llvm-project/clang/lib/Analysis/GRSimpleVals.cpp

486 lines
14 KiB
C++
Raw Normal View History

// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
2008-03-06 18:40:09 +08:00
// This file defines GRSimpleVals, a sub-class of GRTransferFuncs that
// provides transfer functions for performing simple value tracking with
// limited support for symbolics.
//
//===----------------------------------------------------------------------===//
#include "GRSimpleVals.h"
#include "BasicObjCFoundationChecks.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Analysis/PathDiagnostic.h"
#include <sstream>
using namespace clang;
namespace clang {
template <typename ITERATOR>
static inline ProgramPoint GetLocation(ITERATOR I) {
return (*I)->getLocation();
}
template <>
inline ProgramPoint GetLocation(GRExprEngine::undef_arg_iterator I) {
return I->first->getLocation();
}
static inline Stmt* GetStmt(const ProgramPoint& P) {
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
return PS->getStmt();
}
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
return BE->getSrc()->getTerminator();
}
assert (false && "Unsupported ProgramPoint.");
return NULL;
}
template <typename ITERATOR>
static void EmitDiag(Diagnostic& Diag, PathDiagnosticClient* PD,
SourceManager& SrcMgr,
unsigned ErrorDiag, ITERATOR I) {
Stmt* S = GetStmt(GetLocation(I));
SourceRange R = S->getSourceRange();
Diag.Report(PD, FullSourceLoc(S->getLocStart(), SrcMgr), ErrorDiag,
NULL, 0, &R, 1);
}
template <>
static void EmitDiag(Diagnostic& Diag, PathDiagnosticClient* PD,
SourceManager& SrcMgr, unsigned ErrorDiag,
GRExprEngine::undef_arg_iterator I) {
Stmt* S1 = GetStmt(GetLocation(I));
Expr* E2 = cast<Expr>(I->second);
SourceLocation Loc = S1->getLocStart();
SourceRange R = E2->getSourceRange();
Diag.Report(PD, FullSourceLoc(Loc, SrcMgr), ErrorDiag, 0, 0, &R, 1);
}
template <typename ITERATOR>
void EmitWarning(Diagnostic& Diag, PathDiagnosticClient* PD,
SourceManager& SrcMgr,
ITERATOR I, ITERATOR E, const char* msg) {
std::ostringstream Out;
Out << "[CHECKER] " << msg;
msg = Out.str().c_str();
bool isFirst = true;
unsigned ErrorDiag = 0;
llvm::SmallPtrSet<void*,10> CachedErrors;
for (; I != E; ++I) {
if (isFirst) {
isFirst = false;
ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, msg);
}
else {
// HACK: Cache the location of the error. Don't emit the same
// warning for the same error type that occurs at the same program
// location but along a different path.
void* p = GetLocation(I).getRawData();
if (CachedErrors.count(p))
continue;
CachedErrors.insert(p);
}
EmitDiag(Diag, PD, SrcMgr, ErrorDiag, I);
}
}
unsigned RunGRSimpleVals(CFG& cfg, Decl& CD, ASTContext& Ctx,
Diagnostic& Diag, PathDiagnosticClient* PD,
bool Visualize, bool TrimGraph) {
GRCoreEngine<GRExprEngine> Eng(cfg, CD, Ctx);
GRExprEngine* CheckerState = &Eng.getCheckerState();
// Set base transfer functions.
GRSimpleVals GRSV;
CheckerState->setTransferFunctions(GRSV);
// Add extra checkers.
llvm::OwningPtr<GRSimpleAPICheck> FoundationCheck(
CreateBasicObjCFoundationChecks(Ctx, &CheckerState->getStateManager()));
CheckerState->AddObjCMessageExprCheck(FoundationCheck.get());
// Execute the worklist algorithm.
Eng.ExecuteWorkList(120000);
SourceManager& SrcMgr = Ctx.getSourceManager();
EmitWarning(Diag, PD, SrcMgr,
CheckerState->null_derefs_begin(),
CheckerState->null_derefs_end(),
"Dereference of NULL pointer.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->undef_derefs_begin(),
CheckerState->undef_derefs_end(),
"Dereference of undefined value.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->undef_branches_begin(),
CheckerState->undef_branches_end(),
"Branch condition evaluates to an uninitialized value.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->explicit_bad_divides_begin(),
CheckerState->explicit_bad_divides_end(),
"Division by zero/undefined value.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->undef_results_begin(),
CheckerState->undef_results_end(),
"Result of operation is undefined.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->bad_calls_begin(),
CheckerState->bad_calls_end(),
"Call using a NULL or undefined function pointer value.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->undef_arg_begin(),
CheckerState->undef_arg_end(),
"Pass-by-value argument in function is undefined.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->msg_expr_undef_arg_begin(),
CheckerState->msg_expr_undef_arg_end(),
"Pass-by-value argument in message expression is undefined.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->undef_receivers_begin(),
CheckerState->undef_receivers_end(),
"Receiver in message expression is an uninitialized value.");
EmitWarning(Diag, PD, SrcMgr,
CheckerState->ret_stackaddr_begin(),
CheckerState->ret_stackaddr_end(),
"Address of stack-allocated variable returned.");
FoundationCheck.get()->ReportResults(Diag);
#ifndef NDEBUG
if (Visualize) CheckerState->ViewGraph(TrimGraph);
#endif
return Eng.getGraph().size();
}
} // end clang namespace
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) {
if (!isa<nonlval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()
|| T->isObjCQualifiedIdType());
V.extOrTrunc(Eng.getContext().getTypeSize(T));
if (T->isPointerType())
return lval::ConcreteInt(BasicVals.getValue(V));
else
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Casts.
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) {
if (T->isPointerType() || T->isReferenceType() || T->isObjCQualifiedIdType())
return X;
assert (T->isIntegerType());
if (!isa<lval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(Eng.getContext().getTypeSize(T));
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Unary operators.
RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalMinus(Eng.getBasicVals(), U);
default:
return UnknownVal();
}
}
RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) {
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalComplement(Eng.getBasicVals());
default:
return UnknownVal();
}
}
// Binary operators.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
while (1) {
switch (L.getSubKind()) {
default:
return UnknownVal();
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(R)) {
const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);
return L_CI.EvalBinOp(BasicVals, Op, R_CI);
}
else {
NonLVal tmp = R;
R = L;
L = tmp;
continue;
}
case nonlval::SymbolValKind: {
if (isa<nonlval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
cast<nonlval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
else
return UnknownVal();
}
}
}
}
// Binary Operators (except assignments and comma).
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, LVal R) {
switch (Op) {
default:
return UnknownVal();
case BinaryOperator::EQ:
return EvalEQ(Eng, L, R);
case BinaryOperator::NE:
return EvalNE(Eng, L, R);
}
}
// Pointer arithmetic.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, NonLVal R) {
return UnknownVal();
}
// Equality operators for LVals.
RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "EQ not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() ==
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement == for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(BasicVals, L == R);
}
return NonLVal::MakeIntTruthVal(BasicVals, false);
}
RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "NE not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() !=
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement != for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
break;
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(BasicVals, L != R);
}
return NonLVal::MakeIntTruthVal(BasicVals, true);
}
//===----------------------------------------------------------------------===//
// Transfer function for Function Calls.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalCall(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
CallExpr* CE, LVal L,
ExplodedNode<ValueState>* Pred) {
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
}
// Make up a symbol for the return value of this function.
if (CE->getType() != Eng.getContext().VoidTy) {
unsigned Count = Builder.getCurrentBlockCount();
SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count);
RVal X = CE->getType()->isPointerType()
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false);
}
Builder.MakeNode(Dst, CE, Pred, St);
}