llvm-project/lldb/source/Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

425 lines
13 KiB
C
Raw Normal View History

//===-- ObjCLanguageRuntime.h -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef liblldb_ObjCLanguageRuntime_h_
#define liblldb_ObjCLanguageRuntime_h_
#include <functional>
#include <map>
#include <memory>
#include <unordered_set>
#include "llvm/Support/Casting.h"
#include "lldb/Breakpoint/BreakpointPrecondition.h"
#include "lldb/Core/PluginInterface.h"
#include "lldb/Core/ThreadSafeDenseMap.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/lldb-private.h"
class CommandObjectObjC_ClassTable_Dump;
namespace lldb_private {
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
class UtilityFunction;
class ObjCLanguageRuntime : public LanguageRuntime {
public:
enum class ObjCRuntimeVersions {
eObjC_VersionUnknown = 0,
eAppleObjC_V1 = 1,
eAppleObjC_V2 = 2
};
typedef lldb::addr_t ObjCISA;
class ClassDescriptor;
typedef std::shared_ptr<ClassDescriptor> ClassDescriptorSP;
// the information that we want to support retrieving from an ObjC class this
// needs to be pure virtual since there are at least 2 different
// implementations of the runtime, and more might come
class ClassDescriptor {
public:
ClassDescriptor()
: m_is_kvo(eLazyBoolCalculate), m_is_cf(eLazyBoolCalculate),
m_type_wp() {}
virtual ~ClassDescriptor() = default;
virtual ConstString GetClassName() = 0;
virtual ClassDescriptorSP GetSuperclass() = 0;
This is a fairly bulky patch, but a lot of it involves rearranging existing code What it does: - it introduces a concept of EncodingToType to the ObjCLanguageRuntime The ObjC runtime has a "type encoding" feature that describes types as strings The EncodingToType is a decoder for that format, making types out of type encoding strings This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder - it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large - it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents and as a couple minor niceties: - it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext - it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies llvm-svn: 216026
2014-08-20 05:46:37 +08:00
virtual ClassDescriptorSP GetMetaclass() const = 0;
// virtual if any implementation has some other version-specific rules but
// for the known v1/v2 this is all that needs to be done
virtual bool IsKVO() {
if (m_is_kvo == eLazyBoolCalculate) {
const char *class_name = GetClassName().AsCString();
if (class_name && *class_name)
m_is_kvo =
(LazyBool)(strstr(class_name, "NSKVONotifying_") == class_name);
}
return (m_is_kvo == eLazyBoolYes);
This is a fairly bulky patch, but a lot of it involves rearranging existing code What it does: - it introduces a concept of EncodingToType to the ObjCLanguageRuntime The ObjC runtime has a "type encoding" feature that describes types as strings The EncodingToType is a decoder for that format, making types out of type encoding strings This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder - it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large - it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents and as a couple minor niceties: - it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext - it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies llvm-svn: 216026
2014-08-20 05:46:37 +08:00
}
// virtual if any implementation has some other version-specific rules but
// for the known v1/v2 this is all that needs to be done
virtual bool IsCFType() {
if (m_is_cf == eLazyBoolCalculate) {
const char *class_name = GetClassName().AsCString();
if (class_name && *class_name)
m_is_cf = (LazyBool)(strcmp(class_name, "__NSCFType") == 0 ||
strcmp(class_name, "NSCFType") == 0);
}
return (m_is_cf == eLazyBoolYes);
}
virtual bool IsValid() = 0;
virtual bool GetTaggedPointerInfo(uint64_t *info_bits = nullptr,
uint64_t *value_bits = nullptr,
uint64_t *payload = nullptr) = 0;
virtual uint64_t GetInstanceSize() = 0;
// use to implement version-specific additional constraints on pointers
virtual bool CheckPointer(lldb::addr_t value, uint32_t ptr_size) const {
return true;
}
virtual ObjCISA GetISA() = 0;
// This should return true iff the interface could be completed
virtual bool
Describe(std::function<void(ObjCISA)> const &superclass_func,
std::function<bool(const char *, const char *)> const
&instance_method_func,
std::function<bool(const char *, const char *)> const
&class_method_func,
std::function<bool(const char *, const char *, lldb::addr_t,
uint64_t)> const &ivar_func) const {
return false;
}
lldb::TypeSP GetType() { return m_type_wp.lock(); }
void SetType(const lldb::TypeSP &type_sp) { m_type_wp = type_sp; }
struct iVarDescriptor {
This is a fairly bulky patch, but a lot of it involves rearranging existing code What it does: - it introduces a concept of EncodingToType to the ObjCLanguageRuntime The ObjC runtime has a "type encoding" feature that describes types as strings The EncodingToType is a decoder for that format, making types out of type encoding strings This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder - it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large - it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents and as a couple minor niceties: - it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext - it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies llvm-svn: 216026
2014-08-20 05:46:37 +08:00
ConstString m_name;
CompilerType m_type;
uint64_t m_size;
This is a fairly bulky patch, but a lot of it involves rearranging existing code What it does: - it introduces a concept of EncodingToType to the ObjCLanguageRuntime The ObjC runtime has a "type encoding" feature that describes types as strings The EncodingToType is a decoder for that format, making types out of type encoding strings This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder - it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large - it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents and as a couple minor niceties: - it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext - it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies llvm-svn: 216026
2014-08-20 05:46:37 +08:00
int32_t m_offset;
};
virtual size_t GetNumIVars() { return 0; }
virtual iVarDescriptor GetIVarAtIndex(size_t idx) {
return iVarDescriptor();
}
protected:
bool IsPointerValid(lldb::addr_t value, uint32_t ptr_size,
bool allow_NULLs = false, bool allow_tagged = false,
bool check_version_specific = false) const;
private:
LazyBool m_is_kvo;
LazyBool m_is_cf;
lldb::TypeWP m_type_wp;
};
class EncodingToType {
public:
virtual ~EncodingToType();
virtual CompilerType RealizeType(TypeSystemClang &ast_ctx, const char *name,
bool for_expression) = 0;
virtual CompilerType RealizeType(const char *name, bool for_expression);
protected:
std::unique_ptr<TypeSystemClang> m_scratch_ast_ctx_up;
};
class ObjCExceptionPrecondition : public BreakpointPrecondition {
public:
ObjCExceptionPrecondition();
~ObjCExceptionPrecondition() override = default;
bool EvaluatePrecondition(StoppointCallbackContext &context) override;
void GetDescription(Stream &stream, lldb::DescriptionLevel level) override;
Status ConfigurePrecondition(Args &args) override;
protected:
void AddClassName(const char *class_name);
private:
std::unordered_set<std::string> m_class_names;
};
static lldb::BreakpointPreconditionSP
GetBreakpointExceptionPrecondition(lldb::LanguageType language,
bool throw_bp);
class TaggedPointerVendor {
public:
virtual ~TaggedPointerVendor() = default;
virtual bool IsPossibleTaggedPointer(lldb::addr_t ptr) = 0;
virtual ObjCLanguageRuntime::ClassDescriptorSP
GetClassDescriptor(lldb::addr_t ptr) = 0;
protected:
TaggedPointerVendor() = default;
private:
DISALLOW_COPY_AND_ASSIGN(TaggedPointerVendor);
};
~ObjCLanguageRuntime() override;
static char ID;
bool isA(const void *ClassID) const override {
return ClassID == &ID || LanguageRuntime::isA(ClassID);
}
static bool classof(const LanguageRuntime *runtime) {
return runtime->isA(&ID);
}
static ObjCLanguageRuntime *Get(Process &process) {
return llvm::cast_or_null<ObjCLanguageRuntime>(
process.GetLanguageRuntime(lldb::eLanguageTypeObjC));
}
virtual TaggedPointerVendor *GetTaggedPointerVendor() { return nullptr; }
typedef std::shared_ptr<EncodingToType> EncodingToTypeSP;
virtual EncodingToTypeSP GetEncodingToType();
virtual ClassDescriptorSP GetClassDescriptor(ValueObject &in_value);
ClassDescriptorSP GetNonKVOClassDescriptor(ValueObject &in_value);
virtual ClassDescriptorSP
GetClassDescriptorFromClassName(ConstString class_name);
virtual ClassDescriptorSP GetClassDescriptorFromISA(ObjCISA isa);
ClassDescriptorSP GetNonKVOClassDescriptor(ObjCISA isa);
lldb::LanguageType GetLanguageType() const override {
return lldb::eLanguageTypeObjC;
}
virtual bool IsModuleObjCLibrary(const lldb::ModuleSP &module_sp) = 0;
virtual bool ReadObjCLibrary(const lldb::ModuleSP &module_sp) = 0;
virtual bool HasReadObjCLibrary() = 0;
lldb::addr_t LookupInMethodCache(lldb::addr_t class_addr, lldb::addr_t sel);
void AddToMethodCache(lldb::addr_t class_addr, lldb::addr_t sel,
lldb::addr_t impl_addr);
TypeAndOrName LookupInClassNameCache(lldb::addr_t class_addr);
void AddToClassNameCache(lldb::addr_t class_addr, const char *name,
lldb::TypeSP type_sp);
void AddToClassNameCache(lldb::addr_t class_addr,
const TypeAndOrName &class_or_type_name);
lldb::TypeSP LookupInCompleteClassCache(ConstString &name);
llvm::Optional<CompilerType> GetRuntimeType(CompilerType base_type) override;
virtual UtilityFunction *CreateObjectChecker(const char *) = 0;
virtual ObjCRuntimeVersions GetRuntimeVersion() const {
return ObjCRuntimeVersions::eObjC_VersionUnknown;
}
bool IsValidISA(ObjCISA isa) {
UpdateISAToDescriptorMap();
return m_isa_to_descriptor.count(isa) > 0;
}
virtual void UpdateISAToDescriptorMapIfNeeded() = 0;
void UpdateISAToDescriptorMap() {
if (m_process && m_process->GetStopID() != m_isa_to_descriptor_stop_id) {
UpdateISAToDescriptorMapIfNeeded();
}
}
virtual ObjCISA GetISA(ConstString name);
virtual ObjCISA GetParentClass(ObjCISA isa);
// Finds the byte offset of the child_type ivar in parent_type. If it can't
// find the offset, returns LLDB_INVALID_IVAR_OFFSET.
virtual size_t GetByteOffsetForIvar(CompilerType &parent_qual_type,
const char *ivar_name);
bool HasNewLiteralsAndIndexing() {
if (m_has_new_literals_and_indexing == eLazyBoolCalculate) {
if (CalculateHasNewLiteralsAndIndexing())
m_has_new_literals_and_indexing = eLazyBoolYes;
else
m_has_new_literals_and_indexing = eLazyBoolNo;
}
return (m_has_new_literals_and_indexing == eLazyBoolYes);
}
void SymbolsDidLoad(const ModuleList &module_list) override {
m_negative_complete_class_cache.clear();
}
bool GetTypeBitSize(const CompilerType &compiler_type,
uint64_t &size) override;
/// Check whether the name is "self" or "_cmd" and should show up in
/// "frame variable".
bool IsWhitelistedRuntimeValue(ConstString name) override;
protected:
// Classes that inherit from ObjCLanguageRuntime can see and modify these
ObjCLanguageRuntime(Process *process);
virtual bool CalculateHasNewLiteralsAndIndexing() { return false; }
bool ISAIsCached(ObjCISA isa) const {
return m_isa_to_descriptor.find(isa) != m_isa_to_descriptor.end();
}
bool AddClass(ObjCISA isa, const ClassDescriptorSP &descriptor_sp) {
if (isa != 0) {
m_isa_to_descriptor[isa] = descriptor_sp;
return true;
}
return false;
}
bool AddClass(ObjCISA isa, const ClassDescriptorSP &descriptor_sp,
const char *class_name);
bool AddClass(ObjCISA isa, const ClassDescriptorSP &descriptor_sp,
uint32_t class_name_hash) {
if (isa != 0) {
m_isa_to_descriptor[isa] = descriptor_sp;
m_hash_to_isa_map.insert(std::make_pair(class_name_hash, isa));
return true;
}
return false;
}
private:
// We keep a map of <Class,Selector>->Implementation so we don't have to call
// the resolver function over and over.
// FIXME: We need to watch for the loading of Protocols, and flush the cache
// for any
// class that we see so changed.
struct ClassAndSel {
ClassAndSel() {
sel_addr = LLDB_INVALID_ADDRESS;
class_addr = LLDB_INVALID_ADDRESS;
}
ClassAndSel(lldb::addr_t in_sel_addr, lldb::addr_t in_class_addr)
: class_addr(in_class_addr), sel_addr(in_sel_addr) {}
bool operator==(const ClassAndSel &rhs) {
if (class_addr == rhs.class_addr && sel_addr == rhs.sel_addr)
return true;
else
return false;
}
bool operator<(const ClassAndSel &rhs) const {
if (class_addr < rhs.class_addr)
return true;
else if (class_addr > rhs.class_addr)
return false;
else {
if (sel_addr < rhs.sel_addr)
return true;
else
return false;
}
}
lldb::addr_t class_addr;
lldb::addr_t sel_addr;
};
typedef std::map<ClassAndSel, lldb::addr_t> MsgImplMap;
typedef std::map<ObjCISA, ClassDescriptorSP> ISAToDescriptorMap;
typedef std::multimap<uint32_t, ObjCISA> HashToISAMap;
typedef ISAToDescriptorMap::iterator ISAToDescriptorIterator;
typedef HashToISAMap::iterator HashToISAIterator;
typedef ThreadSafeDenseMap<void *, uint64_t> TypeSizeCache;
MsgImplMap m_impl_cache;
LazyBool m_has_new_literals_and_indexing;
ISAToDescriptorMap m_isa_to_descriptor;
HashToISAMap m_hash_to_isa_map;
TypeSizeCache m_type_size_cache;
protected:
uint32_t m_isa_to_descriptor_stop_id;
typedef std::map<ConstString, lldb::TypeWP> CompleteClassMap;
CompleteClassMap m_complete_class_cache;
struct ConstStringSetHelpers {
size_t operator()(ConstString arg) const // for hashing
{
return (size_t)arg.GetCString();
}
bool operator()(ConstString arg1,
ConstString arg2) const // for equality
{
return arg1.operator==(arg2);
}
};
typedef std::unordered_set<ConstString, ConstStringSetHelpers,
ConstStringSetHelpers>
CompleteClassSet;
CompleteClassSet m_negative_complete_class_cache;
ISAToDescriptorIterator GetDescriptorIterator(ConstString name);
friend class ::CommandObjectObjC_ClassTable_Dump;
std::pair<ISAToDescriptorIterator, ISAToDescriptorIterator>
GetDescriptorIteratorPair(bool update_if_needed = true);
void ReadObjCLibraryIfNeeded(const ModuleList &module_list);
DISALLOW_COPY_AND_ASSIGN(ObjCLanguageRuntime);
};
} // namespace lldb_private
#endif // liblldb_ObjCLanguageRuntime_h_