llvm-project/clang/lib/Sema/AnalysisBasedWarnings.cpp

1399 lines
50 KiB
C++
Raw Normal View History

//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <vector>
using namespace clang;
//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//
namespace {
class UnreachableCodeHandler : public reachable_code::Callback {
Sema &S;
public:
UnreachableCodeHandler(Sema &s) : S(s) {}
void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
S.Diag(L, diag::warn_unreachable) << R1 << R2;
}
};
}
/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
UnreachableCodeHandler UC(S);
reachable_code::FindUnreachableCode(AC, UC);
}
//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//
enum ControlFlowKind {
UnknownFallThrough,
NeverFallThrough,
MaybeFallThrough,
AlwaysFallThrough,
NeverFallThroughOrReturn
};
/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return. We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return. We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
CFG *cfg = AC.getCFG();
if (cfg == 0) return UnknownFallThrough;
// The CFG leaves in dead things, and we don't want the dead code paths to
// confuse us, so we mark all live things first.
llvm::BitVector live(cfg->getNumBlockIDs());
unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
live);
bool AddEHEdges = AC.getAddEHEdges();
if (!AddEHEdges && count != cfg->getNumBlockIDs())
// When there are things remaining dead, and we didn't add EH edges
// from CallExprs to the catch clauses, we have to go back and
// mark them as live.
for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
CFGBlock &b = **I;
if (!live[b.getBlockID()]) {
if (b.pred_begin() == b.pred_end()) {
if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
// When not adding EH edges from calls, catch clauses
// can otherwise seem dead. Avoid noting them as dead.
count += reachable_code::ScanReachableFromBlock(&b, live);
continue;
}
}
}
// Now we know what is live, we check the live precessors of the exit block
// and look for fall through paths, being careful to ignore normal returns,
// and exceptional paths.
bool HasLiveReturn = false;
bool HasFakeEdge = false;
bool HasPlainEdge = false;
bool HasAbnormalEdge = false;
// Ignore default cases that aren't likely to be reachable because all
// enums in a switch(X) have explicit case statements.
CFGBlock::FilterOptions FO;
FO.IgnoreDefaultsWithCoveredEnums = 1;
for (CFGBlock::filtered_pred_iterator
I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
const CFGBlock& B = **I;
if (!live[B.getBlockID()])
continue;
// Destructors can appear after the 'return' in the CFG. This is
// normal. We need to look pass the destructors for the return
// statement (if it exists).
CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
bool hasNoReturnDtor = false;
for ( ; ri != re ; ++ri) {
CFGElement CE = *ri;
// FIXME: The right solution is to just sever the edges in the
// CFG itself.
if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>())
if (iDtor->isNoReturn(AC.getASTContext())) {
hasNoReturnDtor = true;
HasFakeEdge = true;
break;
}
if (isa<CFGStmt>(CE))
break;
}
if (hasNoReturnDtor)
continue;
// No more CFGElements in the block?
if (ri == re) {
if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
HasAbnormalEdge = true;
continue;
}
// A labeled empty statement, or the entry block...
HasPlainEdge = true;
continue;
}
CFGStmt CS = cast<CFGStmt>(*ri);
const Stmt *S = CS.getStmt();
if (isa<ReturnStmt>(S)) {
HasLiveReturn = true;
continue;
}
if (isa<ObjCAtThrowStmt>(S)) {
HasFakeEdge = true;
continue;
}
if (isa<CXXThrowExpr>(S)) {
HasFakeEdge = true;
continue;
}
if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
if (AS->isMSAsm()) {
HasFakeEdge = true;
HasLiveReturn = true;
continue;
}
}
if (isa<CXXTryStmt>(S)) {
HasAbnormalEdge = true;
continue;
}
bool NoReturnEdge = false;
if (const CallExpr *C = dyn_cast<CallExpr>(S)) {
if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
== B.succ_end()) {
HasAbnormalEdge = true;
continue;
}
const Expr *CEE = C->getCallee()->IgnoreParenCasts();
QualType calleeType = CEE->getType();
if (calleeType == AC.getASTContext().BoundMemberTy) {
calleeType = Expr::findBoundMemberType(CEE);
assert(!calleeType.isNull() && "analyzing unresolved call?");
}
if (getFunctionExtInfo(calleeType).getNoReturn()) {
NoReturnEdge = true;
HasFakeEdge = true;
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
const ValueDecl *VD = DRE->getDecl();
if (VD->hasAttr<NoReturnAttr>()) {
NoReturnEdge = true;
HasFakeEdge = true;
}
}
}
// FIXME: Add noreturn message sends.
if (NoReturnEdge == false)
HasPlainEdge = true;
}
if (!HasPlainEdge) {
if (HasLiveReturn)
return NeverFallThrough;
return NeverFallThroughOrReturn;
}
if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
return MaybeFallThrough;
// This says AlwaysFallThrough for calls to functions that are not marked
// noreturn, that don't return. If people would like this warning to be more
// accurate, such functions should be marked as noreturn.
return AlwaysFallThrough;
}
namespace {
struct CheckFallThroughDiagnostics {
unsigned diag_MaybeFallThrough_HasNoReturn;
unsigned diag_MaybeFallThrough_ReturnsNonVoid;
unsigned diag_AlwaysFallThrough_HasNoReturn;
unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
unsigned diag_NeverFallThroughOrReturn;
bool funMode;
SourceLocation FuncLoc;
static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
CheckFallThroughDiagnostics D;
D.FuncLoc = Func->getLocation();
D.diag_MaybeFallThrough_HasNoReturn =
diag::warn_falloff_noreturn_function;
D.diag_MaybeFallThrough_ReturnsNonVoid =
diag::warn_maybe_falloff_nonvoid_function;
D.diag_AlwaysFallThrough_HasNoReturn =
diag::warn_falloff_noreturn_function;
D.diag_AlwaysFallThrough_ReturnsNonVoid =
diag::warn_falloff_nonvoid_function;
// Don't suggest that virtual functions be marked "noreturn", since they
// might be overridden by non-noreturn functions.
bool isVirtualMethod = false;
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
isVirtualMethod = Method->isVirtual();
if (!isVirtualMethod)
D.diag_NeverFallThroughOrReturn =
diag::warn_suggest_noreturn_function;
else
D.diag_NeverFallThroughOrReturn = 0;
D.funMode = true;
return D;
}
static CheckFallThroughDiagnostics MakeForBlock() {
CheckFallThroughDiagnostics D;
D.diag_MaybeFallThrough_HasNoReturn =
diag::err_noreturn_block_has_return_expr;
D.diag_MaybeFallThrough_ReturnsNonVoid =
diag::err_maybe_falloff_nonvoid_block;
D.diag_AlwaysFallThrough_HasNoReturn =
diag::err_noreturn_block_has_return_expr;
D.diag_AlwaysFallThrough_ReturnsNonVoid =
diag::err_falloff_nonvoid_block;
D.diag_NeverFallThroughOrReturn =
diag::warn_suggest_noreturn_block;
D.funMode = false;
return D;
}
bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
bool HasNoReturn) const {
if (funMode) {
return (ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
FuncLoc) == Diagnostic::Ignored)
&& (!HasNoReturn ||
D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
FuncLoc) == Diagnostic::Ignored)
&& (!ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
== Diagnostic::Ignored);
}
// For blocks.
return ReturnsVoid && !HasNoReturn
&& (!ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
== Diagnostic::Ignored);
}
};
}
/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
/// function that should return a value. Check that we don't fall off the end
/// of a noreturn function. We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
const BlockExpr *blkExpr,
const CheckFallThroughDiagnostics& CD,
AnalysisContext &AC) {
bool ReturnsVoid = false;
bool HasNoReturn = false;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
ReturnsVoid = FD->getResultType()->isVoidType();
HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
}
else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
ReturnsVoid = MD->getResultType()->isVoidType();
HasNoReturn = MD->hasAttr<NoReturnAttr>();
}
else if (isa<BlockDecl>(D)) {
QualType BlockTy = blkExpr->getType();
if (const FunctionType *FT =
BlockTy->getPointeeType()->getAs<FunctionType>()) {
if (FT->getResultType()->isVoidType())
ReturnsVoid = true;
if (FT->getNoReturnAttr())
HasNoReturn = true;
}
}
Diagnostic &Diags = S.getDiagnostics();
// Short circuit for compilation speed.
if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
return;
// FIXME: Function try block
if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
switch (CheckFallThrough(AC)) {
case UnknownFallThrough:
break;
case MaybeFallThrough:
if (HasNoReturn)
S.Diag(Compound->getRBracLoc(),
CD.diag_MaybeFallThrough_HasNoReturn);
else if (!ReturnsVoid)
S.Diag(Compound->getRBracLoc(),
CD.diag_MaybeFallThrough_ReturnsNonVoid);
break;
case AlwaysFallThrough:
if (HasNoReturn)
S.Diag(Compound->getRBracLoc(),
CD.diag_AlwaysFallThrough_HasNoReturn);
else if (!ReturnsVoid)
S.Diag(Compound->getRBracLoc(),
CD.diag_AlwaysFallThrough_ReturnsNonVoid);
break;
case NeverFallThroughOrReturn:
if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn)
S.Diag(Compound->getLBracLoc(),
CD.diag_NeverFallThroughOrReturn);
break;
case NeverFallThrough:
break;
}
}
}
//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//
namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
bool FoundReference;
const DeclRefExpr *Needle;
public:
ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
: EvaluatedExprVisitor<ContainsReference>(Context),
FoundReference(false), Needle(Needle) {}
void VisitExpr(Expr *E) {
// Stop evaluating if we already have a reference.
if (FoundReference)
return;
EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
}
void VisitDeclRefExpr(DeclRefExpr *E) {
if (E == Needle)
FoundReference = true;
else
EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
}
bool doesContainReference() const { return FoundReference; }
};
}
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a pariticular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
const Expr *E, bool isAlwaysUninit) {
bool isSelfInit = false;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (isAlwaysUninit) {
// Inspect the initializer of the variable declaration which is
// being referenced prior to its initialization. We emit
// specialized diagnostics for self-initialization, and we
// specifically avoid warning about self references which take the
// form of:
//
// int x = x;
//
// This is used to indicate to GCC that 'x' is intentionally left
// uninitialized. Proven code paths which access 'x' in
// an uninitialized state after this will still warn.
//
// TODO: Should we suppress maybe-uninitialized warnings for
// variables initialized in this way?
if (const Expr *Initializer = VD->getInit()) {
if (DRE == Initializer->IgnoreParenImpCasts())
return false;
ContainsReference CR(S.Context, DRE);
CR.Visit(const_cast<Expr*>(Initializer));
isSelfInit = CR.doesContainReference();
}
if (isSelfInit) {
S.Diag(DRE->getLocStart(),
diag::warn_uninit_self_reference_in_init)
<< VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
} else {
S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
<< VD->getDeclName() << DRE->getSourceRange();
}
} else {
S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
<< VD->getDeclName() << DRE->getSourceRange();
}
} else {
const BlockExpr *BE = cast<BlockExpr>(E);
S.Diag(BE->getLocStart(),
isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
: diag::warn_maybe_uninit_var_captured_by_block)
<< VD->getDeclName();
}
// Report where the variable was declared when the use wasn't within
// the initializer of that declaration.
if (!isSelfInit)
S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
<< VD->getDeclName();
return true;
}
static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
// Don't issue a fixit if there is already an initializer.
if (VD->getInit())
return;
// Suggest possible initialization (if any).
const char *initialization = 0;
QualType VariableTy = VD->getType().getCanonicalType();
if (VariableTy->isObjCObjectPointerType() ||
VariableTy->isBlockPointerType()) {
// Check if 'nil' is defined.
if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
initialization = " = nil";
else
initialization = " = 0";
}
else if (VariableTy->isRealFloatingType())
initialization = " = 0.0";
else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
initialization = " = false";
else if (VariableTy->isEnumeralType())
return;
else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
if (S.Context.getLangOptions().CPlusPlus0x)
initialization = " = nullptr";
// Check if 'NULL' is defined.
else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
initialization = " = NULL";
else
initialization = " = 0";
}
else if (VariableTy->isScalarType())
initialization = " = 0";
if (initialization) {
SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
S.Diag(loc, diag::note_var_fixit_add_initialization)
<< FixItHint::CreateInsertion(loc, initialization);
}
}
typedef std::pair<const Expr*, bool> UninitUse;
namespace {
struct SLocSort {
bool operator()(const UninitUse &a, const UninitUse &b) {
SourceLocation aLoc = a.first->getLocStart();
SourceLocation bLoc = b.first->getLocStart();
return aLoc.getRawEncoding() < bLoc.getRawEncoding();
}
};
class UninitValsDiagReporter : public UninitVariablesHandler {
Sema &S;
typedef SmallVector<UninitUse, 2> UsesVec;
typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
UsesMap *uses;
public:
UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
~UninitValsDiagReporter() {
flushDiagnostics();
}
void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
bool isAlwaysUninit) {
if (!uses)
uses = new UsesMap();
UsesVec *&vec = (*uses)[vd];
if (!vec)
vec = new UsesVec();
vec->push_back(std::make_pair(ex, isAlwaysUninit));
}
void flushDiagnostics() {
if (!uses)
return;
for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
const VarDecl *vd = i->first;
UsesVec *vec = i->second;
// Sort the uses by their SourceLocations. While not strictly
// guaranteed to produce them in line/column order, this will provide
// a stable ordering.
std::sort(vec->begin(), vec->end(), SLocSort());
for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
++vi) {
if (!DiagnoseUninitializedUse(S, vd, vi->first,
/*isAlwaysUninit=*/vi->second))
continue;
SuggestInitializationFixit(S, vd);
// Skip further diagnostics for this variable. We try to warn only on
// the first point at which a variable is used uninitialized.
break;
}
delete vec;
}
delete uses;
}
};
}
//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace {
/// \brief Implements a set of CFGBlocks using a BitVector.
///
/// This class contains a minimal interface, primarily dictated by the SetType
/// template parameter of the llvm::po_iterator template, as used with external
/// storage. We also use this set to keep track of which CFGBlocks we visit
/// during the analysis.
class CFGBlockSet {
llvm::BitVector VisitedBlockIDs;
public:
// po_iterator requires this iterator, but the only interface needed is the
// value_type typedef.
struct iterator {
typedef const CFGBlock *value_type;
};
CFGBlockSet() {}
CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
/// \brief Set the bit associated with a particular CFGBlock.
/// This is the important method for the SetType template parameter.
bool insert(const CFGBlock *Block) {
// Note that insert() is called by po_iterator, which doesn't check to make
// sure that Block is non-null. Moreover, the CFGBlock iterator will
// occasionally hand out null pointers for pruned edges, so we catch those
// here.
if (Block == 0)
return false; // if an edge is trivially false.
if (VisitedBlockIDs.test(Block->getBlockID()))
return false;
VisitedBlockIDs.set(Block->getBlockID());
return true;
}
/// \brief Check if the bit for a CFGBlock has been already set.
/// This method is for tracking visited blocks in the main threadsafety loop.
/// Block must not be null.
bool alreadySet(const CFGBlock *Block) {
return VisitedBlockIDs.test(Block->getBlockID());
}
};
/// \brief We create a helper class which we use to iterate through CFGBlocks in
/// the topological order.
class TopologicallySortedCFG {
typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
std::vector<const CFGBlock*> Blocks;
public:
typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
TopologicallySortedCFG(const CFG *CFGraph) {
Blocks.reserve(CFGraph->getNumBlockIDs());
CFGBlockSet BSet(CFGraph);
for (po_iterator I = po_iterator::begin(CFGraph, BSet),
E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
Blocks.push_back(*I);
}
}
iterator begin() {
return Blocks.rbegin();
}
iterator end() {
return Blocks.rend();
}
};
/// \brief A LockID object uniquely identifies a particular lock acquired, and
/// is built from an Expr* (i.e. calling a lock function).
///
/// Thread-safety analysis works by comparing lock expressions. Within the
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
/// a particular lock object at run-time. Subsequent occurrences of the same
/// expression (where "same" means syntactic equality) will refer to the same
/// run-time object if three conditions hold:
/// (1) Local variables in the expression, such as "x" have not changed.
/// (2) Values on the heap that affect the expression have not changed.
/// (3) The expression involves only pure function calls.
/// The current implementation assumes, but does not verify, that multiple uses
/// of the same lock expression satisfies these criteria.
///
/// Clang introduces an additional wrinkle, which is that it is difficult to
/// derive canonical expressions, or compare expressions directly for equality.
/// Thus, we identify a lock not by an Expr, but by the set of named
/// declarations that are referenced by the Expr. In other words,
/// x->foo->bar.mu will be a four element vector with the Decls for
/// mu, bar, and foo, and x. The vector will uniquely identify the expression
/// for all practical purposes.
///
/// Note we will need to perform substitution on "this" and function parameter
/// names when constructing a lock expression.
///
/// For example:
/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
/// void myFunc(C *X) { ... X->lock() ... }
/// The original expression for the lock acquired by myFunc is "this->Mu", but
/// "X" is substituted for "this" so we get X->Mu();
///
/// For another example:
/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
/// MyList *MyL;
/// foo(MyL); // requires lock MyL->Mu to be held
///
/// FIXME: In C++0x Mutexes are the objects that control access to shared
/// variables, while Locks are the objects that acquire and release Mutexes. We
/// may want to switch to this new terminology soon, in which case we should
/// rename this class "Mutex" and rename "LockId" to "MutexId", as well as
/// making sure that the terms Lock and Mutex throughout this code are
/// consistent with C++0x
///
/// FIXME: We should also pick one and canonicalize all usage of lock vs acquire
/// and unlock vs release as verbs.
class LockID {
SmallVector<NamedDecl*, 2> DeclSeq;
/// Build a Decl sequence representing the lock from the given expression.
/// Recursive function that bottoms out when the final DeclRefExpr is reached.
void buildLock(Expr *Exp) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
DeclSeq.push_back(ND);
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
NamedDecl *ND = ME->getMemberDecl();
DeclSeq.push_back(ND);
buildLock(ME->getBase());
} else {
// FIXME: add diagnostic
llvm::report_fatal_error("Expected lock expression!");
}
}
public:
LockID(Expr *LExpr) {
buildLock(LExpr);
assert(!DeclSeq.empty());
}
bool operator==(const LockID &other) const {
return DeclSeq == other.DeclSeq;
}
bool operator!=(const LockID &other) const {
return !(*this == other);
}
// SmallVector overloads Operator< to do lexicographic ordering. Note that
// we use pointer equality (and <) to compare NamedDecls. This means the order
// of LockIDs in a lockset is nondeterministic. In order to output
// diagnostics in a deterministic ordering, we must order all diagnostics to
// output by SourceLocation when iterating through this lockset.
bool operator<(const LockID &other) const {
return DeclSeq < other.DeclSeq;
}
/// \brief Returns the name of the first Decl in the list for a given LockID;
/// e.g. the lock expression foo.bar() has name "bar".
/// The caret will point unambiguously to the lock expression, so using this
/// name in diagnostics is a way to get simple, and consistent, lock names.
/// We do not want to output the entire expression text for security reasons.
StringRef getName() const {
return DeclSeq.front()->getName();
}
void Profile(llvm::FoldingSetNodeID &ID) const {
for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
E = DeclSeq.end(); I != E; ++I) {
ID.AddPointer(*I);
}
}
};
/// \brief This is a helper class that stores info about the most recent
/// accquire of a Lock.
///
/// The main body of the analysis maps LockIDs to LockDatas.
struct LockData {
SourceLocation AcquireLoc;
LockData(SourceLocation Loc) : AcquireLoc(Loc) {}
bool operator==(const LockData &other) const {
return AcquireLoc == other.AcquireLoc;
}
bool operator!=(const LockData &other) const {
return !(*this == other);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(AcquireLoc.getRawEncoding());
}
};
/// A Lockset maps each LockID (defined above) to information about how it has
/// been locked.
typedef llvm::ImmutableMap<LockID, LockData> Lockset;
/// \brief We use this class to visit different types of expressions in
/// CFGBlocks, and build up the lockset.
/// An expression may cause us to add or remove locks from the lockset, or else
/// output error messages related to missing locks.
/// FIXME: In future, we may be able to not inherit from a visitor.
class BuildLockset : public StmtVisitor<BuildLockset> {
Sema &S;
Lockset LSet;
Lockset::Factory &LocksetFactory;
// Helper functions
void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
void addLock(SourceLocation LockLoc, Expr *LockExp);
public:
BuildLockset(Sema &S, Lockset LS, Lockset::Factory &F)
: StmtVisitor<BuildLockset>(), S(S), LSet(LS),
LocksetFactory(F) {}
Lockset getLockset() {
return LSet;
}
void VisitDeclRefExpr(DeclRefExpr *Exp);
void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
};
/// \brief Add a new lock to the lockset, warning if the lock is already there.
/// \param LockExp The lock expression corresponding to the lock to be added
/// \param LockLoc The source location of the acquire
void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp) {
LockID Lock(LockExp);
LockData NewLockData(LockLoc);
if (LSet.contains(Lock))
S.Diag(LockLoc, diag::warn_double_lock) << Lock.getName();
LSet = LocksetFactory.add(LSet, Lock, NewLockData);
}
/// \brief Remove a lock from the lockset, warning if the lock is not there.
/// \param LockExp The lock expression corresponding to the lock to be removed
/// \param UnlockLoc The source location of the unlock (only used in error msg)
void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
LockID Lock(LockExp);
Lockset NewLSet = LocksetFactory.remove(LSet, Lock);
if(NewLSet == LSet)
S.Diag(UnlockLoc, diag::warn_unlock_but_no_acquire) << Lock.getName();
LSet = NewLSet;
}
void BuildLockset::VisitDeclRefExpr(DeclRefExpr *Exp) {
// FIXME: checking for guarded_by/var and pt_guarded_by/var
}
/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
/// the method that is being called and add, remove or check locks in the
/// lockset accordingly.
void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
SourceLocation ExpLocation = Exp->getExprLoc();
Expr *Parent = Exp->getImplicitObjectArgument();
if(!D || !D->hasAttrs())
return;
AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *Attr = ArgAttrs[i];
switch (Attr->getKind()) {
// When we encounter an exclusive lock function, we need to add the lock
// to our lockset.
case attr::ExclusiveLockFunction: {
ExclusiveLockFunctionAttr *ELFAttr =
cast<ExclusiveLockFunctionAttr>(Attr);
if (ELFAttr->args_size() == 0) {// The lock held is the "this" object.
addLock(ExpLocation, Parent);
break;
}
for (ExclusiveLockFunctionAttr::args_iterator I = ELFAttr->args_begin(),
E = ELFAttr->args_end(); I != E; ++I)
addLock(ExpLocation, *I);
// FIXME: acquired_after/acquired_before annotations
break;
}
// When we encounter an unlock function, we need to remove unlocked locks
// from the lockset, and flag a warning if they are not there.
case attr::UnlockFunction: {
UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
removeLock(ExpLocation, Parent);
break;
}
for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
E = UFAttr->args_end(); I != E; ++I)
removeLock(ExpLocation, *I);
break;
}
// Ignore other (non thread-safety) attributes
default:
break;
}
}
}
typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
struct SortDiagBySourceLocation {
Sema &S;
SortDiagBySourceLocation(Sema &S) : S(S) {}
bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
// Although this call will be slow, this is only called when outputting
// multiple warnings.
return S.getSourceManager().isBeforeInTranslationUnit(left.first,
right.first);
}
};
} // end anonymous namespace
/// \brief Emit all buffered diagnostics in order of sourcelocation.
/// We need to output diagnostics produced while iterating through
/// the lockset in deterministic order, so this function orders diagnostics
/// and outputs them.
static void EmitDiagnostics(Sema &S, DiagList &D) {
SortDiagBySourceLocation SortDiagBySL(S);
sort(D.begin(), D.end(), SortDiagBySL);
for (DiagList::iterator I = D.begin(), E = D.end(); I != E; ++I)
S.Diag(I->first, I->second);
}
/// \brief Compute the intersection of two locksets and issue warnings for any
/// locks in the symmetric difference.
///
/// This function is used at a merge point in the CFG when comparing the lockset
/// of each branch being merged. For example, given the following sequence:
/// A; if () then B; else C; D; we need to check that the lockset after B and C
/// are the same. In the event of a difference, we use the intersection of these
/// two locksets at the start of D.
static Lockset intersectAndWarn(Sema &S, Lockset LSet1, Lockset LSet2,
Lockset::Factory &Fact) {
Lockset Intersection = LSet1;
DiagList Warnings;
for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
if (!LSet1.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
}
for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
if (!LSet2.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
Intersection = Fact.remove(Intersection, MissingLock);
}
}
EmitDiagnostics(S, Warnings);
return Intersection;
}
/// \brief Returns the location of the first Stmt in a Block.
static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
SourceLocation Loc;
for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
BI != BE; ++BI) {
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
Loc = CfgStmt->getStmt()->getLocStart();
if (Loc.isValid()) return Loc;
}
}
if (Stmt *S = Block->getTerminator().getStmt()) {
Loc = S->getLocStart();
if (Loc.isValid()) return Loc;
}
return Loc;
}
/// \brief Warn about different locksets along backedges of loops.
/// This function is called when we encounter a back edge. At that point,
/// we need to verify that the lockset before taking the backedge is the
/// same as the lockset before entering the loop.
///
/// \param LoopEntrySet Locks held before starting the loop
/// \param LoopReentrySet Locks held in the last CFG block of the loop
static void warnBackEdgeUnequalLocksets(Sema &S, const Lockset LoopReentrySet,
const Lockset LoopEntrySet,
SourceLocation FirstLocInLoop) {
assert(FirstLocInLoop.isValid());
DiagList Warnings;
// Warn for locks held at the start of the loop, but not the end.
for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
I != E; ++I) {
if (!LoopReentrySet.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
// We report this error at the location of the first statement in a loop
PartialDiagnostic Warning =
S.PDiag(diag::warn_expecting_lock_held_on_loop)
<< MissingLock.getName();
Warnings.push_back(DelayedDiag(FirstLocInLoop, Warning));
}
}
// Warn for locks held at the end of the loop, but not at the start.
for (Lockset::iterator I = LoopReentrySet.begin(), E = LoopReentrySet.end();
I != E; ++I) {
if (!LoopEntrySet.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
}
EmitDiagnostics(S, Warnings);
}
/// \brief Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of locks that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
static void checkThreadSafety(Sema &S, AnalysisContext &AC) {
CFG *CFGraph = AC.getCFG();
if (!CFGraph) return;
Lockset::Factory LocksetFactory;
// FIXME: Swith to SmallVector? Otherwise improve performance impact?
std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
LocksetFactory.getEmptyMap());
std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
LocksetFactory.getEmptyMap());
// We need to explore the CFG via a "topological" ordering.
// That way, we will be guaranteed to have information about required
// predecessor locksets when exploring a new block.
TopologicallySortedCFG SortedGraph(CFGraph);
CFGBlockSet VisitedBlocks(CFGraph);
for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
E = SortedGraph.end(); I!= E; ++I) {
const CFGBlock *CurrBlock = *I;
int CurrBlockID = CurrBlock->getBlockID();
VisitedBlocks.insert(CurrBlock);
// Use the default initial lockset in case there are no predecessors.
Lockset &Entryset = EntryLocksets[CurrBlockID];
Lockset &Exitset = ExitLocksets[CurrBlockID];
// Iterate through the predecessor blocks and warn if the lockset for all
// predecessors is not the same. We take the entry lockset of the current
// block to be the intersection of all previous locksets.
// FIXME: By keeping the intersection, we may output more errors in future
// for a lock which is not in the intersection, but was in the union. We
// may want to also keep the union in future. As an example, let's say
// the intersection contains Lock L, and the union contains L and M.
// Later we unlock M. At this point, we would output an error because we
// never locked M; although the real error is probably that we forgot to
// lock M on all code paths. Conversely, let's say that later we lock M.
// In this case, we should compare against the intersection instead of the
// union because the real error is probably that we forgot to unlock M on
// all code paths.
bool LocksetInitialized = false;
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
// if *PI -> CurrBlock is a back edge
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
continue;
int PrevBlockID = (*PI)->getBlockID();
if (!LocksetInitialized) {
Entryset = ExitLocksets[PrevBlockID];
LocksetInitialized = true;
} else {
Entryset = intersectAndWarn(S, Entryset, ExitLocksets[PrevBlockID],
LocksetFactory);
}
}
BuildLockset LocksetBuilder(S, Entryset, LocksetFactory);
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
BE = CurrBlock->end(); BI != BE; ++BI) {
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
}
Exitset = LocksetBuilder.getLockset();
// For every back edge from CurrBlock (the end of the loop) to another block
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
// the one held at the beginning of FirstLoopBlock. We can look up the
// Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
// if CurrBlock -> *SI is *not* a back edge
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
continue;
CFGBlock *FirstLoopBlock = *SI;
SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
assert(FirstLoopLocation.isValid());
// Fail gracefully in release code.
if (!FirstLoopLocation.isValid())
continue;
Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
Lockset LoopEnd = ExitLocksets[CurrBlockID];
warnBackEdgeUnequalLocksets(S, LoopEnd, PreLoop, FirstLoopLocation);
}
}
Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
if (!FinalLockset.isEmpty()) {
DiagList Warnings;
for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
I != E; ++I) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
std::string FunName = "<unknown>";
if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
FunName = ContextDecl->getDeclName().getAsString();
}
PartialDiagnostic Warning =
S.PDiag(diag::warn_locks_not_released)
<< MissingLock.getName() << FunName;
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
EmitDiagnostics(S, Warnings);
}
}
//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
// warnings on a function, method, or block.
//===----------------------------------------------------------------------===//
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
enableCheckFallThrough = 1;
enableCheckUnreachable = 0;
enableThreadSafetyAnalysis = 0;
}
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
: S(s),
NumFunctionsAnalyzed(0),
NumFunctionsWithBadCFGs(0),
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
NumCFGBlocks(0),
MaxCFGBlocksPerFunction(0),
NumUninitAnalysisFunctions(0),
NumUninitAnalysisVariables(0),
MaxUninitAnalysisVariablesPerFunction(0),
NumUninitAnalysisBlockVisits(0),
MaxUninitAnalysisBlockVisitsPerFunction(0) {
Diagnostic &D = S.getDiagnostics();
DefaultPolicy.enableCheckUnreachable = (unsigned)
(D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
Diagnostic::Ignored);
DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
(D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
Diagnostic::Ignored);
}
static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i) {
const sema::PossiblyUnreachableDiag &D = *i;
S.Diag(D.Loc, D.PD);
}
}
void clang::sema::
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
sema::FunctionScopeInfo *fscope,
const Decl *D, const BlockExpr *blkExpr) {
// We avoid doing analysis-based warnings when there are errors for
// two reasons:
// (1) The CFGs often can't be constructed (if the body is invalid), so
// don't bother trying.
// (2) The code already has problems; running the analysis just takes more
// time.
Diagnostic &Diags = S.getDiagnostics();
// Do not do any analysis for declarations in system headers if we are
// going to just ignore them.
if (Diags.getSuppressSystemWarnings() &&
S.SourceMgr.isInSystemHeader(D->getLocation()))
return;
// For code in dependent contexts, we'll do this at instantiation time.
if (cast<DeclContext>(D)->isDependentContext())
return;
if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
// Flush out any possibly unreachable diagnostics.
flushDiagnostics(S, fscope);
return;
}
const Stmt *Body = D->getBody();
assert(Body);
AnalysisContext AC(D, 0);
// Don't generate EH edges for CallExprs as we'd like to avoid the n^2
// explosion for destrutors that can result and the compile time hit.
AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
AC.getCFGBuildOptions().AddEHEdges = false;
AC.getCFGBuildOptions().AddInitializers = true;
AC.getCFGBuildOptions().AddImplicitDtors = true;
// Force that certain expressions appear as CFGElements in the CFG. This
// is used to speed up various analyses.
// FIXME: This isn't the right factoring. This is here for initial
// prototyping, but we need a way for analyses to say what expressions they
// expect to always be CFGElements and then fill in the BuildOptions
// appropriately. This is essentially a layering violation.
if (P.enableCheckUnreachable) {
// Unreachable code analysis requires a linearized CFG.
AC.getCFGBuildOptions().setAllAlwaysAdd();
}
else {
AC.getCFGBuildOptions()
.setAlwaysAdd(Stmt::BinaryOperatorClass)
.setAlwaysAdd(Stmt::BlockExprClass)
.setAlwaysAdd(Stmt::CStyleCastExprClass)
.setAlwaysAdd(Stmt::DeclRefExprClass)
.setAlwaysAdd(Stmt::ImplicitCastExprClass)
.setAlwaysAdd(Stmt::UnaryOperatorClass);
}
// Construct the analysis context with the specified CFG build options.
// Emit delayed diagnostics.
if (!fscope->PossiblyUnreachableDiags.empty()) {
bool analyzed = false;
// Register the expressions with the CFGBuilder.
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i) {
if (const Stmt *stmt = i->stmt)
AC.registerForcedBlockExpression(stmt);
}
if (AC.getCFG()) {
analyzed = true;
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i)
{
const sema::PossiblyUnreachableDiag &D = *i;
bool processed = false;
if (const Stmt *stmt = i->stmt) {
const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
assert(block);
if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
// Can this block be reached from the entrance?
if (cra->isReachable(&AC.getCFG()->getEntry(), block))
S.Diag(D.Loc, D.PD);
processed = true;
}
}
if (!processed) {
// Emit the warning anyway if we cannot map to a basic block.
S.Diag(D.Loc, D.PD);
}
}
}
if (!analyzed)
flushDiagnostics(S, fscope);
}
// Warning: check missing 'return'
if (P.enableCheckFallThrough) {
const CheckFallThroughDiagnostics &CD =
(isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
: CheckFallThroughDiagnostics::MakeForFunction(D));
CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
}
// Warning: check for unreachable code
if (P.enableCheckUnreachable)
CheckUnreachable(S, AC);
// Check for thread safety violations
if (P.enableThreadSafetyAnalysis)
checkThreadSafety(S, AC);
if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
!= Diagnostic::Ignored ||
Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
!= Diagnostic::Ignored) {
if (CFG *cfg = AC.getCFG()) {
UninitValsDiagReporter reporter(S);
2011-07-17 02:31:33 +08:00
UninitVariablesAnalysisStats stats;
std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
reporter, stats);
if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
++NumUninitAnalysisFunctions;
NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
MaxUninitAnalysisVariablesPerFunction =
std::max(MaxUninitAnalysisVariablesPerFunction,
stats.NumVariablesAnalyzed);
MaxUninitAnalysisBlockVisitsPerFunction =
std::max(MaxUninitAnalysisBlockVisitsPerFunction,
stats.NumBlockVisits);
}
}
}
// Collect statistics about the CFG if it was built.
if (S.CollectStats && AC.isCFGBuilt()) {
++NumFunctionsAnalyzed;
if (CFG *cfg = AC.getCFG()) {
// If we successfully built a CFG for this context, record some more
// detail information about it.
NumCFGBlocks += cfg->getNumBlockIDs();
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
cfg->getNumBlockIDs());
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
} else {
++NumFunctionsWithBadCFGs;
}
}
}
Build up statistics about the work done for analysis based warnings. Special detail is added for uninitialized variable analysis as this has serious performance problems than need to be tracked. Computing some of this data is expensive, for example walking the CFG to determine its size. To avoid doing that unless the stats data is going to be used, we thread a bit into the Sema object to track whether detailed stats should be collected or not. This bit is used to avoid computations whereever the computations are likely to be more expensive than checking the state of the flag. Thus, counters are in some cases unconditionally updated, but the more expensive (and less frequent) aggregation steps are skipped. With this patch, we're able to see that for 'gcc.c': *** Analysis Based Warnings Stats: 232 functions analyzed (0 w/o CFGs). 7151 CFG blocks built. 30 average CFG blocks per function. 1167 max CFG blocks per function. 163 functions analyzed for uninitialiazed variables 640 variables analyzed. 3 average variables per function. 94 max variables per function. 96409 block visits. 591 average block visits per function. 61546 max block visits per function. And for the reduced testcase in PR10183: *** Analysis Based Warnings Stats: 98 functions analyzed (0 w/o CFGs). 8526 CFG blocks built. 87 average CFG blocks per function. 7277 max CFG blocks per function. 68 functions analyzed for uninitialiazed variables 1359 variables analyzed. 19 average variables per function. 1196 max variables per function. 2540494 block visits. 37360 average block visits per function. 2536495 max block visits per function. That last number is the somewhat scary one that indicates the problem in PR10183. llvm-svn: 134494
2011-07-07 00:21:37 +08:00
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
unsigned AvgCFGBlocksPerFunction =
!NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
<< NumFunctionsWithBadCFGs << " w/o CFGs).\n"
<< " " << NumCFGBlocks << " CFG blocks built.\n"
<< " " << AvgCFGBlocksPerFunction
<< " average CFG blocks per function.\n"
<< " " << MaxCFGBlocksPerFunction
<< " max CFG blocks per function.\n";
unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
llvm::errs() << NumUninitAnalysisFunctions
<< " functions analyzed for uninitialiazed variables\n"
<< " " << NumUninitAnalysisVariables << " variables analyzed.\n"
<< " " << AvgUninitVariablesPerFunction
<< " average variables per function.\n"
<< " " << MaxUninitAnalysisVariablesPerFunction
<< " max variables per function.\n"
<< " " << NumUninitAnalysisBlockVisits << " block visits.\n"
<< " " << AvgUninitBlockVisitsPerFunction
<< " average block visits per function.\n"
<< " " << MaxUninitAnalysisBlockVisitsPerFunction
<< " max block visits per function.\n";
}