llvm-project/lldb/source/Symbol/CompileUnit.cpp

403 lines
12 KiB
C++
Raw Normal View History

//===-- CompileUnit.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/LineTable.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/VariableList.h"
using namespace lldb;
using namespace lldb_private;
CompileUnit::CompileUnit (Module *module, void *user_data, const char *pathname, const lldb::user_id_t cu_sym_id, lldb::LanguageType language) :
ModuleChild(module),
FileSpec (pathname, false),
UserID(cu_sym_id),
Language (language),
m_user_data (user_data),
m_flags (0),
m_functions (),
m_support_files (),
m_line_table_ap (),
m_variables()
{
assert(module != NULL);
}
CompileUnit::CompileUnit (Module *module, void *user_data, const FileSpec &fspec, const lldb::user_id_t cu_sym_id, lldb::LanguageType language) :
ModuleChild(module),
FileSpec (fspec),
UserID(cu_sym_id),
Language (language),
m_user_data (user_data),
m_flags (0),
m_functions (),
m_support_files (),
m_line_table_ap (),
m_variables()
{
assert(module != NULL);
}
CompileUnit::~CompileUnit ()
{
}
void
CompileUnit::CalculateSymbolContext(SymbolContext* sc)
{
sc->comp_unit = this;
GetModule()->CalculateSymbolContext(sc);
}
void
CompileUnit::DumpSymbolContext(Stream *s)
{
GetModule()->DumpSymbolContext(s);
s->Printf(", CompileUnit{0x%8.8x}", GetID());
}
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
void
CompileUnit::GetDescription(Stream *s, lldb::DescriptionLevel level) const
{
*s << "id = " << (const UserID&)*this << ", file = \"" << (const FileSpec&)*this << "\", language = \"" << (const Language&)*this << '"';
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
}
//----------------------------------------------------------------------
// Dump the current contents of this object. No functions that cause on
// demand parsing of functions, globals, statics are called, so this
// is a good function to call to get an idea of the current contents of
// the CompileUnit object.
//----------------------------------------------------------------------
void
CompileUnit::Dump(Stream *s, bool show_context) const
{
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
*s << "CompileUnit" << (const UserID&)*this
<< ", language = \"" << (const Language&)*this
<< "\", file = '" << (const FileSpec&)*this << "'\n";
// m_types.Dump(s);
if (m_variables.get())
{
s->IndentMore();
m_variables->Dump(s, show_context);
s->IndentLess();
}
if (!m_functions.empty())
{
s->IndentMore();
std::vector<FunctionSP>::const_iterator pos;
std::vector<FunctionSP>::const_iterator end = m_functions.end();
for (pos = m_functions.begin(); pos != end; ++pos)
{
(*pos)->Dump(s, show_context);
}
s->IndentLess();
s->EOL();
}
}
//----------------------------------------------------------------------
// Add a function to this compile unit
//----------------------------------------------------------------------
void
CompileUnit::AddFunction(FunctionSP& funcSP)
{
// TODO: order these by address
m_functions.push_back(funcSP);
}
FunctionSP
CompileUnit::GetFunctionAtIndex (size_t idx)
{
FunctionSP funcSP;
if (idx < m_functions.size())
funcSP = m_functions[idx];
return funcSP;
}
//----------------------------------------------------------------------
// Find functions using the a Mangled::Tokens token list. This
// function currently implements an interative approach designed to find
// all instances of certain functions. It isn't designed to the the
// quickest way to lookup functions as it will need to iterate through
// all functions and see if they match, though it does provide a powerful
// and context sensitive way to search for all functions with a certain
// name, all functions in a namespace, or all functions of a template
// type. See Mangled::Tokens::Parse() comments for more information.
//
// The function prototype will need to change to return a list of
// results. It was originally used to help debug the Mangled class
// and the Mangled::Tokens::MatchesQuery() function and it currently
// will print out a list of matching results for the functions that
// are currently in this compile unit.
//
// A FindFunctions method should be called prior to this that takes
// a regular function name (const char * or ConstString as a parameter)
// before resorting to this slower but more complete function. The
// other FindFunctions method should be able to take advantage of any
// accelerator tables available in the debug information (which is
// parsed by the SymbolFile parser plug-ins and registered with each
// Module).
//----------------------------------------------------------------------
//void
//CompileUnit::FindFunctions(const Mangled::Tokens& tokens)
//{
// if (!m_functions.empty())
// {
// Stream s(stdout);
// std::vector<FunctionSP>::const_iterator pos;
// std::vector<FunctionSP>::const_iterator end = m_functions.end();
// for (pos = m_functions.begin(); pos != end; ++pos)
// {
// const ConstString& demangled = (*pos)->Mangled().Demangled();
// if (demangled)
// {
// const Mangled::Tokens& func_tokens = (*pos)->Mangled().GetTokens();
// if (func_tokens.MatchesQuery (tokens))
// s << "demangled MATCH found: " << demangled << "\n";
// }
// }
// }
//}
FunctionSP
CompileUnit::FindFunctionByUID (lldb::user_id_t func_uid)
{
FunctionSP funcSP;
if (!m_functions.empty())
{
std::vector<FunctionSP>::const_iterator pos;
std::vector<FunctionSP>::const_iterator end = m_functions.end();
for (pos = m_functions.begin(); pos != end; ++pos)
{
if ((*pos)->GetID() == func_uid)
{
funcSP = *pos;
break;
}
}
}
return funcSP;
}
LineTable*
CompileUnit::GetLineTable()
{
if (m_line_table_ap.get() == NULL)
{
if (m_flags.IsClear(flagsParsedLineTable))
{
m_flags.Set(flagsParsedLineTable);
SymbolVendor* symbol_vendor = GetModule()->GetSymbolVendor();
if (symbol_vendor)
{
SymbolContext sc;
CalculateSymbolContext(&sc);
symbol_vendor->ParseCompileUnitLineTable(sc);
}
}
}
return m_line_table_ap.get();
}
void
CompileUnit::SetLineTable(LineTable* line_table)
{
if (line_table == NULL)
m_flags.Clear(flagsParsedLineTable);
else
m_flags.Set(flagsParsedLineTable);
m_line_table_ap.reset(line_table);
}
VariableListSP
CompileUnit::GetVariableList(bool can_create)
{
if (m_variables.get() == NULL && can_create)
{
SymbolContext sc;
CalculateSymbolContext(&sc);
assert(sc.module_sp);
sc.module_sp->GetSymbolVendor()->ParseVariablesForContext(sc);
}
return m_variables;
}
uint32_t
CompileUnit::FindLineEntry (uint32_t start_idx, uint32_t line, const FileSpec* file_spec_ptr, LineEntry *line_entry_ptr)
{
uint32_t file_idx = 0;
if (file_spec_ptr)
{
file_idx = GetSupportFiles().FindFileIndex (1, *file_spec_ptr);
if (file_idx == UINT32_MAX)
return UINT32_MAX;
}
else
{
// All the line table entries actually point to the version of the Compile
// Unit that is in the support files (the one at 0 was artifically added.)
// So prefer the one further on in the support files if it exists...
FileSpecList &support_files = GetSupportFiles();
file_idx = support_files.FindFileIndex (1, support_files.GetFileSpecAtIndex(0));
if (file_idx == UINT32_MAX)
file_idx = 0;
}
LineTable *line_table = GetLineTable();
if (line_table)
return line_table->FindLineEntryIndexByFileIndex (start_idx, file_idx, line, true, line_entry_ptr);
return UINT32_MAX;
}
uint32_t
CompileUnit::ResolveSymbolContext
(
const FileSpec& file_spec,
uint32_t line,
bool check_inlines,
bool exact,
uint32_t resolve_scope,
SymbolContextList &sc_list
)
{
// First find all of the file indexes that match our "file_spec". If
// "file_spec" has an empty directory, then only compare the basenames
// when finding file indexes
std::vector<uint32_t> file_indexes;
bool file_spec_matches_cu_file_spec = FileSpec::Compare(file_spec, this, !file_spec.GetDirectory().IsEmpty()) == 0;
// If we are not looking for inlined functions and our file spec doesn't
// match then we are done...
if (file_spec_matches_cu_file_spec == false && check_inlines == false)
return 0;
uint32_t file_idx = GetSupportFiles().FindFileIndex (1, file_spec);
while (file_idx != UINT32_MAX)
{
file_indexes.push_back (file_idx);
file_idx = GetSupportFiles().FindFileIndex (file_idx + 1, file_spec);
}
const size_t num_file_indexes = file_indexes.size();
if (num_file_indexes == 0)
return 0;
const uint32_t prev_size = sc_list.GetSize();
SymbolContext sc(GetModule());
sc.comp_unit = this;
if (line != 0)
{
LineTable *line_table = sc.comp_unit->GetLineTable();
if (line_table != NULL)
{
uint32_t found_line;
uint32_t line_idx;
if (num_file_indexes == 1)
{
// We only have a single support file that matches, so use
// the line table function that searches for a line entries
// that match a single support file index
line_idx = line_table->FindLineEntryIndexByFileIndex (0, file_indexes.front(), line, exact, &sc.line_entry);
// If "exact == true", then "found_line" will be the same
// as "line". If "exact == false", the "found_line" will be the
// closest line entry with a line number greater than "line" and
// we will use this for our subsequent line exact matches below.
found_line = sc.line_entry.line;
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
while (line_idx != UINT32_MAX)
{
sc_list.Append(sc);
line_idx = line_table->FindLineEntryIndexByFileIndex (line_idx + 1, file_indexes.front(), found_line, true, &sc.line_entry);
}
}
else
{
// We found multiple support files that match "file_spec" so use
// the line table function that searches for a line entries
// that match a multiple support file indexes.
line_idx = line_table->FindLineEntryIndexByFileIndex (0, file_indexes, line, exact, &sc.line_entry);
// If "exact == true", then "found_line" will be the same
// as "line". If "exact == false", the "found_line" will be the
// closest line entry with a line number greater than "line" and
// we will use this for our subsequent line exact matches below.
found_line = sc.line_entry.line;
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
while (line_idx != UINT32_MAX)
{
sc_list.Append(sc);
line_idx = line_table->FindLineEntryIndexByFileIndex (line_idx + 1, file_indexes, found_line, true, &sc.line_entry);
}
}
}
}
else if (file_spec_matches_cu_file_spec && !check_inlines)
{
// only append the context if we aren't looking for inline call sites
// by file and line and if the file spec matches that of the compile unit
sc_list.Append(sc);
}
return sc_list.GetSize() - prev_size;
}
void
CompileUnit::SetVariableList(VariableListSP &variables)
{
m_variables = variables;
}
FileSpecList&
CompileUnit::GetSupportFiles ()
{
if (m_support_files.GetSize() == 0)
{
if (m_flags.IsClear(flagsParsedSupportFiles))
{
m_flags.Set(flagsParsedSupportFiles);
SymbolVendor* symbol_vendor = GetModule()->GetSymbolVendor();
if (symbol_vendor)
{
SymbolContext sc;
CalculateSymbolContext(&sc);
symbol_vendor->ParseCompileUnitSupportFiles(sc, m_support_files);
}
}
}
return m_support_files;
}
void *
CompileUnit::GetUserData () const
{
return m_user_data;
}