llvm-project/clang/lib/StaticAnalyzer/Checkers/BasicObjCFoundationChecks.cpp

505 lines
16 KiB
C++
Raw Normal View History

//== BasicObjCFoundationChecks.cpp - Simple Apple-Foundation checks -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BasicObjCFoundationChecks, a class that encapsulates
// a set of simple checks to run on Objective-C code using Apple's Foundation
// classes.
//
//===----------------------------------------------------------------------===//
#include "BasicObjCFoundationChecks.h"
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerVisitor.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerVisitor.h"
#include "clang/StaticAnalyzer/Checkers/LocalCheckers.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ASTContext.h"
using namespace clang;
using namespace ento;
namespace {
class APIMisuse : public BugType {
public:
APIMisuse(const char* name) : BugType(name, "API Misuse (Apple)") {}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static const ObjCInterfaceType* GetReceiverType(const ObjCMessage &msg) {
if (const ObjCInterfaceDecl *ID = msg.getReceiverInterface())
return ID->getTypeForDecl()->getAs<ObjCInterfaceType>();
return NULL;
}
static const char* GetReceiverNameType(const ObjCMessage &msg) {
if (const ObjCInterfaceType *ReceiverType = GetReceiverType(msg))
return ReceiverType->getDecl()->getIdentifier()->getNameStart();
return NULL;
}
static bool isNSString(llvm::StringRef ClassName) {
return ClassName == "NSString" || ClassName == "NSMutableString";
}
static inline bool isNil(SVal X) {
return isa<loc::ConcreteInt>(X);
}
//===----------------------------------------------------------------------===//
// NilArgChecker - Check for prohibited nil arguments to ObjC method calls.
//===----------------------------------------------------------------------===//
namespace {
class NilArgChecker : public CheckerVisitor<NilArgChecker> {
APIMisuse *BT;
void WarnNilArg(CheckerContext &C, const ObjCMessage &msg, unsigned Arg);
public:
NilArgChecker() : BT(0) {}
static void *getTag() { static int x = 0; return &x; }
void preVisitObjCMessage(CheckerContext &C, ObjCMessage msg);
};
}
void NilArgChecker::WarnNilArg(CheckerContext &C,
const ObjCMessage &msg,
unsigned int Arg)
{
if (!BT)
BT = new APIMisuse("nil argument");
if (ExplodedNode *N = C.generateSink()) {
llvm::SmallString<128> sbuf;
llvm::raw_svector_ostream os(sbuf);
os << "Argument to '" << GetReceiverNameType(msg) << "' method '"
<< msg.getSelector().getAsString() << "' cannot be nil";
RangedBugReport *R = new RangedBugReport(*BT, os.str(), N);
R->addRange(msg.getArgSourceRange(Arg));
C.EmitReport(R);
}
}
void NilArgChecker::preVisitObjCMessage(CheckerContext &C,
ObjCMessage msg)
{
const ObjCInterfaceType *ReceiverType = GetReceiverType(msg);
if (!ReceiverType)
return;
if (isNSString(ReceiverType->getDecl()->getIdentifier()->getName())) {
Selector S = msg.getSelector();
if (S.isUnarySelector())
return;
// FIXME: This is going to be really slow doing these checks with
// lexical comparisons.
std::string NameStr = S.getAsString();
llvm::StringRef Name(NameStr);
assert(!Name.empty());
// FIXME: Checking for initWithFormat: will not work in most cases
// yet because [NSString alloc] returns id, not NSString*. We will
// need support for tracking expected-type information in the analyzer
// to find these errors.
if (Name == "caseInsensitiveCompare:" ||
Name == "compare:" ||
Name == "compare:options:" ||
Name == "compare:options:range:" ||
Name == "compare:options:range:locale:" ||
Name == "componentsSeparatedByCharactersInSet:" ||
Name == "initWithFormat:") {
if (isNil(msg.getArgSVal(0, C.getState())))
WarnNilArg(C, msg, 0);
}
}
}
//===----------------------------------------------------------------------===//
// Error reporting.
//===----------------------------------------------------------------------===//
namespace {
class CFNumberCreateChecker : public CheckerVisitor<CFNumberCreateChecker> {
APIMisuse* BT;
IdentifierInfo* II;
public:
CFNumberCreateChecker() : BT(0), II(0) {}
~CFNumberCreateChecker() {}
static void *getTag() { static int x = 0; return &x; }
void PreVisitCallExpr(CheckerContext &C, const CallExpr *CE);
private:
void EmitError(const TypedRegion* R, const Expr* Ex,
uint64_t SourceSize, uint64_t TargetSize, uint64_t NumberKind);
};
} // end anonymous namespace
enum CFNumberType {
kCFNumberSInt8Type = 1,
kCFNumberSInt16Type = 2,
kCFNumberSInt32Type = 3,
kCFNumberSInt64Type = 4,
kCFNumberFloat32Type = 5,
kCFNumberFloat64Type = 6,
kCFNumberCharType = 7,
kCFNumberShortType = 8,
kCFNumberIntType = 9,
kCFNumberLongType = 10,
kCFNumberLongLongType = 11,
kCFNumberFloatType = 12,
kCFNumberDoubleType = 13,
kCFNumberCFIndexType = 14,
kCFNumberNSIntegerType = 15,
kCFNumberCGFloatType = 16
};
namespace {
template<typename T>
class Optional {
bool IsKnown;
T Val;
public:
Optional() : IsKnown(false), Val(0) {}
Optional(const T& val) : IsKnown(true), Val(val) {}
bool isKnown() const { return IsKnown; }
const T& getValue() const {
assert (isKnown());
return Val;
}
operator const T&() const {
return getValue();
}
};
}
static Optional<uint64_t> GetCFNumberSize(ASTContext& Ctx, uint64_t i) {
static const unsigned char FixedSize[] = { 8, 16, 32, 64, 32, 64 };
if (i < kCFNumberCharType)
return FixedSize[i-1];
QualType T;
switch (i) {
case kCFNumberCharType: T = Ctx.CharTy; break;
case kCFNumberShortType: T = Ctx.ShortTy; break;
case kCFNumberIntType: T = Ctx.IntTy; break;
case kCFNumberLongType: T = Ctx.LongTy; break;
case kCFNumberLongLongType: T = Ctx.LongLongTy; break;
case kCFNumberFloatType: T = Ctx.FloatTy; break;
case kCFNumberDoubleType: T = Ctx.DoubleTy; break;
case kCFNumberCFIndexType:
case kCFNumberNSIntegerType:
case kCFNumberCGFloatType:
// FIXME: We need a way to map from names to Type*.
default:
return Optional<uint64_t>();
}
return Ctx.getTypeSize(T);
}
#if 0
static const char* GetCFNumberTypeStr(uint64_t i) {
static const char* Names[] = {
"kCFNumberSInt8Type",
"kCFNumberSInt16Type",
"kCFNumberSInt32Type",
"kCFNumberSInt64Type",
"kCFNumberFloat32Type",
"kCFNumberFloat64Type",
"kCFNumberCharType",
"kCFNumberShortType",
"kCFNumberIntType",
"kCFNumberLongType",
"kCFNumberLongLongType",
"kCFNumberFloatType",
"kCFNumberDoubleType",
"kCFNumberCFIndexType",
"kCFNumberNSIntegerType",
"kCFNumberCGFloatType"
};
return i <= kCFNumberCGFloatType ? Names[i-1] : "Invalid CFNumberType";
}
#endif
void CFNumberCreateChecker::PreVisitCallExpr(CheckerContext &C,
const CallExpr *CE)
{
const Expr* Callee = CE->getCallee();
const GRState *state = C.getState();
SVal CallV = state->getSVal(Callee);
const FunctionDecl* FD = CallV.getAsFunctionDecl();
if (!FD)
return;
ASTContext &Ctx = C.getASTContext();
if (!II)
II = &Ctx.Idents.get("CFNumberCreate");
if (FD->getIdentifier() != II || CE->getNumArgs() != 3)
return;
// Get the value of the "theType" argument.
SVal TheTypeVal = state->getSVal(CE->getArg(1));
// FIXME: We really should allow ranges of valid theType values, and
// bifurcate the state appropriately.
nonloc::ConcreteInt* V = dyn_cast<nonloc::ConcreteInt>(&TheTypeVal);
if (!V)
return;
uint64_t NumberKind = V->getValue().getLimitedValue();
Optional<uint64_t> TargetSize = GetCFNumberSize(Ctx, NumberKind);
// FIXME: In some cases we can emit an error.
if (!TargetSize.isKnown())
return;
// Look at the value of the integer being passed by reference. Essentially
// we want to catch cases where the value passed in is not equal to the
// size of the type being created.
SVal TheValueExpr = state->getSVal(CE->getArg(2));
// FIXME: Eventually we should handle arbitrary locations. We can do this
// by having an enhanced memory model that does low-level typing.
loc::MemRegionVal* LV = dyn_cast<loc::MemRegionVal>(&TheValueExpr);
if (!LV)
return;
const TypedRegion* R = dyn_cast<TypedRegion>(LV->StripCasts());
if (!R)
return;
QualType T = Ctx.getCanonicalType(R->getValueType());
// FIXME: If the pointee isn't an integer type, should we flag a warning?
// People can do weird stuff with pointers.
if (!T->isIntegerType())
return;
uint64_t SourceSize = Ctx.getTypeSize(T);
// CHECK: is SourceSize == TargetSize
if (SourceSize == TargetSize)
return;
// Generate an error. Only generate a sink if 'SourceSize < TargetSize';
// otherwise generate a regular node.
//
// FIXME: We can actually create an abstract "CFNumber" object that has
// the bits initialized to the provided values.
//
if (ExplodedNode *N = SourceSize < TargetSize ? C.generateSink()
: C.generateNode()) {
llvm::SmallString<128> sbuf;
llvm::raw_svector_ostream os(sbuf);
os << (SourceSize == 8 ? "An " : "A ")
<< SourceSize << " bit integer is used to initialize a CFNumber "
"object that represents "
<< (TargetSize == 8 ? "an " : "a ")
<< TargetSize << " bit integer. ";
if (SourceSize < TargetSize)
os << (TargetSize - SourceSize)
<< " bits of the CFNumber value will be garbage." ;
else
os << (SourceSize - TargetSize)
<< " bits of the input integer will be lost.";
if (!BT)
BT = new APIMisuse("Bad use of CFNumberCreate");
RangedBugReport *report = new RangedBugReport(*BT, os.str(), N);
report->addRange(CE->getArg(2)->getSourceRange());
C.EmitReport(report);
}
}
//===----------------------------------------------------------------------===//
// CFRetain/CFRelease checking for null arguments.
//===----------------------------------------------------------------------===//
namespace {
class CFRetainReleaseChecker : public CheckerVisitor<CFRetainReleaseChecker> {
APIMisuse *BT;
IdentifierInfo *Retain, *Release;
public:
CFRetainReleaseChecker(): BT(0), Retain(0), Release(0) {}
static void *getTag() { static int x = 0; return &x; }
void PreVisitCallExpr(CheckerContext& C, const CallExpr* CE);
};
} // end anonymous namespace
void CFRetainReleaseChecker::PreVisitCallExpr(CheckerContext& C,
const CallExpr* CE) {
// If the CallExpr doesn't have exactly 1 argument just give up checking.
if (CE->getNumArgs() != 1)
return;
// Get the function declaration of the callee.
const GRState* state = C.getState();
2010-02-09 00:18:51 +08:00
SVal X = state->getSVal(CE->getCallee());
const FunctionDecl* FD = X.getAsFunctionDecl();
if (!FD)
return;
if (!BT) {
ASTContext &Ctx = C.getASTContext();
Retain = &Ctx.Idents.get("CFRetain");
Release = &Ctx.Idents.get("CFRelease");
BT = new APIMisuse("null passed to CFRetain/CFRelease");
}
// Check if we called CFRetain/CFRelease.
const IdentifierInfo *FuncII = FD->getIdentifier();
if (!(FuncII == Retain || FuncII == Release))
return;
// FIXME: The rest of this just checks that the argument is non-null.
// It should probably be refactored and combined with AttrNonNullChecker.
// Get the argument's value.
const Expr *Arg = CE->getArg(0);
SVal ArgVal = state->getSVal(Arg);
DefinedSVal *DefArgVal = dyn_cast<DefinedSVal>(&ArgVal);
if (!DefArgVal)
return;
// Get a NULL value.
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedSVal zero = cast<DefinedSVal>(svalBuilder.makeZeroVal(Arg->getType()));
// Make an expression asserting that they're equal.
DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);
// Are they equal?
const GRState *stateTrue, *stateFalse;
llvm::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);
if (stateTrue && !stateFalse) {
ExplodedNode *N = C.generateSink(stateTrue);
if (!N)
return;
const char *description = (FuncII == Retain)
? "Null pointer argument in call to CFRetain"
: "Null pointer argument in call to CFRelease";
EnhancedBugReport *report = new EnhancedBugReport(*BT, description, N);
report->addRange(Arg->getSourceRange());
report->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, Arg);
C.EmitReport(report);
return;
}
// From here on, we know the argument is non-null.
C.addTransition(stateFalse);
}
//===----------------------------------------------------------------------===//
// Check for sending 'retain', 'release', or 'autorelease' directly to a Class.
//===----------------------------------------------------------------------===//
namespace {
class ClassReleaseChecker : public CheckerVisitor<ClassReleaseChecker> {
Selector releaseS;
Selector retainS;
Selector autoreleaseS;
Selector drainS;
BugType *BT;
public:
ClassReleaseChecker()
: BT(0) {}
static void *getTag() { static int x = 0; return &x; }
void preVisitObjCMessage(CheckerContext &C, ObjCMessage msg);
};
}
void ClassReleaseChecker::preVisitObjCMessage(CheckerContext &C,
ObjCMessage msg) {
if (!BT) {
BT = new APIMisuse("message incorrectly sent to class instead of class "
"instance");
ASTContext &Ctx = C.getASTContext();
releaseS = GetNullarySelector("release", Ctx);
retainS = GetNullarySelector("retain", Ctx);
autoreleaseS = GetNullarySelector("autorelease", Ctx);
drainS = GetNullarySelector("drain", Ctx);
}
if (msg.isInstanceMessage())
return;
const ObjCInterfaceDecl *Class = msg.getReceiverInterface();
assert(Class);
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
Selector S = msg.getSelector();
if (!(S == releaseS || S == retainS || S == autoreleaseS || S == drainS))
return;
if (ExplodedNode *N = C.generateNode()) {
llvm::SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "The '" << S.getAsString() << "' message should be sent to instances "
"of class '" << Class->getName()
<< "' and not the class directly";
RangedBugReport *report = new RangedBugReport(*BT, os.str(), N);
report->addRange(msg.getSourceRange());
C.EmitReport(report);
}
}
//===----------------------------------------------------------------------===//
// Check registration.
//===----------------------------------------------------------------------===//
void ento::registerNilArgChecker(ExprEngine& Eng) {
Eng.registerCheck(new NilArgChecker());
}
void ento::registerCFNumberCreateChecker(ExprEngine& Eng) {
Eng.registerCheck(new CFNumberCreateChecker());
}
void ento::registerCFRetainReleaseChecker(ExprEngine& Eng) {
Eng.registerCheck(new CFRetainReleaseChecker());
}
void ento::registerClassReleaseChecker(ExprEngine& Eng) {
Eng.registerCheck(new ClassReleaseChecker());
}