}
[PM] Change the static object whose address is used to uniquely identify analyses to have a common type which is enforced rather than using a char object and a `void *` type when used as an identifier. This has a number of advantages. First, it at least helps some of the confusion raised in Justin Lebar's code review of why `void *` was being used everywhere by having a stronger type that connects to documentation about this. However, perhaps more importantly, it addresses a serious issue where the alignment of these pointer-like identifiers was unknown. This made it hard to use them in pointer-like data structures. We were already dodging this in dangerous ways to create the "all analyses" entry. In a subsequent patch I attempted to use these with TinyPtrVector and things fell apart in a very bad way. And it isn't just a compile time or type system issue. Worse than that, the actual alignment of these pointer-like opaque identifiers wasn't guaranteed to be a useful alignment as they were just characters. This change introduces a type to use as the "key" object whose address forms the opaque identifier. This both forces the objects to have proper alignment, and provides type checking that we get it right everywhere. It also makes the types somewhat less mysterious than `void *`. We could go one step further and introduce a truly opaque pointer-like type to return from the `ID()` static function rather than returning `AnalysisKey *`, but that didn't seem to be a clear win so this is just the initial change to get to a reliably typed and aligned object serving is a key for all the analyses. Thanks to Richard Smith and Justin Lebar for helping pick plausible names and avoid making this refactoring many times. =] And thanks to Sean for the super fast review! While here, I've tried to move away from the "PassID" nomenclature entirely as it wasn't really helping and is overloaded with old pass manager constructs. Now we have IDs for analyses, and key objects whose address can be used as IDs. Where possible and clear I've shortened this to just "ID". In a few places I kept "AnalysisID" to make it clear what was being identified. Differential Revision: https://reviews.llvm.org/D27031 llvm-svn: 287783
2016-11-24 01:53:26 +08:00
AnalysisKey ModuleSummaryIndexAnalysis::Key;
ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
return buildModuleSummaryIndex(
M,
[&FAM](const Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(
*const_cast<Function *>(&F));
},
&PSI);
}
char ModuleSummaryIndexWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)
ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
return new ModuleSummaryIndexWrapperPass();
}
ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
: ModulePass(ID) {
initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
auto &PSI = *getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
Index = buildModuleSummaryIndex(
M,
[this](const Function &F) {
return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
*const_cast<Function *>(&F))
.getBFI());
},
&PSI);
return false;
}
bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
Index.reset();
return false;
}
void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
}