llvm-project/mlir/lib/IR/Attributes.cpp

401 lines
13 KiB
C++
Raw Normal View History

//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Attributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Types.h"
using namespace mlir;
using namespace mlir::detail;
Attribute::Kind Attribute::getKind() const { return attr->kind; }
bool Attribute::isOrContainsFunction() const {
return attr->isOrContainsFunctionCache;
}
// Given an attribute that could refer to a function attribute in the remapping
// table, walk it and rewrite it to use the mapped function. If it doesn't
// refer to anything in the table, then it is returned unmodified.
Attribute Attribute::remapFunctionAttrs(
const llvm::DenseMap<Attribute, FunctionAttr> &remappingTable,
MLIRContext *context) const {
// Most attributes are trivially unrelated to function attributes, skip them
// rapidly.
if (!isOrContainsFunction())
return *this;
// If we have a function attribute, remap it.
if (auto fnAttr = this->dyn_cast<FunctionAttr>()) {
auto it = remappingTable.find(fnAttr);
return it != remappingTable.end() ? it->second : *this;
}
// Otherwise, we must have an array attribute, remap the elements.
auto arrayAttr = this->cast<ArrayAttr>();
SmallVector<Attribute, 8> remappedElts;
bool anyChange = false;
for (auto elt : arrayAttr.getValue()) {
auto newElt = elt.remapFunctionAttrs(remappingTable, context);
remappedElts.push_back(newElt);
anyChange |= (elt != newElt);
}
if (!anyChange)
return *this;
return ArrayAttr::get(remappedElts, context);
}
/// NumericAttr
Type NumericAttr::getType() const {
if (auto boolAttr = dyn_cast<BoolAttr>())
return boolAttr.getType();
if (auto intAttr = dyn_cast<IntegerAttr>())
return intAttr.getType();
if (auto floatAttr = dyn_cast<FloatAttr>())
return floatAttr.getType();
if (auto elemAttr = dyn_cast<ElementsAttr>())
return elemAttr.getType();
llvm_unreachable("unhandled NumericAttr subclass");
}
bool NumericAttr::kindof(Kind kind) {
return BoolAttr::kindof(kind) || IntegerAttr::kindof(kind) ||
FloatAttr::kindof(kind) || ElementsAttr::kindof(kind);
}
/// BoolAttr
bool BoolAttr::getValue() const { return static_cast<ImplType *>(attr)->value; }
Type BoolAttr::getType() const { return static_cast<ImplType *>(attr)->type; }
/// IntegerAttr
APInt IntegerAttr::getValue() const {
return static_cast<ImplType *>(attr)->getValue();
}
int64_t IntegerAttr::getInt() const { return getValue().getSExtValue(); }
Type IntegerAttr::getType() const {
return static_cast<ImplType *>(attr)->type;
}
/// FloatAttr
APFloat FloatAttr::getValue() const {
return static_cast<ImplType *>(attr)->getValue();
}
Type FloatAttr::getType() const { return static_cast<ImplType *>(attr)->type; }
double FloatAttr::getValueAsDouble() const {
const auto &semantics = getType().cast<FloatType>().getFloatSemantics();
auto value = getValue();
bool losesInfo = false; // ignored
if (&semantics != &APFloat::IEEEdouble()) {
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
/// StringAttr
StringRef StringAttr::getValue() const {
return static_cast<ImplType *>(attr)->value;
}
/// ArrayAttr
ArrayRef<Attribute> ArrayAttr::getValue() const {
return static_cast<ImplType *>(attr)->value;
}
/// AffineMapAttr
AffineMap AffineMapAttr::getValue() const {
return static_cast<ImplType *>(attr)->value;
}
/// IntegerSetAttr
IntegerSet IntegerSetAttr::getValue() const {
return static_cast<ImplType *>(attr)->value;
}
/// TypeAttr
Type TypeAttr::getValue() const { return static_cast<ImplType *>(attr)->value; }
/// FunctionAttr
Function *FunctionAttr::getValue() const {
return static_cast<ImplType *>(attr)->value;
}
FunctionType FunctionAttr::getType() const { return getValue()->getType(); }
/// ElementsAttr
VectorOrTensorType ElementsAttr::getType() const {
return static_cast<ImplType *>(attr)->type;
}
/// SplatElementsAttr
Attribute SplatElementsAttr::getValue() const {
return static_cast<ImplType *>(attr)->elt;
}
/// DenseElementsAttr
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute DenseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank != index.size())
return Attribute();
// Verify that all of the indices are within the shape dimensions.
auto shape = type.getShape();
for (unsigned i = 0; i != rank; ++i)
if (shape[i] <= index[i])
return Attribute();
// Reduce the provided multidimensional index into a 1D index.
uint64_t valueIndex = 0;
uint64_t dimMultiplier = 1;
for (auto i = rank - 1; i >= 0; --i) {
valueIndex += index[i] * dimMultiplier;
dimMultiplier *= shape[i];
}
// Return the element stored at the 1D index.
// FIXME(b/121118307): using 64 bits for BF16 because it is currently stored
// with double semantics.
auto elementType = getType().getElementType();
size_t bitWidth =
elementType.isBF16() ? 64 : elementType.getIntOrFloatBitWidth();
APInt rawValueData =
readBits(getRawData().data(), valueIndex * bitWidth, bitWidth);
// Convert the raw value data to an attribute value.
switch (getKind()) {
case Attribute::Kind::DenseIntElements:
return IntegerAttr::get(elementType, rawValueData);
case Attribute::Kind::DenseFPElements:
return FloatAttr::get(
elementType, APFloat(elementType.cast<FloatType>().getFloatSemantics(),
rawValueData));
default:
llvm_unreachable("unexpected element type");
}
}
void DenseElementsAttr::getValues(SmallVectorImpl<Attribute> &values) const {
auto elementType = getType().getElementType();
switch (getKind()) {
case Attribute::Kind::DenseIntElements: {
// Get the raw APInt values.
SmallVector<APInt, 8> intValues;
cast<DenseIntElementsAttr>().getValues(intValues);
// Convert each to an IntegerAttr.
for (auto &intVal : intValues)
values.push_back(IntegerAttr::get(elementType, intVal));
return;
}
case Attribute::Kind::DenseFPElements: {
// Get the raw APFloat values.
SmallVector<APFloat, 8> floatValues;
cast<DenseFPElementsAttr>().getValues(floatValues);
// Convert each to an FloatAttr.
for (auto &floatVal : floatValues)
values.push_back(FloatAttr::get(elementType, floatVal));
return;
}
default:
llvm_unreachable("unexpected element type");
}
}
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<ImplType *>(attr)->data;
}
/// Parses the raw integer internal value for each dense element into
/// 'values'.
void DenseElementsAttr::getRawValues(SmallVectorImpl<APInt> &values) const {
auto elementType = getType().getElementType();
auto elementNum = getType().getNumElements();
values.reserve(elementNum);
// FIXME(b/121118307): using 64 bits for BF16 because it is currently stored
// with double semantics.
size_t bitWidth =
elementType.isBF16() ? 64 : elementType.getIntOrFloatBitWidth();
const auto *rawData = getRawData().data();
for (size_t i = 0, e = elementNum; i != e; ++i)
values.push_back(readBits(rawData, i * bitWidth, bitWidth));
}
/// Writes value to the bit position `bitPos` in array `rawData`. 'rawData' is
/// expected to be a 64-bit aligned storage address.
void DenseElementsAttr::writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1) {
auto *rawIntData = reinterpret_cast<uint64_t *>(rawData);
if (value.isOneValue())
APInt::tcSetBit(rawIntData, bitPos);
else
APInt::tcClearBit(rawIntData, bitPos);
return;
}
// If the bit position and width are byte aligned, write the storage directly
// to the data.
if ((bitWidth % 8) == 0 && (bitPos % 8) == 0) {
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
bitWidth / 8, rawData + (bitPos / 8));
return;
}
// Otherwise, convert the raw data into an APInt and insert the value at the
// specified bit position.
size_t totalWords = APInt::getNumWords((bitPos % 64) + bitWidth);
llvm::MutableArrayRef<uint64_t> rawIntData(
reinterpret_cast<uint64_t *>(rawData) + (bitPos / 64), totalWords);
APInt tempStorage(totalWords * 64, rawIntData);
tempStorage.insertBits(value, bitPos % 64);
// Copy the value back to the raw data.
std::copy_n(tempStorage.getRawData(), rawIntData.size(), rawIntData.data());
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`. 'rawData' is expected to be a 64-bit aligned storage address.
APInt DenseElementsAttr::readBits(const char *rawData, size_t bitPos,
size_t bitWidth) {
// Reinterpret the raw data as a uint64_t word array and extract the value
// starting at 'bitPos'.
APInt result(bitWidth, 0);
const uint64_t *intData = reinterpret_cast<const uint64_t *>(rawData);
APInt::tcExtract(const_cast<uint64_t *>(result.getRawData()),
result.getNumWords(), intData, bitWidth, bitPos);
return result;
}
/// DenseIntElementsAttr
void DenseIntElementsAttr::getValues(SmallVectorImpl<APInt> &values) const {
// Simply return the raw integer values.
getRawValues(values);
}
/// DenseFPElementsAttr
void DenseFPElementsAttr::getValues(SmallVectorImpl<APFloat> &values) const {
// Get the raw APInt element values.
SmallVector<APInt, 8> intValues;
getRawValues(intValues);
// Convert each of the APInt values to an APFloat.
auto elementType = getType().getElementType().dyn_cast<FloatType>();
const auto &elementSemantics = elementType.getFloatSemantics();
for (auto &intValue : intValues)
values.push_back(APFloat(elementSemantics, intValue));
}
/// OpaqueElementsAttr
StringRef OpaqueElementsAttr::getValue() const {
return static_cast<ImplType *>(attr)->bytes;
}
Dialect *OpaqueElementsAttr::getDialect() const {
return static_cast<ImplType *>(attr)->dialect;
}
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
if (auto *d = getDialect())
return d->decodeHook(*this, result);
return true;
}
/// SparseElementsAttr
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
return static_cast<ImplType *>(attr)->indices;
}
DenseElementsAttr SparseElementsAttr::getValues() const {
return static_cast<ImplType *>(attr)->values;
}
/// Return the value of the element at the given index.
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank != index.size())
return Attribute();
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
const uint64_t *sparseIndexValues =
reinterpret_cast<const uint64_t *>(sparseIndices.getRawData().data());
// Build a mapping between known indices and the offset of the stored element.
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
mappedIndices.try_emplace(
{sparseIndexValues + (i * rank), static_cast<size_t>(rank)}, i);
// Look for the provided index key within the mapped indices. If the provided
// index is not found, then return a zero attribute.
auto it = mappedIndices.find(index);
if (it == mappedIndices.end()) {
auto eltType = type.getElementType();
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
assert(eltType.isa<IntegerType>() && "unexpected element type");
return IntegerAttr::get(eltType, 0);
}
// Otherwise, return the held sparse value element.
return getValues().getValue(it->second);
}